Friction Nano Research Vol. 5, No. 12, December 2012 ISSN 2223-7690 Vol. 1, No. 2, June 2013 Contents Guest editorial: Special issue on bio-tribology / 99 Zhongmin JIN, Ming ZHOU Review Bio-friction / 100–113 Zhongmin JIN, Duncan DOWSON Recent advances in gecko adhesion and friction mechanisms and the development of gecko-inspired dry adhesive surfaces / 114–129 Ming ZHOU, Noshir PESIKA, Hongbo ZENG, Yu TIAN, Jacob ISRAELACHVILI Skin tribology: Science friction? / 130–142 E. VAN DER HEIDE, X. ZENG, M.A. MASEN Research Article Use of opposite frictional forces by animals to increase their attachment reliability during movement / 143–149 Zhouyi WANG, Yi SONG, Zhendong DAI Influence of synovia constituents on tribological behaviors of articular cartilage / 150–162 Teruo MURAKAMI, Seido YARIMITSU, Kazuhiro NAKASHIMA, Yoshinori SAWAE, Nobuo SAKAI Potential hydrodynamic origin of frictional transients in sliding mesothelial tissues / 163–177 Stephen H. LORING, James P. BUTLER Damage due to rolling in total knee replacement—The influence of tractive force / 178–185 Markus A. WIMMER, Lars BIRKEN, Kay SELLENSCHLOH, Erich SCHNEIDER Short Communication Green tribology: Fundamentals and future development / 186–194 Si-wei ZHANG ⅢI Friction 1(2): 99 (2013) DOI 10.1007/s40544-013-0016-0 ISSN 2223-7690 Guest editorial: Special issue on bio-tribology Zhongmin JIN1,2, Ming ZHOU3 1 School of Mechanical Engineering, Xi’an Jiaotong University, China School of Mechanical Engineering, University of Leeds, UK 3 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China Received: 30 May 2013 2 © The author(s) 2013. This article is published with open access at Springerlink.com Tribology plays an important role in engineering as well as in animal world and our daily life. Since the first introduction in 1970 [1], bio-tribology has been widely researched. More recently green tribology has also received significant attention with the special attention to our environment and energy consumption. This Special Issue of Friction is intended to introduce readers to the exciting fields of bio-tribology, covering not only the fundamental understanding of the natural biological systems but also the application to medical interventions, and green tribology. Review papers, research articles and short communication are included to demonstrate the breadth and the timeliness of the subject and to provide an opportunity for the publication of new findings. Eights papers by tribologists, scientists, biologists and physicians have been selected to achieve these aims, including three general review articles on the friction in biological systems, the adhesion and locomotion in the animal world, and the skin tribology, one research paper on the attachment and movement of animals, two papers on the subject of natural synovial joints and artificial replacements, one on the lung (pleural), and one short communication on green tribology. The first paper by Jin and Dowson reviews the biofriction in a number of biological systems including synovial joints, eye, pleurae, fat pad, skin, and oral cavity as well as daily activities associated with shaving, brushing, slip, etc. The role of friction studies and the corresponding link with the understanding of the lubrication mechanisms have been demonstrated. Zhou et al. reviews the recent advances in gecko adhesion and friction mechanisms and the development of gecko-inspired dry adhesive surfaces. The importance of the gecko hierarchical structures, i.e., the feet, toes, setae, and spatulae on the adhesion and friction is discussed, with the emphasis on the understanding of the corresponding models to ascertain the mechanical principles involved. Skin tribology is addressed by van der Heide et al. The current understanding of skin tribology is still limited by the living nature of skin, subject and anatomical sites specific, and simplified test methods. Current predictive friction models have been shown to be only partially capable of predicting in vivo skin friction. How animals use opposite frictional forces to increase their attachment reliability during movement is addressed by Wang et al. These opposite frictional forces allow many animals to attach securely and stably during movement. The coordination of different attachment (adhesion) modes not only helps animals adhere, but also increases the overall stability of the attachment (adhesion) system. The synovia constituents in synovial fluids are important on the tribological behaviors of articular cartilage. Murakami et al. investigate the effect of different synovia constituents on the tribological functioning of the intact and damaged cartilage tissues, and the corresponding synergistic actions between different constituents. The role of potential elasto-hydrodynamic action on the frictional transients in sliding mesothelial tissues in the lung is addressed by Loring and Butler. The frictional variations seen with sliding mesothelial tissues are found to be consistent with elasto-hydrodynamic lubrication without direct contact between the sliding surfaces. Wimmer et al. consider the damage due to rolling in total knee replacement—the influence of tractive force. The importance of the rolling motion and its combination with sliding of the femoral component on the wear of the polyethylene tibial plateau is studied. Tractive rolling has been shown to be an important wear mechanism. The closing paper by Zhang introduces the field of green tribology in a short communication, including its history, the definition, the objectives, and the disciplinary features. The technological connotations of green tribology are discussed comprehensively and the future directions of this new area are highlighted. References [1] Dowson D. Whither tribology. Wear 16(4): 303–304 (1970) Friction 1(2): 100–113 (2013) DOI 10.1007/s40544-013-0004-4 ISSN 2223-7690 REVIEW ARTICLE Bio-friction Zhongmin JIN1,2,*, Duncan DOWSON2 1 School of Mechanical Engineering, Xi’an Jiaotong University, China 2 School of Mechanical Engineering, University of Leeds, UK Received: 05 November 2012 / Revised: 07 January 2013 / Accepted: 01 February 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: Friction studies in biological systems are reviewed, including synovial joints (cartilage, meniscus), eye, pleurae, fat pad, skin, and oral cavity as well as daily activities associated with shaving, brushing, slip, etc. Both natural systems and medical interventions in terms of diagnoses and artificial replacements are considered. Important relevant biomechanical, physiological, and anatomical factors are reviewed in conjunction with friction studies in terms of both methodologies and friction coefficients. Important underlying tribological mechanisms related to friction are briefly discussed. A unified view on the lubrication mechanism responsible for the low friction in most soft biological tissues is presented. Keywords: biofriction; soft tissues; friction 1 A brief historical context The principles of friction have been utilized for centuries in our daily life. For example, journal bearings were used in chariots in China c.2698–2599 B.C. [1]. While in Egypt water or perhaps precious oil was used as a lubricant for transporting an Egyptian colossus from the tomb of Tehuti-Hetep, El-Bersheh, (c.1880 B.C.) as depicted in Fig. 1. This finding was confirmed from a simple estimation of the friction coefficient of 0.23 for the model shown in Fig. 1 and comparison with available modern experimental measurements of about 0.2 between wet wood [2]. Scientific studies on friction began with Leonardo da Vinci, as evidently from a number of his drawings. Subsequently, Amontons, Coulomb, and others made significant contributions to, and laid the foundation for, the current understanding of friction. Nevertheless, as pointed out by the late Professor David Tabor “friction is easiest to measure, but hardest to understand” (Private communication, Dowson). * Corresponding author: Zhongmin JIN. E-mail: [email protected], [email protected] Fig. 1 Transporting an Egyptian colossus from the tomb of Tehuti-Hetep, El-Bersheh, (c.1880 B.C.) [2]. 2 Definition Friction is loosely defined as “the resistance that one surface or object encounters when moving over another” in the Oxford Dictionaries (http://oxforddictionaries.com/definition/english/frict ion?q=friction). It is interesting to note that the word “friction” was originated in the mid 16th century, “denoting chafing or rubbing of the body or limbs, formerly much used in medical treatment, via French from Latin frictio(n-), from fricare ‘to rub’”. Bio-friction can be defined as friction applied to biological systems, following on a similar definition of “bio-tribology” by Dowson [3]. It is also noted that Friction 1(2): 100–113 (2013) “bio-friction*” or “biofriction*” has been used much less frequently in the literature (6 hits searched on the Web of Science on 27th December 2012; as a comparison, “Bio-tribolog*” or “Biotribolog*” was used in 315 hits and “bio-lubricat*” or “biolubricat*” in 180 hits). Friction forces can generate additional stresses that may become important in contacting bodies. Friction is generally low in biological systems under normal conditions, but can become high under adverse abnormal and diseased conditions. Friction is an integral part of tribology and is closely related to lubrication and wear. In general, friction measurement is much easier to conduct than lubrication and wear. Therefore friction studies are widely carried out to reveal the underlying tribological mechanism. It is important to recognize that a systematic approach should be adopted in friction studies due to the close links between friction, lubrication, and wear. However, it is beyond the scope of the present review paper to address all these tribological aspects and therefore only bio-friction studies are reviewed, with only brief references to related lubrication and wear mechanisms. The importance of friction in normal functions, as well as disease developments in selected natural biological systems, as well as artificial replacements is covered. Nevertheless, for each of the biological systems in consideration, it is equally beyond the scope of the present paper to review comprehensively all the detailed relevant biomechanical and biotribological studies. Other general reviews on lubrication and tribology in biological systems can be found elsewhere [4, 5]. 101 forms of a simple linear or circular motion where the friction between the two bearing surfaces is measured. In recent times, more and more sophisticated functional simulators have been developed to mimic as closely as possible the physiological environments including loading, motion, and body fluid. Such developments are particularly evident in friction studies of natural synovial joints and artificial replacements as reviewed in Section 4.1.1. Friction is usually quantified as a coefficient of friction ( ). There is a large variation in the reported coefficients of friction in engineering and biological systems due to the complexity of the underlying tribological mechanisms. It is often convenient in engineering to present coefficients of friction with reference to lubrication mechanisms, including fluid-film, boundary or mixed lubrication regime as well as the biphasic lubrication mechanism specifically proposed for biological tissues (Section 4.1.1). Therefore, some values quoted in this paper should be taken as average and representative. For each of the biological systems considered in this paper, a common approach to the literature review was taken; the relevant anatomical structure and physiological/ biomechanical environment were briefly mentioned, followed by the discussion on the importance of friction in both normal and abnormal conditions; selected friction studies in terms of both measurement methodologies and representative values of coefficient of friction were presented. Finally the underlying lubrication mechanisms were discussed. 