Notes on 8.1 Inverse Variation Name __________________________ Direct Variation- in the form y=kx where kβ 0. Inverse Variation- in the form xy=k or y=π/π₯ ππ π₯=π/π¦ where kβ 0. --------------------------------------------------------------------------------------------------------------------Direct Variation review (section 2.2) Determine whether y varies directly with x? If so, state the constant of variation. Example: x Y 1 2 3 6 4 8 --------------------------------------------------------------------------------------------------------------------Example: For each function, y varies directly with x; y=9 when x=-15 . What is y when x=21? --------------------------------------------------------------------------------------------------------------------Indentifying direct variation and inverse variation Example: Is the relationship between the variables a direct variation, and Inverse variation or neither? Write function models for the direct and inverse variations. X Y 2 15 4 7.5 10 3 15 2 Example: Is the relation an inverse or direct variation, or neither? X Y 2 10 4 8 10 3 15 1.5 Determining an inverse variation Suppose x and y vary inversely, and x=4 when y=12. What function models the inverse variation? What is y when x=10? --------------------------------------------------------------------------------------------------------------------Practice: Suppose x and y vary inversely, and x=8 when y=-7. 1) What is the function that models the inverse variation? 2) What is y when x=2? --------------------------------------------------------------------------------------------------------------------Classwork/Homework
© Copyright 2026 Paperzz