4 3 Biological systems Methodology Friction is not itself a fundamental force but arises from fundamental electromagnetic forces between the charged particles on the contacting surfaces. It is generally very difficult to calculate friction from first principles due to the complexity of these interactions, despite a number of attempts. For example, molecular dynamics simulation has been used recently to predict friction [6]. Instead, friction is usually measured experimentally. Bio-friction studies are usually carried out largely through experimental means due to additional complexities associated with modelling of biological tissues. Such experiments can take simple Bio-friction studies are reviewed conveniently, according to whether the biological system in consideration is inside or outside the human body. 4.1 4.1.1 Inside the body Synovial joints The most important load bearing component inside the human body is the natural synovial joint. Natural synovial joints consist of articular cartilage as the bearing surfaces, bone as the backing materials, and synovial fluid as the lubricant, in a similar way as the journal bearing in engineering as depicted in Fig. 2. Friction 1(2): 100–113 (2013) 102 Table 1 Typical representative friction coefficients in synovial joints. References 11 Fig. 2 Comparison of a synovial joint and a journal bearing. The loading and motion conditions in synovial joints such as the hip are quite complex. Generally, the load during walking is transient and the maximum magnitude can be as high as 4 to 6 times body weight, while the motion is reciprocating with an average angular velocity around 2 rad/s. Most friction studies of synovial joints reported in the literature have utilized small cartilage specimens under simplified loading and motion conditions. There are only a limited number of studies where the whole joint was considered [7, 8]. It is important to measure the friction in synovial joints accurately, since the friction level in these natural bearings is generally low and also because of additional difficulties associated with other soft tissues surrounding the joint and mechanical factors that can contribute to the friction measurement. Unsworth et al [9] developed a pendulum type machine where hydrostatic bearings were adopted to minimize the extraneous mechanical friction. This type of pendulum friction simulator (both free and driven) has been widely used for the friction studies in both natural (hip and knee) and artificial joints (hip) [10]. Healthy synovial joints exhibit friction coefficient as low as about 0.002, despite the fact that they are subjected to a large dynamic load and a reciprocating motion. Table 1 summarizes representative friction coefficients measured in synovial joints under various conditions. The menisci are known to play important roles in the normal function and the development of diseases such as osteoarthritis in the knee joint. Pickard et al. [15] compared the time-dependent friction between bovine meniscus and cartilage, both against a stainless steel plate and found that the friction coefficient for the meniscus tissue was higher, particularly during the early stage of loading. The effect of the meniscus Friction coefficient Comments 0.014 to 0.024 Pendulum; cadaveric human ankle joint; boundary lubrication was proposed. 12 0.0053 Arthrotripsometer; dog ankle joint; synovial fluid. 9 0.02 Free pendulum machine with a hydrostatic bearing; cadaveric hip joints; fluid film to boundary was proposed. 13 0.01 Boundary lubrication was proposed. 14 0.01 to 0.5 Cartilage specimen-on-metal; timedependent friction; biphasic lubrication was proposed. 8 0.02 Driven pendulum machine; bovine knee joint with cartilage-on-cartilage and meniscus; biphasic lubrication was proposed. on the friction of bovine knee joint was investigated by McCann et al. [8]. It was shown that the removal of the meniscus significantly increased the friction coefficient between the cartilage surfaces from 0.02 to 0.05 as a result of the increased contact pressure. Baro et al. [16] also found a similar friction coefficient on the order of 0.02 under migratory contacts and further showed that the femoral apposing surface tended to give lower friction than the tibial counterpart. It is generally accepted that a migratory contact allowed the re-hydration of the biphasic materials and recovery of the fluid-load support. The low friction inside synovial joints is generally accepted. However, the underlying mechanism is still not clear. It is probably a combination of various effective lubrication mechanisms, ranging from boundary, mixed in the form of biphasic lubrication to fluid-film lubrication as discussed below [17]. Under normal conditions, the softness of articular cartilage promotes the formation of fluid films and this reduces friction markedly. Even when a fluidfilm lubrication regime is not possible, boundary lubricating constituents of synovial fluid often reduce friction to a level that is not much different from that under a full fluid film lubrication condition [11]. Another friction-reduction mechanism is biphasic lubrication in articular cartilage, which consists of both fluid and solid phases. Immediately after loading, the fluid phase inside cartilage is pressurized and Friction 1(2): 100–113 (2013) therefore the majority of the load is carried out by the fluid phase, resulting in low friction [14, 18]. As time increases, the load is transferred to the solid phase and friction increases. Under a prolonged period of loading, boundary lubrication may act as an effective mechanism to limit friction in synovial joints. Other lubrication mechanisms proposed for articular cartilage include hydration or brush, which may be related to biphasic lubrication [19] or boundary lubrication [13]. The hydration lubrication mechanism in articular cartilage has received significant attention recently. The essence of the hydration lubrication mechanism is a “surface amorphous layer”, also described with different names such as “gel layer”, “hydration layer”, or “brush layer”, in which the condroitin- or keratan sulphates composing the leafs of the proteoglycan subunit are hydrated [20]. Recent studies by Klein and colleagues [21] have revealed the remarkable ability of phosphatidylcholine liposomes to reduce friction coefficients on atomically smooth mica surfaces to exceedingly low values of around 10–4 under physiologically relevant pressures. Consideration of friction between articulating surfaces has played an important role in the development of artificial hip joints. The hip replacement designed by the late Sir John Charnley utilised a material combination with a minimum friction coefficient under boundary lubrication (e.g., Teflon (PTFE)). Combined with a small femoral head diameter of approximately 22 mm, this gave a low frictional torque; the principle for the Low Friction Arthroplasty (LFA). Later on, PTFE was replaced by high density polyethylene and then ultra high molecular weight polyethylene, however, the principle of LFA has remained. Subsequently, it has been shown by Wroblewski et al. [22] that the loosening rate of acetabular cups was reduced for a thicker polyethylene cup, particularly when the linear wear penetration exceeded 1 mm. This has been explained on the basis of the shearing stress at the cup/cement interface resulting from the frictional torque generated at the articulating surfaces. A decrease in the outside diameter and an increase in the linear wear penetration resulted in an increase in the shear stress and likelihood of loosening. Friction may also have played an important role in the clinical performance 103 of large diameter metal-on-metal hip implants. The large frictional torque in these devices under adverse lubrication conditions due to edge loading and micro-lateralisation may be responsible for both the cup and the taper connections loosening and clinical failures identified recently [23, 24]. Typical friction coefficients in artificial hip joints with different bearing surfaces are summarised in Table 2. 4.1.2 Fat pad and tendon Fat pads are masses of encapsulated adipose tissue, commonly found and strategically located within the human body to provide mechanical advantage to the musculo-skeletal system. Fat pads consist of water, collagens and proteoglycans as the extracellular matrix, and numerous unilocular adipocytes (fat cells) that are swollen with lipid. Fat pads play an important role in reducing friction in the musculo-skeletal system as reviewed by Theobald [27]. Under adverse conditions, high friction may lead to abnormity and consequently pain. For example, one of the common causes of anterior knee pain is known as the patellar tendon lateral femoral condyle friction syndrome. This is caused by patella maltracking resulting in the impingement of the superolateral aspect of Hoffa's fat pad between the inferior patella and the lateral femoral condyle. The friction between fat and bone from bovine tissue was measured by Theobald et al. [28]. A typical coefficient of friction of 0.01 was reported. These authors also adopted the Sommerfeld analysis commonly used in engineering and found that predominant hydrodynamic lubrication was present in their experiments. They further suggested that one of the functions of fat pads associated with Table 2 Typical friction coefficients (factors) for various bearings for artificial hip joints in the presence of bovine serum [25, 26]. Bearings Friction factor UHMWPE-on-Metal 0.06–0.08 UHMWPE-on-Ceramic 0.04–0.06 PEEK-on-Metal PEEK-on-Ceramic Metal-on-Metal 0.35 0.36 0.10–0.18 Ceramic-on-Ceramic ~0.04 Ceramic-on-Metal ~0.04 Friction 1(2): 100–113 (2013) 104 subtendinous bursae and synovial joints should be to generate a hydrodynamic lubricating layer between the opposing surfaces. Tendons transfer muscular forces around the joint, facilitating joint motion. Tendons can be subjected to either tension (i.e., mid-substance) or compression (i.e., fibrocartilaginous). High friction in tendon has previously been reported in association with cumulative trauma disorders such as carpal tunnel syndrome and tendonitis as well as tendon suturing failure [29]. The friction between a canine flexor digitorum profundus tendon and its pulley was quantified by Uchiyama et al. [30] using two force transducers connected to each end of the tendon. A frictional coefficient of the canine flexor tendon-pulley was found around 0.016. Theobald et al. [31] reported experimental data describing the friction characteristics of the tensile and compressive regions of bovine flexor tendon against glass using a pin-on-plate tribometer. Under physiological conditions, the tensile tendon region was found to be capable of generating elastohydrodynamic lubrication, with a coefficient of friction around 0.1 mainly as a result of viscous shearing in a fluid-film lubrication regime. The coefficient of friction in the equivalent region of compressive tendon was measured as 0.008, in the mixed/boundary lubrication regime. The surface-bound lubricin (a glycoprotein present in the synovial fluid that specifically binds to the surface of tendon, articular cartilage, etc.) was also found in the compressive region, which has been shown to be an effective boundary lubricating constituent responsible for minimising the friction in the mixed/boundary lubrication regime. However, such a lubricating mechanism has not been found in a number of synthetic grafts [32]. 4.1.3 Pleurae Friction also plays an important role between the normal function as well as disease developments between the lung and the chest wall. The pleurae consist of a double membrane with a monolayer of mesothelial cells, covering the lung (visceral pleura) and lining the chest wall (parietal pleura) [33]. There is a potential space between the double membrane, the pleural cavity, where a lubricant known as pleural (serous) fluid is found. It is important to ensure effective lubrication between the pleural membranes and low friction and minimum shear stress between the two sliding membrane surfaces during breathing [34]. However, under some adverse conditions, friction may be significantly increased, potentially causing damage to the tissue surfaces as well as producing an audible sound. This latter phenomena has been used to diagnose pleurisy and other conditions affecting the chest cavity such as pneumonia and pulmonary embolism, as commonly known as a pleural friction rub, or simply pleural rub as the pleural layers are inflamed and whenever the patient’s chest wall moves during inspiration and expiration. The measurement of friction in pleural surfaces has largely been carried out in vitro. The experimental results have been inconsistent, mainly due to the simplified apparatus and external conditions and the preparation of samples. A simple inclined plane was used in early experiments to measure starting coefficients of friction of lung sliding on the inner chest wall and a typical value at approximately 0.2 was found [35, 36] studied rabbit lung sliding on chest wall pleura with pleural liquid as lubricant in an in vitro set-up. They found the starting coefficient of friction increased from 0.086 to 0.122 as the period of stationary contact increased from 5 to 30 s. It is interesting to note that such a time-dependent friction characteristic is consistent with that observed for articular cartilage as discussed in Section 4.1.1. Under dynamic oscillating conditions representative of physiological velocities and normal forces, the average value of the coefficient of kinetic friction was constant at 0.019. Furthermore, the friction characteristics measured in both these experiments were broadly consistent with boundary lubrication, with substantial contact between the surfaces. However, other experimental results were more consistent with a full fluid film lubrication regime [37]. Friction was measured in a rotational tribometer during steady state sliding between mesothelial tissue from the peritoneal mesothelial surface and smooth glass lubricated with normal saline. The friction characteristics were found to be consistent with a progression of lubrication regimes from mixed to fully developed hydrodynamic Friction 1(2): 100–113 (2013) lubrication. Potential differences between these studies were the apparatus and the samples used, as pointed out by Loring and Butler [38]. This highlighted the importance of large scale conformation differences among tissue samples that promoted load support and reduced friction to a variable extent. Alternations to the natural system, i.e., blotting with filter paper, can significantly increase the friction and damage the pleural surface [39]. As with so many soft biological tissues, there are a number of potential lubrication mechanisms responsible for the low friction in the pleural surfaces. Elastohydrodynamic lubrication at microscopic scales has been proposed to be responsible for effective lubrication and low friction between parallel pleural surfaces. The asperities on the pleural surfaces and subsequent deformation promotes hydrodynamic load support and separates the two sliding surfaces [40]. Boundary lubricating properties of the pleural surfaces are also responsible for reducing friction. A number of boundary lubricating constituents have been identified, including surface active phospholipids [39, 41], again similar to those found in synovial fluid. However, the exact lubrication mechanisms remain speculative and controversial. Similar to the lungs, the heart and intestines would probably work in a similar manner. They all need to change their shape and size and slide against the chest wall and other organs to function normally. A similar effective lubrication mechanism may be operative during this process to provide little friction and without apparent damage or wear. Destruction and damage of the surfaces may elevate friction and result in diseases in all these soft tissues. 4.1.4 Eye Normal functions of the eye depend on effective lubrication and minimum friction and wear between the cornea and the eyelid. The cornea is approximately spherical in the central portion, however, its surface is not smooth. The surface topography on the cornea has been found to have microridges up to 0.5 m high [42]. However these microridges are covered with a mucus gel so the effective roughness may be much less. Tear films also play an important role in the lubrication of the eye. Tear films have three 105 distinct layers: the outermost being a lipid (fatty, oily) layer having a thickness of about 0.1 m, the middle layer being an aqueous layer of 7–10 m thick and low viscosity, and the innermost being a viscous mucous layer to adhere to the cornea surface. The major biomechanical function of the eye is blinking, which was studied in detail by Hayashi [43]. Blinking occurs once every 5 s on average. It takes about 0.08 s and 0.17 s during closure and opening respectively. During closure the upper eyelid moves down with an approximate speed of 0.15 m/s. The normal load between the eyelid and the cornea ranges from 0.2 to 0.25 N. Loss of lubrication and increase in friction can result in dry eye syndrome, either because of less production of tears or more watery tears than oily or both. High friction can result in high shear stresses, and inflammation and damage to the anterior tissues, leading to inconvenience to patients and scratching and burning of the eyes. Dry eye syndrome may be treated by using artificial tear drops. Direct friction measurements in the natural eye have been rather limited and most friction measurements have been done on tear drops and contact lenses. Cobb et al. [44] developed a low load friction measuring apparatus and determined the coefficient of friction between a glass pin and an intact layer of human corneal epithelial cells of the order of 0.05. Furthermore, they showed a direct relationship between the coefficient of friction and the extent of cell damage. Contact lenses are widely used to correct eyesight. The introduction of a contact lens in the eye results in two biotribological interfaces: the post-lens between the posterior surface of the lens and the eye surface (cornea) and the pre-lens between the anterior surface of the lens and the eye-lid, with the latter being more critical in terms of friction. Friction from the pre-lens interface of soft contact lenses has been measured in a number of studies. Rennie et al. [45] used a microtribometer to measure friction in a number of commercially available contact lenses slid with a glass pin under a wide range of contact pressures and speeds. The friction force was found to consist of three components: viscoelastic dissipation, interfacial shear, and viscous shearing. The coefficients of friction were found to vary from 0.025 to 0.075. Another similarly sophisticated friction apparatus Friction 1(2): 100–113 (2013) 106 was developed by Ngai et al. [46], where a silicone rubber eye-form that retained the contact lens was slid against a smooth reciprocating flat glass plate. lubrication mechanism in the natural eye, as well as in the presence of a contact lens, has been studied for a long time. Early studies by Ehlers [47] suggested boundary lubrication, however Holly and Holly [42] proposed an alternative hydrodynamic lubrication mechanism due to the relatively thick tear film discussed above. Extensive studies have been carried out to measure the tear film thickness in the eye, and the post-lens and pre-lens tear film thicknesses in the presence of a soft contact lens. At the same time, a number of theoretical lubrication modelling studies on contact lenses have also been carried out [48]. All these experimental and theoretical studies gave some evidence supporting the role of elastohydrodynamic lubrication in contact lens friction, broadly in agreement with the friction studies discussed in this section. 4.1.5 Oral cavity Human oral cavity is quite complex, consisting of both hard and soft tissues such as palate, chin, teeth, tongue, mucosa and glands as well as the temporomandibular joint (TMJ) which connects the upper temporal bone with the lower jaw bone. The TMJ can be considered as a synovial joint and therefore expected to behave similarly to other synovial joints such as the hip and the knee as reviewed in Section 4.1.1. All the soft tissues in the oral cavity are covered with mucosa, which is lined by stratified squamous epithelium with topographic differences that correlate with masticatory demands [49]. Another important element in the oral cavity is saliva. Understanding of the lubricating properties of saliva may help develop saliva substitutes [50] to treat “dry mouth” symptoms. As an organ, the main function of the oral cavity is closely related to speech and food processing. Therefore, friction can be expected to play an important role in the oral cavity. For example, during chewing, the movement of the teeth with the lubrication of saliva or food slurry results in friction and wear. Various names have been used to describe particular examples of frictional keratosis in the oral cavity from excessive force. Brushing the teeth may cause toothbrush keratosis, the constant rubbing of the tongue against the teeth may lead to tongue thrust keratosis and injuries to the oral mucosa may result in frictional keratosis. Another important aspect in the oral cavity is related to oral processing. The overall behaviour of a food in the mouth depends on how the food interacts within the oral environment. A number of processes are involved when food is prepared for swallowing in the mouth, including the mechanical breakdown of solid pieces into smaller fragments, enzymatic reduction of starches into sugars, molecular interaction with micro-organisms, and mixing with saliva. This requires a wide range of complex movement of the teeth and the tongue and different types of shear, tensile and compressive deformation. Furthermore, there is considerable interest in the possible link between texture, friction, rheology, and human perception of foodstuffs, such as creaminess and astringency [51], in a similar manner as the skin discussed in Section 4.2.1. A wide range of methods has been applied to measure friction during oral processing of food as well as producing food as reviewed by Goh [49], including the linear friction sledge, the pin- or ball-on-disk tribometer as well as rheometers with specific friction attachments. The important considerations for the contacting surface may include hydrophobic or hydrophilic, structures with pillars to simulate the papillae on the tongue and in some cases using animal tongues. The effect of surface structure on frictional behavior of a tongue/palate tribological system was investigated by Ranc et al. [52] under both dry and oil and aqueous solution in a reciprocating motion sliding tribometer. The friction was shown to be strongly affected by the topographical structure of the contacting surfaces. The effect of brushing on adsorbed salivary conditioning films and friction was investigated by Veeregowda et al. [53] using colloidal probe atomic force microscopy under different modes of brushing (manual, powered, rotary-oscillatory or sonically driven). It was found that different modes affected the friction and the mode of lubrication. The coefficients of friction of oral tissue, including teeth, have been shown to range from about 0.004 to 0.45, depending upon the external environment and conditions of load, sliding speed, and counterface as summarized by Dowson [54]. Coefficients of friction Friction 1(2): 100–113 (2013) in the presence of whole mouth saliva range from 0.02 to 0.2, with clear evidence of both boundary and mixed lubrication characteristics. Under certain conditions, when softer substrates were used, a transition from mixed to fluid-film lubrication was possible, with a minimum coefficient of friction of around 0.004 in the Stribeck curve. Harvey et al. [55] performed surface balance experiments on human whole saliva absorbed to molecularly smooth mica substrate and found a coefficient of fiction of 0.24 and 0.46 for the unrinsed and rinsed systems, respectively. Metals, ceramics, and composites are generally applied to dental restorations and implants. The effect of friction has an important role to play in the mechanical function of dental devices. Friction between dental materials and bone affects the micro-motion and consequently fixation [56], similar to the fixation of artificial joints. Friction in fixed orthodontic appliance systems has been known to most clinicians to be harmful to tooth movement. Friction between brackets with different materials such as stainless steel etc. slid against various archwires was measured by Tecco et al. [57] and Fidalgo [58], with considerable differences between different designs and materials. 4.1.6 Catheter Catheters and guidewires are widely used for medical diagnoses and interventions by inserting into a body cavity, duct, or vessel in order to allow drainage, administration of fluids or gases, or access by surgical instruments. There are numerous examples such as wound drains, endotracheal tubes; trochars; catheters; dilators; guide wires; angioplasty balloons; vascular, biliary and urethral stents; patches; filters; hypodermic or suture needles; and electrical pacemaker leads. Friction arising from this process directly results in shear stress that may damage the natural tissue and affect comfort, but also may influence the ease of insertion and manipulation in computer assisted surgery [59]. Various materials, particularly with coatings, have been developed over many decades to reduce friction [60]. Both in vitro and in vivo animal models were used to measure friction by Nickel et al. [61] and Khoury et al. [62] for different urinary catheter materials and coatings. In vitro measurement of static and kinetic 107 friction coefficient of a catheter surface was performed by Kazmierska et al. [63]. Contacts between different counter-faces (polymers, tissue) and various types of tubes under wet conditions were simulated in order to mimic in vivo process. Low friction was found for super-hydrophilic biomaterials on tissue and a hydrophobic counter-face, while slightly hydrophobic biomaterials showed higher friction in both cases. More hydrophobic biomaterials gave low friction on tissue but high on hydrophobic polymer. The smoothest friction characteristic was achieved in all cases on tissue counter-faces. The static coefficients of friction of catheters on bladder mucosa counter-faces were measured as 0.15 for vinyl and siliconised latex catheters and 0.05 for all-silicone. Hydrogel coated catheters exhibited the lowest static and kinetic friction factors. The use of a hydrophilic-coated catheter during transradial cardiac catheterization was also shown to be associated with a low incidence of radial artery spasm [64]. 4.2 4.2.1 Outside the body Skin Skin is the largest organ in the human body. Friction studies on skin can provide valuable insight into how the skin interacts with other surfaces and changes under various conditions including age and health, chemical treatments using lotions and moisturizers. Friction between skin and cloth may affect how we feel, and slips when entering or leaving a bath may be a serious hazard particular for the elderly [65]. Blister and pressure ulcer formation are also closely related to skin friction. As an external surface itself, it is convenient, relatively easy and non-invasive to measure skin friction in vivo quantitatively. Friction studies on skin have been carried out comprehensively. Most tests have been performed in vivo, with a few in vitro and on animal skins. Friction measurements have adopted two basic designs: a probe moved across the skin in a linear fashion or a rotating probe in contact with the skin surface. Specific designs for friction measurements have been comprehensively reviewed by Sivamani and Maibach [66] and Derler and Gerhardt [67]. Coefficients of friction of skin at different anatomical Friction 1(2): 100–113 (2013) 108 sites, against various counterfaces and in the presence of various chemicals and under different actions have been summarized by Sivamani and Maibach [66]. It has been generally noted that skin friction depends on anatomical site and skin hydration as well as the design of the measuring instrument and the counterface geometry and material. However, no significant differences have been found with regard to gender or race [68]. The effect of age on skin friction may be linked to the increased sunlight exposure which can affect the skin structure and, therefore, alter the friction properties of skin. However, no significant differences of friction have been found with regard to age [69]. The coefficients of friction in the normal untreated skin generally range from 0.2 to 0.5, and under some conditions can reach as high as 2. Representative values of the coefficient of friction for normal dry skin from different anatomical sites range from 0.40 (leg, hand (dorsal)), 0.49 (forehead), 0.68 (hand (palm)), 0.81 (finger), and 1.20 (foot (sole)) [70]. Despite a complex underlying tribological mechanism, skin hydration appears to be the most important factor, followed by the influences of surface and material properties of the contacting materials. Friction increases with skin hydration and decreases for dried skin. However, the presence of a slippery layer of water may reduce friction through hydrodynamic action. Chemical treatments influence skin hydration level and affect the friction coefficient. High friction can result in skin blisters, commonly found in active populations. Friction blisters not only create localized discomfort but also potentially serious secondary complications such as cellulitis and sepsis. Most research on friction blisters has been carried out from the military because of the nature of the physical activity involved in this field, as well as in the field of sports medicine. Prolonged pressure on the skin surface such as on the heel and associated friction and shear is related to the pathophysiology of pressure ulcers [71]. The effect of friction on touching, sensing and perception has received significant attention recently in a number of studies. Tactile sensation is usually assessed through the combination of friction measurements with objective correlation with other physiological parameters [72−75]. The underlying mechano-transduction in the skin sensing has been discussed by Zahouani et al. [76]. The mechanical skin sensation in humans can detect and differentiate many mechanical stimuli from the surrounding environment, for example vibration, texture, pinching, etc. These mechanical stimuli may exert deformations on the nerve ending in the skin with specialized sensitive receptors (mechanoreceptors). Friction affects the skin deformation and hence is directly related to this mechano-transduction process. Friction of human hair has long been studied. The differential friction effect has been observed for many years when sliding direction along the hair is changed. A differential coefficient of friction of 0.16 was measured by Bhushan et al. [77] between polyurethane sheet sliding against Caucasian hair. Shaving and corresponding technologies are also closely related to friction [70]. One of the notable developments is the low friction PTFE coatings which are widely applied on the cutting flanks of the built-in blades in disposable razors. 4.2.2 Slips Friction between feet/shoes and the floor influences the propensity of pedestrians to slip and fall. Clarke et al. [78] defined a pedestrian slip as occurring when “the required friction exceeds the friction provided from shoe-surface contact and the person fails to alter their gait (motion) accordingly”. One of the common sources for causing unintentional slips and falls is bathtubs and showers. Friction studies have placed a major role on modern footwear development. Coefficient of friction provides a good indication of the slip resistance between footwear and a surface. During a gait cycle, the coefficient of friction required by a person can be described as the ratio of the horizontal to the vertical component which can be measured from a force platform. The biomechanics of slips were studied by Redfern [79]. The maximum coefficient of friction required occurs at the heel impact phase and the propulsion phase. Generally, the lower the friction between shoe-floor surfaces is, the more likely slips occur. Fiction coefficients less than 0.24, greater than 0.36 and between 0.24 and 0.36 have been suggested to correspond to danger, safe, and marginal risk (http://www.tribology.group.shef.ac.uk/ Friction 1(2): 100–113 (2013) 109 research/research_projects_banana.html). The presence of a banana skin may increase the slip risk, particularly when it becomes old, soggy, and brown. However it is difficult to use the ground reaction data alone to predict the likelihood of pedestrian slip due to the subjective nature of human walking and testing. Examples of uncertainties include large natural variability between individual humans (age, weight, body shape etc.) and extrinsic factors (surface and footwear characteristics). The walking velocity, as well as a person’s ability to adapt their gait to particular footwear and surface conditions, are also important. A number of mechanical testing devices have been used in the assessment of surface slip resistance in the form of friction coefficients, as summarized by Clarke et al. [78]. Chang et al. [80] outlined the detailed requirements in terms of the normal force build-up rate, the normal pressure and sliding velocity at the interface and the time of contact prior to and during the friction measurement. Although these mechanical devices can provide useful and re-producible data, inherent complexities in mechanically simulating subjective human gait make the validation of test devices difficult. Nevertheless, important parameters include shoe design, material, ground surfaces and conditions as well as individual gait characteristics. Table 3 summarizes typical representative coefficients of friction in shoe-floor contacts. Table 3 Coefficients of friction measured between a PVC sole with a smooth PVC heel under various floor conditions [81]. 5 Floor Conditions Coefficients of friction Vinyl composite tile Carpet Vinyl composite tile Carpet Vinyl composite tile Carpet Dry Dry Wet Wet Soapy Soapy 1.12 1.43 0.64 0.80 0.16 0.46 Summary In general, friction measurements are relatively easier to conduct than lubrication and wear studies, and therefore have been carried out widely in tribological investigations of biological systems. Friction plays an important role in the normal function and potential disease development of a number of human organs as well as the development of diagnostic and interventional medical devices. Friction is usually measured in simple apparatus using small samples in vitro. The importance of these simple laboratory experiments in revealing basic biotribological mechanisms is widely recognized and is particularly useful for the purpose of comparative studies. However, this can result in a wide range of values of coefficient of friction reported, even when a similar tissue is considered. It is now recognised that good simulation of the in vivo situation is essential if laboratory observations are to be representative of in vivo performance and in design studies and the pre-clinical evaluation and screening of implanted products. It is increasingly clear that the physiological conditions should be replicated as fully as possible in order to provide meaningful indications of in vivo performance. Although friction studies generally provide valuable information in terms of friction coefficients, the underlying tribological mechanism remains unclear in most of the organs reviewed in this paper. It is also clear that friction measurements in terms of magnitude alone are often insufficient since a higher value may be associated with fluidfilm lubrication while a lower value may be a result of some of the remarkable forms of boundary lubrication adopted by nature. Different lubrication mechanisms have developed to control friction in different organs and tissues. However, for the majority of soft tissues, such as articular cartilage, cornea, pleura, fad pat etc., where sliding is important, it is intriguing to recognise basic similarities between the tissue compositions (biphasic in terms of solid and fluid phases) and the mechanisms of lubrication and friction adopted by these tissues engaged in different functions. Similarly, bio-lubricants associated with different biological tissues and organs have similar constituents including synovial mucin, hyaluronic acid, proteoglycans, glycoproteins (lubricin) and lipids (dipalmitoyl phosphatidylcholine, DPPC). Most interfaces in biological systems operate in a mixed lubrication regime, as do many engineering systems, with the ability to accommodate boundary, fluid film or a mixed lubrication regime to meet functional needs. Many of the basic mechanisms of Friction 1(2): 100–113 (2013) 110 boundary and fluid film lubrication are operative at different anatomical sites. Under the conditions in favour of hydrodynamic lubrication, a fluid film lubrication regime is responsible for low friction. Under conditions when contacts take place, the biphasic nature of the soft tissues takes the advantage of the fluid pressurization and the reduction in the load carrying proportion by the solid phase under external loading, so that the friction remains low for a considerably long period of time. Even when either the fluid-film or biphasic lubrication mechanism ceases to operate, the effective boundary lubrication mechanism comes into play and keeps friction adequately low. It is such a remarkable combination of different lubrication mechanisms that are responsible for the low friction observed in a majority of the soft biological tissues under a wide range of operating conditions. Differences of the bio-friction in living biological tissues from the mechanical counterpart in engineering systems should be recognized. Natural biological tissues such as articular cartilage have self-regenerating ability, including friction and lubrication. The role of sliding motion and frictional shear stress has been shown to be important for regenerating functional extra-cellular matrix of articular cartilage and lubricating constituents (lubricin) on the surface in an in vitro set-up [82]. Similar regenerating mechanism may be expected for natural articular cartilage under in vivo conditions. For hard biological tissues such as teeth, self-repair or self-regeneration in terms of tribological properties is also expected to be important. Zheng et al. [83] have shown that the nanomechanical and microtribological properties of the acid-eroded enamel surface were significantly enhanced by remineralization in artificial saliva. However, the loss of the hardness and Young’s modulus of enamel surface by acid erosion could not be fully recovered after in vitro remineralization. The understanding of the self-regenerating mechanism, including tribology, of biological tissues is important for not only understanding how our natural systems work and diseases may develop but also providing design guidance for developing effective tissue engineering approaches. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [1] Lu J Y. Tribology achievements in ancient China (in Chinese). Lubrication Engineering 2: 6−11 (1981) [2] Dowson D. History of Tribology, 2nd ed. New York: Wiley, 1998. [3] Dowson D. Whither tribology. Wear 16(4): 303–304 (1970) [4] Jin Z M, Dowson D. Elastohydrodynamic lubrication in biological systems. Proc Inst Mech Eng J 219: 367–380 (2005) [5] Jin Z M, Wimmer M. Bio-related tribology section. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [6] Zhu P-Z , Hu Y-Z , Ma T-B , Wang H. Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribology Letters 41(1): 41–46 (2011) [7] O’Kelly J, Unsworth A, Dowson D, Wright V. A study of the role of synovial fluid and its constituents in the friction and lubrication of human hip joints. Engng Med 7(2): 77–83 (1978) [8] McCann L, Ingham E, Jin Z, Fisher J. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthritis Cartilage 17(8): 995–1000 (2009) [9] Unsworth A, Dowson D, Wright V. The frictional behaviour of human synovial joints—Part 1: Natural joints. J Lub Techno 97(3): 369–376 (1975) [10] Unsworth A. Tribology of artificial hip joints. Proc Inst Mech Eng J 222: 711–718 (2006) [11] Charnley Y J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann Rheum Dis 19: 10–19 (1960) [12] Linn F C. Lubrication of animal joints: I. The arthrotripsometer. Journal of Bone and Joint Surgery 49: 1079–1098 (1967) [13] Hills B A, Butler B D. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Annals of the Rheumatic Diseases 43(4): 641–648 (1984) [14] Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng H 210(2): 109–119 (1996) [15] Pickard J, Ingham E, Egan J, Fisher J. Investigation into the effect of proteoglycan molecules on the tribological Friction 1(2): 100–113 (2013) properties of cartilage joint tissues. Proc Inst Mech Eng H 212(3): 177–182 (1998) [16] Baro V J, Bonnevie E D, Lai X, Price C, Burris D L, Wang L. Functional characterization of normal and degraded bovine meniscus: Rate-dependent indentation and friction studies. Bone 51(2): 232–240 (2012) [17] Dowson D. Modes of lubrication in human joints. In Proceedings of the Institution of Mechanical Engineers, 1966: 45–54. [18] Ateshian G A. A theoretical formulation for boundary friction in articular cartilage. J Biomech Eng 119(1): 81–86 (1997) [19] Graindorge S, Ferrandez W, Jin Z M, Fisher J, Ingham E, Grant C, Twigg P. Biphasic surface amorphous layer lubrication of articular cartilage. Medical Engineering and Physics 27(10): 836–844 (2005) [20] Crockett R, Roos S, Rossbach P, Dora C, Born W, Troxler H. Imaging of the surface of human and bovine articular cartilage with ESEM and AFM. Tribology Letters 19(4): 311–317 (2005) [21] Goldberg R, Klein J. Liposomes as lubricants: Beyond drug delivery. Chem Phys Lipids 165(4): 374–381 (2012) [22] Wroblewski B M, Siney P D, Fleming P A. The principle of low frictional torque in the charnley total hip replacement. J Bone Joint Surg Br 91: 855–858 (2009) [23] Bishop N E, Waldow F, Morlock M M. Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys 30(8): 1057–1064 (2008) [24] Meyer H, Mueller T, Goldau G, Chamaon K, Ruetschi M, Lohmann C H. Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin Orthop Relat Res 470(11): 3101–3108 (2012) [25] Brockett C, Williams S, Jin Z, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater 81(2): 508–515 (2007) [26] Brockett C L, John G, Williams S, Jin Z, Isaac G H, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B Appl Biomater 100(6): 1459–1465 (2012) [27] Theobald P. Lubricating properties of the fat pad. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [28] Theobald P, Byrne C, Oldfield S F, Dowson D, Benjamin M, Dent C, Pugh N, and Nokes L D. Lubrication regime of the contact between fat and bone in bovine tissue. Proc Inst Mech Eng H 221(4): 351–356 (2007) [29] Evans R B. Managing the injured tendon: Current concepts. J Hand Ther 25(2): 173–189 (2012) 111 [30] Uchiyama S, Amadio P C, Berglund L J, An K N. Analysis of the gliding pattern of the canine flexor digitorum profundus tendon through the A2 pulley. J Biomech 41(6): 1281–1288 (2008) [31] Theobald P S, Dowson D, Khan I M, Jones M D. Tribological characteristics of healthy tendon. J Biomech 45(11): 1972–1978 (2012) [32] Thomas J M, Beevers D, Dowson D, Jones M D, King P, Theobald P S. The bio-tribological characteristics of synthetic tissue grafts. Proc Inst Mech Eng H 225(2): 141–148 (2011) [33] Finley D J, Rusch V W. Anatomy of the pleura. Thorac Surg Clin 21(2): 157–163 (2011) [34] Lai-Fook S J. Pleural mechanics and fluid exchange. Physiol Rev 84(2): 385–410 (2004) [35] Brandi G. Frictional forces at the surface of the lung. Bull Physiopathol Respir 8: 323–336 (1972) [36] D'Angelo E, Loring S H, Gioia M E, Pecchiari M, Moscheni C. Friction and lubrication of pleural tissues. Respir Physiol Neurobiol 142(1): 55–68 (2004) [37] Loring S H, Brown R E, Gouldstone A, Butler J P. Lubrication regimes in mesothelial sliding. J Biomech 38(12): 2390–2396 (2005) [38] Loring S H, Butler J P. Pleural lubrication and friction in the chest. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [39] Bodega F, Sironi C, Porta C, Pecchiari M, Zocchi L, Agostoni E. Mixed lubrication after rewetting of blotted pleural mesothelium. Respir Physiol Neurobiol (in press) (2012) [40] Moghani T, Butler J P, Loring S H. Determinants of friction in soft elastohydrodynamic lubrication. J Biomech 42(8): 1069–1074 (2009) [41] Hills B A. Graphite-like lubrication of mesothelium by oligolamellar pleural surfactant. J Appl Physiol 73(3): 1034–1039 (1992) [42] Holly F J, Holly T F. Advances in ocular tribology. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes. New York: Plenum Press, 1994: 275–283. [43] Hayashi T T. Mechanics of contact lens motion. Ph.D. Thesis. Berkeley (USA): University of California, Berkeley, 1977. [44] Cobb J A, Dunn A C, Kwon J, Sarntinoranont M, Sawyer W G, Tran-Son-Tay R. A novel method for low load friction testing on living cells. Biotechnol Lett 30(5): 801–806 (2008) [45] Rennie A C, Dickrell P L, Sawyer W G. Friction coefficient of soft contact lenses: Measurements and modeling. Tribology Letters 18(4): 499–504 (2005) Friction 1(2): 100–113 (2013) 112 [46] Ngai V, Medley J B, Jones L, Forrest J, Teichroeb J. Engineering & Physics 27: 443–453 (2005) Friction of contact lenses: Silicone versus conventional [61] Nickel J C, Olson M E, Costerton J W. In vivo coefficient of hydrogels. Tribology and Interface Series 48: 371–379 (2005) kinetic friction: Study of urinary catheter biocompatibility. [47] Ehlers, N. The Precorneal Film: Biomicroscopical, Historical and Chemical Investigations. New York: Bogtrykkeriet Forum, 1965. [48] Jones M B, Fulford G R, Please C P, McElwain D L S, Collins M J. Elasto-hydrodynamics of the eyelid wiper. Bulletin of Mathematical Biology 70: 323–343 (2008) [49] Goh S M. Tribology of foods. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [50] Zhou Z R, Zheng J. Oral tribology. Proc Inst Mech Eng J 220: 739–754 (2006) [51] Chen J. Surface texture of foods: Perception and characterization. Crit Rev Food Sci Nutr 47(6): 583–598 (2007) Urology 29(5): 501–503 (1987) [62] Khoury A E, Olson M E, Villari F, Costerton J W. Determination of the coefficient of kinetic friction of urinary catheter materials. J Urol 145(3): 610–612 (1991) [63] Kazmierska K, Szwast M, Ciach T J. Determination of urethral catheter surface lubricity. Mater Sci Mater Med 19(6): 2301–2306 (2008) [64] Koga S, Ikeda S, Futagawa K, Sonoda K, Yoshitake T, Miyahara Y, Kohno S. The use of a hydrophilic-coated catheter during transradial cardiac catheterization is associated with a low incidence of radial artery spasm. Int J Cardiol 96(2): 255–258 (2004) [52] Ranc H, Servais C, Chauvy P-F, Debaud S, Mischler S. [65] Hills R J, Unsworth A U, Ive F A. A comparative study of Effect of surface structure on frictional behavior of a the frictional properties of emollient bath additives using tongue/palate tribological system. Tribology International 39: 1518–1526 (2006) [53] Veeregowda D H, van der Mei H C, de Vries J, Rutland M W, Valle-Delgado J J, Sharma P K, Busscher H J. Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation. Clin Oral Investig 16(5): 1499–1506 (2012) [54] Dowson D. Introduction to bio-tribology. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [55] Harvey N M, Yakubov G E, Stokes J R, Klein J. Lubrication and load-bearing properties of human salivary pellicles adsorbed ex vivo on molecularly smooth substrata. Biofouling 28(8): 843–856 (2012) [56] Winter W, Klein D, Karl M J. Effect of model parameters on finite element analysis of micromotions in implant dentistry. Oral Implantol, in print (2012) [57] Tecco S, Marzo G, di Bisceglie B, Crincoli V, Tetè S, and Festa F. Does the design of self-ligating brackets show different behavior in terms of friction? Orthodontics (Chic.) 12(4): 330–339 (2011) [58] Fidalgo T K, Pithon M M, Maciel J V, Bolognese A M. porcine skin. Br J Dermatol 130: 37–41 (1994) [66] Sivamani R K, Maibach H I. Tribology of skin. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology 220: 729–737 (2006) [67] Derler S, Gerhardt L C. Tribology of skin: Review and analysis of experimental results for the friction coefficient of human skin. Tribology Letters 45(1): 1–27 (2012) [68] Sivamani R K, Wu G C, Gitis N V, Maibach H I. Tribological testing of skin products: Gender, age, and ethnicity on the volar forearm. Skin Res Technol 9(4): 299–305 (2003) [69] Gerhardt L C, Lenz A, Spencer N D, Münzer T, Derler S. Skin-textile friction and skin elasticity in young and aged persons. Skin Res Technol 15(3): 288–298 (2009) [70] Dowson D. A tribological day. Proc Inst Mech Eng J 223: 261–273 (2009) [71] Cichowitz A, Pan W R, Ashton M. The heel: Anatomy, blood supply, and the pathophysiology of pressure ulcers. Ann Plast Surg 62(4): 423–429 (2009) [72] Egawa M, Oguri M, Hirao T, Takahashi M, Miyakawa M. The evaluation of skin friction using a frictional feel analyzer. Research and Technology 8: 41–51 (2002) Friction between different wire bracket combinations in [73] Hung C, Dubrowski A, Gonzalez D, Carnahan H. Surface artificial saliva-an in vitro evaluation. J Appl Oral Sci 19(1): exploration using instruments: The perception of friction. 57–62 (2011) Stud Health Technol Inform 125: 191–193 (2007) [59] Luboz V, Zhai J, Odetoyinbo T, Littler P, Gould D, How T, [74] Shao F, Chen X J, Barnes C J, Henson B. A novel tactile Bello F. Guidewire and catheter behavioural simulation. sensation measurement system for qualifying touch Stud Health Technol Inform 163: 317–323 (2011) perception. Proc Inst Mech Eng H 224(1): 97–105 (2010) [60] Lawrence E L, Turner I G. Materials for urinary catheters: [75] Skedung L, Danerlov K, Olofsson U. Tactile perception: A review of their history and development in the UK. Medical Finger friction, surface roughness and perceived coarseness. Friction 1(2): 100–113 (2013) Tribology International 44(5): 505–512 (2011) [76] Zahouani H, Vargiolu R, Hoc T. Bio tribology of tactile perception: Effect of mechano-transduction. In Encyclopedia of Tribology. Berlin: Springer, in press, 2013. [77] Bhushan B, Wei G H, Haddad P. Friction and wear studies of human hair and skin. Wear 259: 1012–1021 (2005) 113 The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics 44(13): 1217–1232 (2001) [81] Hanson J P, Redfern M S, Mazumdar M. Predicting slips and falls considering required and available friction. Ergonomics 42(12): 1619–1633 (1999) [78] Clarke J D, Lewis R, Carré M J. Tribology in daily life: [82] Grad S, Loparic M, Peter R, Stolz M, Aebi U, Alini M. Footwear-surface interactions in pedestrian slips. In Sliding motion modulates stiffness and friction coefficient Encyclopedia of Tribology. Berlin: Springer, in press, 2013. at the surface of tissue engineered cartilage. Osteoarthritis [79] Redfern M S, Cham R, Gielo-Perczak K, Grönqvist R, Cartilage 20(4): 288–295 (2012) Hirvonen M, Lanshammar H, Marpet M, Pai C Y, Powers C. [83] Zheng L, Zheng J, Weng L Q, Qian L M, Zhou Z R. Effect Biomechanics of slips. Ergonomics 44(13): 1138–1166 (2001) of remineralization on the nanomechanical properties and [80] Chang W R, Grönqvist R, Leclercq S, Myung R, Makkonen L, Strandberg L, Brungraber R J, Mattke U, Thorpe S C. microtribological behaviour of acid-eroded human tooth enamel. Wear 271: 2297–2304 (2011) Zhongmin JIN. Currently Distinguished Professor (Thousand Talent Programme), School of Mechanical Engineering, Xi’an Jiaotong University, China and Parttime Professor of Computational Bioengineering, School of Mechanical Engineering, the University of Leeds, UK. He obtained his BS degree from Xi’an Jiaotong University in China in 1983 and PhD from the University of Leeds, UK in 1988. He has been a Member of the Institution of Mechanical Engineers (UK) since 1995 and Fellow of the Chinese Tribology Institution. His research interests include biotribology of artificial joints, tissue engineering and finite element modelling. He has published over 200 peer-reviewed journal papers with an h-index of 22. Duncan DOWSON. Emeritus Professor, School of Mechanical Engineering, the University of Leeds. He obtained his BS degree and PhD degree from the University of Leeds in 1950 and 1952 respectively. He has received Honorary Doctorates from many universities and prestigious awards from many respected bodies around the world. He was the President of the Institution of Mechanical Engineers, UK in 1992-3 and was elected a Fellow of the Royal Academy of Engineering in 1982 and a Fellow of the Royal Society of London in 1987. He received the Order of the Commander of the British Empire (CBE) in 1989. His research interests include tribology and biotribology. He has published over 500 scientific papers with an h-index of 35. Friction 1(2): 114–129 (2013) DOI 10.1007/s40544-013-0011-5 ISSN 2223-7690 REVIEW ARTICLE Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces Ming ZHOU1,†, Noshir PESIKA2, Hongbo ZENG3, Yu TIAN1,*, Jacob ISRAELACHVILI4 1 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China 2 Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA 3 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada 4 Department of Chemical Engineering, Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA † Present address: Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, China Received: 01 February 2013 / Revised: 10 April 2013 / Accepted: 20 May 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: The remarkable ability of geckos to climb and run rapidly on walls and ceilings has recently received considerable interest from many researchers. Significant progress has been made in understanding the attachment and detachment mechanisms and the fabrication of articulated gecko-inspired adhesives and structured surfaces. This article reviews the direct experiments that have investigated the properties of gecko hierarchical structures, i.e., the feet, toes, setae, and spatulae, and the corresponding models to ascertain the mechanical principles involved. Included in this review are reports on gecko-inspired surfaces and structures with strong adhesion forces, high ratios of adhesion and friction forces, anisotropic hierarchical structures that give rise to directional adhesion and friction, and “intelligent” attachment and detachment motions. Keywords: gecko feet surfaces; setae; spatulae; anisotropic dry adhesion and friction; articulated motion 1 Introduction For millennia, the gecko has been well-known for its fantastic climbing abilities. By using only one toe, geckos can easily hang vertically even upside-down from hydrophilic or hydrophobic, smooth or rough surfaces on walls (they cannot hang from a ceiling with only one toe). The typical step intervals of geckos are approximately several tens of milliseconds [1]. Gecko setal arrays have the excellent ability of self-cleaning [2], which has a considerably wider potential application than pressure-sensitive adhesives (PSA) in several areas, such as robotics for rescue and detection, counterterrorism, chemical sensing, and space positioning. A considerable number of studies have been devoted to understanding the interrelated “frictional adhesion” properties and mechanisms of gecko feet, hairs, and * Corresponding author: Yu TIAN. E-mail: [email protected] setae in order to mimic the gecko’s swift movement on walls and ceilings. Wall-climbing robots based on gecko-inspired adhesives have several advantages over those based on vacuum suction, magnetic adsorption, or velcro, such as small size, flexible and controllable articulation capability, self-cleaning property, and adaptability on rough surfaces [3−4]. Therefore, research on the attachment and detachment mechanisms of gecko feet and hairs and the overall design of gecko-inspired adhesives is of great interest for both theoretical and practical applications on special functional surfaces, articulated robots, and related devices. In this article, we review the recent advances in gecko adhesion and friction mechanisms and the development of gecko-inspired dry adhesive surfaces. The essential geometric and mechanical properties of the gecko adhesive system are first presented, followed by an overview of the fundamental modeling and understanding of the scientific principles of the gecko adhesive system from the nano-scale contacts Friction 1(2): 114–129 (2013) to the micro-scale structures, to the macro-scale feet and the entire animal. On the basis of the abovementioned understanding, the design principles of gecko-inspired dry adhesive surfaces are identified and the information they reveal about future fabrication strategies is assessed. Finally, we discuss some future issues in this field. 2 2.1 Adhesion and friction mechanisms of gecko seta Origin and measurement of adhesion forces of gecko seta Scanning electron microscopy has enabled the examination of the fine, hierarchical structures of setae. There are approximately twenty rows of lamellas on each gecko toe and approximately 20 setal arrays on each lamella. The single seta is approximately 110-μm long and has a diameter of approximately 4−6 μm [5]. The seta bifurcates into approximately 100–1000 spatulae at the terminal end [6]. This branched structure ensures close contact between the setae and the (microscopically rough) surfaces that the gecko climbs. Researchers have proposed several hypotheses to explain the origin of the strong adhesion (and friction) forces of gecko seta, such as electrostatic interaction, vacuum (or suction), microinterlocking (similar to velcro), and glue, which were all eventually disproved by experiments [7, 8]. The van der Waals and capillary forces are the two major basic interactions between the setae and the surface. Experimental results have indicated that the van der Waals force between the setae and the substrate is the main contributor to the adhesion force, and that the presence of water vapor in the environment may enhance this force through an additional capillary force [9−14]. Similar adhesion forces were observed by Autumn et al. [9] on both hydrophobic and hydrophilic surfaces, which provided the direct evidence for the van der Waals mechanism. Then, many researchers found the enhanced adhesion forces with increasing humidity [10, 11, 15]. Huber et al. [11] also measured the gap between the spatula and the substrate by using white light interferometry, which is only 1–2 water monolayers even at high 115 humidity. Therefore, the authors proposed that the presence of a monolayer or two of water would modify the van der Waals Hamaker constant. Similarly, Pesika et al. [16] investigated that the surface hydrophobicity of a gecko setal array changed after prolonged exposure to water by using a surface force apparatus (SFA). Further, Puthoff et al. contradicted a capillary mechanism and discovered that an increase in humidity softens the setal β-keratin, leading to an increase in the adhesion forces [17]. Experimental measurements of the adhesion and friction forces of the hierarchical structures of gecko seta have been performed over the past few years. Hansen and Autumn found that the friction force of an isolated setal array is 0.37 N, with an apparent contact area of ~1.0 mm2, whereas that of a single toe is 4.3 N, with an apparent contact area of ~200 mm2 (2 cm2) The maximum friction force of a single seta (with approximately 100–1,000 spatulae) is approximately 200 μN, while the adhesive forces ranges from 20 to 40 μN. A single seta will spontaneously detach from its opposing surface when the setae shaft subtends an angle of 30° with the opposing surface [18]. Huber et al. [19] glued an isolated seta perpendicular to the end of an atomic force microscopy (AFM) cantilever, cut most of the terminal branches of the seta away to isolate a few single spatulae, and measured the adhesion force of a single spatula to be approximately 10 nN. The abovementioned experimental friction or shear stresses at different structural levels (i.e., from a single spatula to an entire toe) varied from several kilopascals to ~1,000 kPa because the real contact area was significantly influenced by the preload, test conditions and the nature of the seta arrays [20–22]. These fundamental experiments laid the foundation of subsequent theoretical analyses. 2.2 Adhesion model of gecko seta Along with the experimental studies, significant effort has been made to theoretically analyze the adhesion (and friction) properties of gecko setae and spatulae (see Fig. 1). Since the traditional Hertz model fails to include the surface adhesion between two contacted surfaces, the JKR model of “contact mechanics” or “adhesion mechanics” [23], which considers the force Friction 1(2): 114–129 (2013) 116 Fig. 1 Theoretical development of adhesion mechanism of gecko seta. required to pull an elastic sphere of radius R from a planar surface, is used for describing the adhesion force of the gecko seta and spatulae. The gecko spatulae are simplified as cylinders, each terminated with a hemispherical end of radius R. Using the adhesion forces measured for a single spatula, we calculated the size of the equivalent JKR sphere to be approximately 0.13 μm, which is close to the real (imaged) size of a spatula [11]. The principle of “contact splitting” for bio-inspired fibrillar surfaces has been identified [24, 25], i.e., the adhesive stress of a biological system is inversely proportional to the radius of the terminal structure of the attachment hairs, R. Since the adhesion force is proportional to R while the density of contacts Friction 1(2): 114–129 (2013) is proportional to 1/R2 based on the self-similar scaling assumption, the total force per unit area is inversely proportional to R. Thus, animals with a larger mass usually have smaller attachment structures [25]. However, a more detailed research by Peattie and Full [26] proposed that this scaling law was invalid in phylogenetic relationships between species, which showed that the dynamic properties and the synergistic effect of all hierarchical elements, not just the static contact, should be considered. One of the disadvantages of applying the JKR model to describe the adhesion of gecko hairs is that the influence of sliding deformation on the enhancement of the adhesion force cannot be explained [27]. How does the sliding influence the contact between the terminal end structure of the seta and the substrate? To address these problems, researchers have developed a fibrillar adhesion model to consider the bending deformation of the setal array during a normal loading process [28]. First, the low effective elastic modulus of the seta array must be understood and theoretically (quantitatively) described: the gecko seta is made of β-keratin, which has a bulk Young’s modulus between 1.3 and 2.5 GPa based on measurements of claws and feathers [29]. Peattie et al. [30, 31] used a resonance technique to directly measure the Young’s modulus and found it to lie between 1.4 and 1.6 GPa. The complex modulus of the setal β-keratin was measured to be 1–4 GPa depending on the environmental relative humidity [12, 26]. The 103–104-kPa effective elastic modulus of the setal array is significantly lower [32]. Persson and Autumn modeled the relationship between the effective elasticity of fiberarray systems and the bulk materials [32, 33], and Schubert et al. [34] presented a similar analysis. Their experimental and theoretical results explained the low effective elastic modulus of the gecko setal array and showed that this allows for good adaptability for making good contacts on rough surfaces, while the high bulk modulus of β-keratin itself prevents the self-matting of the neighboring setae, provides an efficient self-cleaning mechanism, and is fractureresistant under high stress. For more information about the formulae, please refer to Ref. [35]. Second, the influence of bending deformations on adhesion has been analyzed by two types of fibrillar 117 adhesion models. In the first type of model, the adhesion force is described as the summation of the adhesion forces of inclined cantilever beams or a spring array of supported hemispheres on a surface [36−38]. The second model shows that the hierarchical structures can increase their effective adhesion energy during detachment from a rough surface by increasing the elastic deformation energy [33, 39]. Further, Gao et al. [40] analyzed the detachment of a single seta using a finite element analysis method and proposed that the peel strength can vary by one order of magnitude as a function of the peel angle. The results showed that the adhesion force decreased with a decrease in the peel angle to below 30° and that the maximum adhesion force was achieved at a peel angle of 30°. However, these theoretical findings did not agree with the experimental results, which showed that a single seta had a lower adhesion force and that it spontaneously detached from a surface at a 30° tilt angle rather than a smaller tilt angle. Other researchers have also analyzed the contribution of the hierarchical structures to the adhesion energy or force [40−45]. It was reported that the adhesion strength can change by two orders of magnitude at different tilt angles of the fiber arrays [46, 47]. However, these models focused on the deformation of the upper supporting structures and did not consider the actual contact shape of the terminal structures (the adhesion junctions). The developed fibrillar adhesion models provide a good understanding of the strong adhesion forces of gecko setal arrays. However, based on the JKR and most fibrillar models, the pull-off force (the maximum force which can be provided by the adhesion interface) and the adhesion force (the critical force to separate the two adhered objects) have the same magnitude, depending only on the material properties and geometric structures of the fiber array. Thus, these models cannot explain how the gecko can quickly detach from surfaces. Moreover, on the basis of these models, the effective adhesion force of the setal array ought to decrease with an increase in the surface roughness. In real situations, the adhesion force of the setae of gecko, flies, and bees initially decreases and then, increases with an increase in the surface roughness [48, 49]. The minimum adhesion force of the gecko Friction 1(2): 114–129 (2013) 118 spatulae is found on a surface with a roughness of approximately 200 nm, which matches one of the characteristic dimensions of the spatula. Since fibrillar models do not consider the terminal structure of the setae, they cannot fully capture the “contact mechanics” or “adhesion mechanics” of setal arrays. 2.3 Peeling model of gecko spatulae The adhesion models based on fiber arrays described above do not provide an insight into why the detachment force is considerably less than the adhesion force due to the simplification of the terminal structures of setae as simple spheres or flat-ended cylinders, which is very different from the actual thin fan shape of the spatula pad. Therefore, various “peeling models” have been developed to more appropriately demonstrate the mechanism of gecko spatulae detachment, which is analogous to the peeling of adhesive tapes. The Kendall model [50] describes the peeling strength of an adhesive tape as a function of the peel angle. The spatula pad is simplified as a single strip of tape [19, 20] with nanoscale dimensions. The Young’s modulus of the spatula is ~2 GPa; thus, the elastic energy term in the peeling spatula can be neglected, so that w = F/γ, where F = 10 nN is the experimental adhesion force of the spatula and γ = 50 mJ/m2. The width of the spatula w is 200 nm, which is close to the actual geometric dimension of the spatula. The Kendall model has provided new insights into the peeling mechanism of gecko detachment [51, 52]. It is also important to note that the biomechanics of a gecko walking on a surface reveals the use of a particular configuration, a Y-shaped geometry/configuration [1, 20, 52]. In this configuration, in order to take a step forward, the gecko always has two diagonally opposite feet on the surface while detaching the other two. The two attached feet are angled to the surface at a certain angle, with a tension along the feet, forming a Y-shaped geometry and yielding a total force in the normal direction to the surface. Further, one foot always has five toes gripped in at different directions. The lateral friction forces due to the toes and feet are finally equilibrated with each other in a static staying sate of the gecko or provide some net friction force to drive the motion of the body. An understanding of the mechanical behavior of pressure-sensitive adhesive tapes is important to describe the peeling mechanism of the gecko spatula [53−55]. Considering the hierarchical structures of the setae and the macroscopic articulations of gecko toes, particularly how the friction force contributes to the adhesion force, Tian et al. [56] theoretically analyzed the friction and adhesion behavior of gecko pads on the basis of tape peeling model, as shown in Fig. 2(a). High adhesion and friction forces are predicted in the “toe-gripping” actuation, while small release forces are predicted in the “toe-releasing” actuation, these two being determined by the different “peel angles,” for gripping and releasing. The lateral friction force and the normal adhesion force of a single seta can change Fig. 2 (a) Tape model considering the final two levels of the hierarchical structures of setae. (b) Theoretical normal, lateral, and stretching forces of a single spatula at different pulling angles. μ is the friction coefficient between spatula pad and substrate. In the gripping direction, the peel angle of a spatula pad is decreased in order to approach 0°, while in the releasing direction, the peel angle of the spatula pad is close to or more than 90°. Friction 1(2): 114–129 (2013) by more than three orders of magnitude during gecko toe gripping (attachment) and releasing (detachment), as shown in Fig. 2(b). Using a finite element model, Peng et al. [51] analyzed the change in the peel zone length and the peel force at different peel angles, Young’s moduli, and spatula thicknesses. Endlein et al. found that the adhesion forces of tree frogs can also be explained by the peeling theory [57]. Peeling models provide a good way to explain the experimental results of the adhesion forces of gecko setae on surfaces with varying roughness. Fuller and Tabor [58] developed a contact model for elastic solids to describe the effect of roughness in reducing the adhesion force as the real contact area decreases with increasing surface roughness. However, surface roughness can also increase the real contact area of a highly compliant film, leading to the opposite result [59]. Persson and Gorb proposed a qualitative analysis of the effect of the elastic deformation of a spatula on the effective adhesion energy [60]. Peng and Chen [61] demonstrated that the normal adhesion force is dependent on the dimensions of the film with respect to the wavelength of the (sinusoidal) roughness of the substrate. The developed peeling models provide a good theoretical basis to explain the fundamental mechanisms of seta detachment and the peeling behavior of a single gecko spatula on surfaces with different roughness. Future work can be conducted on the more complex peeling behaviors of hierarchical structures taking into consideration the different geometries and deformations of the spatulae, setae, toe pads, and feet at different length scales. 2.4 Coupling of friction and adhesion Experimental results show that the friction force of gecko setae during sliding along the setal curvature, the gripping in this direction, is considerably higher than the adhesion force, and that lateral sliding is necessary to generate the strong adhesion (and friction) forces [18, 20, 27]. The coupling of the adhesion and friction forces, known as “frictional-adhesion” is one of the most important mechanical properties of the seta [12, 62, 63]. Setal arrays usually show strong friction anisotropy depending on the shear direction. Different effective 119 elastic moduli of the setae arrays are observed in the loading and unloading force-distance curves when sliding along or against the seta tilt directions (correspond to the gripping in and releasing directions, respectively) [32]. Furthermore, friction and adhesion forces obey different rules in the different sliding directions. The friction force is more than four times larger than the preload when sliding along the gripping direction [20, 21, 64], and the adhesion force is enhanced. In contrast, when the setal arrays are dragged against the gripping direction, the friction force is less than the preload and obeys Coulomb’s law, where the normal force becomes repulsive [20, 21]. These anisotropic properties of the gecko setae are attributed to the anisotropic structure and deformations when the setae or toes are slid or articulated in different directions [12, 65]. The coupling of friction and adhesion forces of the setae is significantly influenced by the applied preload. Wan et al. [66] experimentally showed that the preload can decrease the tilt angle of the seta and increase the contact number of spatulae, thereby increasing both the adhesion and the friction forces. However, the normal adhesion force turns into a repulsive force when the preload is above some critical value. Ideally, when the adhesion and friction forces are maximum, the tilt angle is small [67]. However, crowding considerations impose a limit on how small the tilt angle can be before the fibers become overcrowded. A theoretical limiting tilt angle of approximately 12.6° is consistent with the experimental compression data [68]. The strong anisotropy and synergy between the friction and adhesion performances of the setae arise from the anisotropic deformations of the structures. The friction and adhesion of single seta can reach a stable steady-state value after sliding for several micrometers [18], whereas for the entire setal array, the critical sliding distance was found to be several hundred micrometers. Numerical simulations show that sliding causes the spatulae to become well-aligned or ordered, leading to an increase in the real contact area and to a more stable configuration during sliding [69, 70]. Cheng et al. [71, 72] proposed that a pre-tension can increase the adhesion force of the seta at small peeling angles. Friction 1(2): 114–129 (2013) 120 3 3.1 Gecko-inspired adhesives Design principles The gecko seta’s advanced performance in terms of friction and adhesion endows the gecko with excellent climbing abilities. The creation of a new type of dry adhesive inspired by the gecko adhesive system has received considerable attention. Understanding the key properties, principles, and mechanisms of the gecko adhesive system is essential for the design of bio-inspired dry adhesive surfaces [73]. As discussed above, the “contact-splitting principle” has been recognized and widely accepted [24, 25, 74−78]. On the basis of the JKR model predictions, it can be said that the higher the extent of splitting at the end of the setae, the higher is the adhesion force and the better is the resistance to damage. For these reasons, fibrillar surfaces are now widely used for producing smart adhesive systems. Theoretical analysis shows that fibrillar ends are not sensitive to defects when the size of the fibrils is less than some critical length scale [79]. However, a recent study also shows that the adhesion force does not increase when the number of contact elements increases while the total contact area is constant [80]. Since the mechanical performance is highly dependent on the structures, the size and shape of the optimum fibers is widely discussed. The effect of the shape of the terminal ends becomes more important with increasing size and stiffness of the materials [79]. Spolenak et al. [81] proposed that a flat punch is the perfect shape for a bio-inspired surface, but in practical applications, the properties of the fiber array with a flat punch end may be more easily affected adversely by surface roughness and surface (particulate) contaminants. Gorb and Varenberg [82] proposed that fibers with narrow necks and thin plate-shaped (or mushroom-shaped) ends should be used for overcoming these disadvantages. Experimental results also showed that mushroom-shaped fibril ends perform well during loading–unloading cycles, with improved robustness and stability [83]. An anisotropic structure for the fiber arrays is particularly important in the design of bio-inspired surfaces [84, 85]. Directionally angled polymer flaps were first introduced in the fabrication of a gecko- inspired dry adhesive surface [86]. Basically, the anisotropic behavior of the gecko setae is due to the asymmetric deformation and contacts. Therefore, the asymmetric mechanical designs, including asymmetric shapes [87] as well as different elastic moduli [88] for the fibrillar structures are expected to provide the best prospects for creating the desired performance (for energy-efficient wall climbing, ceiling running, etc.). Therefore, an anisotropic articulation is required to make full use of these anisotropic structures. A fiber array with a high aspect ratio promotes contact adaptability; however, it should also be noted that slender fibers can easily adhere to neighboring fibers through van der Waals forces, leading to a failure of the device (due to the so-called “crowding” or “bunching” behavior) [89]. Sitti et al. and Hui et al. [40, 90−92] proposed anti-self-adhesion models based on a force and energy analysis, respectively. Based on an understanding of the above-mentioned design principles, some general design criteria have been developed: The geometric parameters should be designed taking into account the modulus of the materials. Using numerical calculations of a fiber array squeezed by a sphere, Aksak et al. [37] designed the optimum length and diameter of inclined or perpendicular fibers. Spolenak et al. [93] proposed some general “adhesion maps” for fiber arrays with hemisphere-shaped ends, including considerations of condensation, adaptability, contact strength, and fiber fracture, as shown in Fig. 3(a). The target optimum areas are a series of triangles in the map of fibril radius and Young’s modulus. Greiner et al. [94] further developed adhesion design maps for fiber arrays with different shapes. Recently, Zhou et al. [95] developed a numerical peel-zone calculation method and proposed an adhesion and peeling design map to evaluate the design criteria for strong attachment and easy detachment (peeling) forces, as shown in Fig. 3(b). The peeling force can be changed by three orders of magnitude with respect to the normal adhesion force by changing the design parameters of the structures. 3.2 Fabrication 3.2.1 Fabrication of gecko-inspired surfaces with strong adhesion Based on the original design principle of fiber splitting, Friction 1(2): 114–129 (2013) 121 Fig. 3 Design maps of gecko-inspired fibrillar surfaces. (a) Adhesion design maps for gecko-inspired fibrillar surfaces with hemisphereshaped ends. The triangle denotes the target area of = 10 (reproduced from Ref. [93]). (b) Adhesion and peeling design map for gecko-inspired fibrillar surfaces with flat ends with the typical values given in Ref. [95]. ρr denotes ρ per length at the peel angle of 90°, and ρ is defined as the ratio of the normal adhesion force per unit width (pull-off strength) to the peel strength, which represents the strong attachment and easy-removal properties of surfaces. microfibrillar surfaces using microfabricated templates with whole arrays and nanowire surfaces with relatively large aspect ratios and high Young’s modulus have been fabricated. With further advancements in design principles, fibrillar gecko-inspired surfaces could be developed ranging from simple perpendicular standing sphere-ended single-level fiber arrays to different end-shaped fibers, inclined fiber arrays, fibers with surface modifications, and hierarchical structures, as shown in Fig. 4. On the basis of the “contact-splitting principle”, most of the early publications reported fiber array surfaces with flat or semisphere ends. In the first trial of a templated fabrication, an AFM pin was used for making holes on a wax surface [89, 92]. With the development of etching technology [25], particularly lithographic techniques, the morphology of the fibers could be perfectly controlled, leading to an increase in adhesion strength [90, 96−100]. Nanowires with self-cleaning properties have been reported, which 122 Friction 1(2): 114–129 (2013) Fig. 4 Fabrication strategies of gecko-inspired surfaces. shows the potential applications of nanowires and nanotubes with a high Young’s modulus [101]. Fiber arrays with different end shapes, such as mushrooms, asymmetric spatulae, and concave structures, have been reported [97, 102, 103]. In practice, the mushroom-shaped fiber array is the most commonly used [104−108]. Gorb et al. [72] reported a geckoinspired mushroom surface made of polyvinyl siloxane (PVS) with an adhesion strength of approximately 50 kPa. Kim and Sitti fabricated a fibrillar mushroom surface with polyurethane (PU) that generated 180 kPa [109], and Davies reported that a fibrillar poly(dimethylsiloxane) (PDMS) surface can reach 219 kPa [106]. A combination of lithography and the two-step molding process is now also widely used for fabricating hierarchical fibrillar surfaces [37, 110−112]. Deep reactive ion etching [113], self-assembly [114], anodic oxidation [113], angled etching, and mechanical yielding techniques or methods [37, 115−117] have also been explored to fabricate templates of gecko-inspired dry adhesive surfaces. The incorporation of hierarchical structures into fibers has also been explored. Two- or three-level fiber arrays produce higher adhesion strength than singlelevel ones [105, 118−121]. Jeong et al. [86] reported that the adhesion of two-level fiber arrays made of polyurethane acrylate does not decrease with an increase in surface roughness as long as it is less than 20 μm, exhibiting better adaptabilities than a singlelevel fiber array. This gecko-inspired surface generated an adhesion strength of 260 kPa, which can be used for moving on large-area glass surfaces [86]. The upper supporting level that mimics the lamella or foot is usually fabricated as the backing layer of the fiber array [122−124]. Lee et al. [122] fabricated a gecko-inspired polyethylene surface, combining lamellae and nanofiber arrays by heat rolling, which exhibited high compliance. Tian et al. [125] experimentally revealed that the soft lamellar skin of the gecko acts as a soft spring and contributes to the reliable control of a wide range of adhesive states rather than a repulsive state. Further, the three-legged hybrid clamp mimicking a lamellar skin/setae structure was developed to transfer a horizontally placed silicon wafer. Sameoto et al. [123] fabricated a surface that combines the macroscale substrate and the fiber array Friction 1(2): 114–129 (2013) to increase adaptability. Northen et al. [124] reported a method to actively switch between adhesion and non-adhesion by controlling the orientation of the cantilever by a magnetic field; the adhesion strength was only 14 Pa, but provided the general proof-ofconcept that adhesion can be reversibly controlled through an external stimulus. A selection of materials for gecko-inspired adhesives, such as polymide [89, 106], PVS [25, 74], PDMS [99, 106, 108, 126], poly(methyl methacrylate) (PMMA) [115], polyurethane [109–110, 113], polystyrene (PS) [105, 114], silicon rubber [127], polypropylene [128], and polyethylene has also been considered [122]. It is proposed that polyurethane with a low Young’s modulus can generate strong adhesion because the polar groups contribute to the enhancement of the adhesion; thus, this material may be suitable for gecko-inspired adhesives [129]. Lee et al. [130] coated the fabricated pillars with a mussel-adhesive-protein-mimetic polymer in order to improve the reversible wet adhesion property under water. This chemical coating method appears to be effective in enhancing the adhesion of functional surfaces. Since the thermal and electric properties of polymer materials are not satisfactory in certain applications, aligned carbon nanotubes with stable electrical and thermal properties have drawn increased attention [124, 131−134]. Yurdumankan et al. [132, 133] first reported a multiwalled carbon nanotube (MWCNT) adhesive with a PMMA-backing layer in which the adhesion stress reached 16 MPa based on experiments conducted on the nanoscale. CNT arrays with an adhesion strength of 110 kPa have been achieved by Zhao et al. [134], but their durability is poor. Ge et al. [135, 136] reported that the CNT array supports a 200-kPa shear stress over a period of 8–12 h without any cohesive break; the adhesion strength was 30– 50 kPa. A large increase in the adhesion and friction strength of CNT adhesives was also reported by Qu et al. [137, 138] who achieved 100 kPa and 1 MPa, respectively. Fiber arrays with a high Young’s modulus can generate strong adhesion because of the compliance of nanotubes and their strong van der Waals forces [34, 139−141]. 3.2.2 Anisotropic friction of gecko-inspired surfaces The tribological properties of materials mainly rely on 123 the surface structures and the chemical nature of the surfaces. Anisotropy exists widely in nature [142]. At the macroscopic scale, for example, textured structures are widely applied in the weaving industry, sole decorative patterns, tires, and roads in the form of friction anisotropy. Friction anisotropy also exists between crystalline surfaces, such as mica, exfoliated graphene, synthetic self-assembled monolayers, and quasi-crystalline structures of metallic alloys, which are assigned to the lattice structure or elastic puckering. The skin of several animals also have anisotropic structures, such as the feathers of birds, the scales of fish and snakes, and the finer hierarchical micro- and nano-scale structures of lizards, geckos, and flies. Among these structures, the gecko with its hierarchical structures from the macro- to the micro- and nanoscales shows great advantages in terms of anisotropic friction and adhesion properties, which enable geckos to rapidly switch between attachment and detachment on both walls (requiring switchable friction) and ceilings (requiring switchable adhesion) [22]. Two types of structures can be used for fabricating anisotropic gecko-inspired adhesives: inclined and asymmetric structures. According to the fibrillar adhesion models, an inclined fiber array generates friction anisotropy [116, 143, 144]. For example, Murphy et al. [135] prepared an angled spatula-shaped fibrillar surface that generated obvious anisotropic friction and adhesion. The adhesion force along the inclined direction of the inclined fiber array produced by Yu et al. [116] was 6 to 7 times higher than that along the inclined direction. Zhou et al. [139] posited that inclined MWCNT array surfaces produce stable friction anisotropy over several thousands of cycles. Fiber arrays with asymmetric shapes or asymmetric spatulae at the ends also produce frictional anisotropy [88, 108, 145−147]. Yoon et al. [89] reported on Janusfaced fiber arrays by selectively depositing a metal layer only on one side, leading to friction anisotropies. 4 Future research avenues Although recently there have been significant advances in modeling the friction and adhesion mechanisms of geckos, some challenging issues remain to fully understand and mimic this complex frictional-adhesive Friction 1(2): 114–129 (2013) 124 system. The contribution of hierarchical structures is still not fully understood. The role of the lamellae has not been extensively explored. The experiments on a single seta by Autumn et al. showed that sliding a single seta on a surface at a distance of approximately 5 μm can maximize the adhesion force while a larger distance is required for the setal array. There are still no models that can fully explain the anisotropic mechanical deformations of the hierarchical structures and the peel processes during sliding. The articulation and deformations of all the different structures during gripping and releasing is another future research direction. Thus, the hierarchical design principles of the gecko-inspired dry adhesive surfaces have yet to be fully identified and established. Further, the effects of the sliding velocity on gecko adhesion and friction have not been fully explored, although a few reports are available [148]. Most friction models are based on the Coulomb Law or Model of Friction, which may not apply to fine biological structures. The interfacial interactions between the foot pad proteins and the substrate surfaces must be further investigated in order to fully understand the impact of the sliding velocity on adhesion and friction forces. The stick-slip phenomena also need to be studied further [148]. Gecko-inspired adhesive surfaces have been proposed for various applications, such as wall-climbing robots, reversible self-adhesive labels, fixation and fastening, and biomedical materials and sports equipment, which require remarkable properties, including reversible attachment and detachment without breakage, strong stability in a wide range of humidity and temperature, and high strength and easy (low energy) motion during adhesion. Further work resolving these issues will no doubt allow us to realize the full potential for the applications of gecko-inspired adhesive surfaces. Acknowledgments Z.M. and Y.T. are supported by the Natural Science Foundation of China (Grant Nos. 51175281 and 51021064). H.Z. acknowledges the support of the University of Alberta China Opportunity Fund and a Discovery Grant Award from the Natural Sciences and Engineering Research Council of Canada (NSERC). N.P. acknowledges support through a PFund grant from the Louisiana Board of Regents. J.N.I.’s contribution to parts of this review was sponsored by the UCSB Institute for Collaborative Biotechnologies Grant W911NF-09-D-000 from the U.S. Army Research Office (the content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred). Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [1] Autumn K, Hsieh S T, Dudeket D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos running vertically. J Exp Biol 209: 260–272 (2006) [2] Hansen W, Autumn K. Evidence for self-cleaning in gecko setae. P Natl Acad Sci USA 102: 385–389 (2005) [3] Cutkosky M R. Gecko-like robot scampers up the wall. New Sci 2252: 29–33 (2006) [4] Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004: 431–436. [5] Ruibal R, Ernst V. The structure of the digital setae of lizards. J Morphol 117: 271–294 (1965) [6] Russell A P, Bauer A M, Laroiya R. Morphological correlates of the secondarily symmetrical Pes of Gekkotan lizards. J Zool 241: 767–790 (1997) [7] Autumn K. How gecko toes stick—The powerful, fantastic adhesive used by geckos is made of nanoscale hairs that engage tiny forces, inspiring envy among human imitators. Am Sci 94: 124–132 (2006) [8] Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integr Comp Biol 42: 1081–1090 (2002) [9] Autumn K, Sitti M, Peattie A, Liang A, Hansen W, Sponberg S, Kenny T, Fearing R, Israelachvili J, Full R. Evidence for van der Waals adhesion in gecko setae. P Natl Acad Sci USA 99: 12252–12256 (2002) [10] Sun W X, Neuzil P, Kustandi T S, Oh S, Samper V D. The nature of the gecko lizard adhesive force. Biophys J 89: L14–L17 (2005) [11] Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb S N, Arzt E. Evidence for capillarity contributions to gecko Friction 1(2): 114–129 (2013) [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] adhesion from single spatula nanomechanical measurements. P Natl Acad Sci Usa 102: 16293–16296 (2005) Prowse M S, Wilkinson M, Puthoff J B, Mayer G, Autumn K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater 7: 733–738 (2011) Kim T W, Bhushan B. The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5: 319–327 (2008) Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192: 1223–1232 (2006) Niewiarowski P H, Lopez S, Ge L H, Hagan E, Dhinojwala A. Sticky gecko feet: The role of temperature and humidity. PLoS One 3: e2192 (2008) Pesika N S, Zeng H B, Kristiansen K, Zhao B, Tian Y, Autumn K, Israelachvili J. Gecko adhesion pad: A smart surface? J Phys-Condens Mat 21: 464132 (2009). Puthoff J B, Prowse M S, Wilkinson M, Autumn K. Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 213: 3699–3704 (2010) Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan WP, Kenny T W, Fearing R, Full R J . Adhesive force of a single gecko foot-hair. Nature 405: 681–685 (2000) Huber G, Gorb S, Spolenak R, Arzt E. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1: 2–4 (2005) Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: A new angle on gecko attachment. J Exp Biol 209: 3569–3579 (2006) Zhao B X, Pesika N, Rosenberg K, Tian Y, Zeng H, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction force coupling of gecko setal arrays: Implications for structured adhesive surfaces. Langmuir 24: 1517–1524 (2008) Wan J, Tian Y, Zhou M, Zhang X J, Meng Y G. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Phys Sin 61: 016202 (2012) Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids. Proc R. Soc London Ser A 324: 301–313 (1971) Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. P Natl Acad Sci USA 100: 10603–10606 (2003) Peressadko A, Gorb S N. When less is more: Experimental evidence for tenacity enhancement by division of contact area. J Adhes 80: 247–261 (2004) Peattie A M, Full R J. Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. P Natl Acad Sci USA 104: 18595–18600 (2007) 125 [27] Autumn K, Hansen W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A 193: 1205–1212 (2006) [28] Tang T, Hui C Y, Glassmaker N J. Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2: 505–516 (2005) [29] Bonser R. The Young's modulus of ostrich claw keratin. J Mater Sci Lett 19: 1039–1040 (2000) [30] Peattie A M, Majidi C, Corder A B, Full R J. Similar elastic modulus of setal keratin for two species of gecko. Integr Comp Biol 461: E109 (2006) [31] Peattie A M, Majidi C, Corder A, Full R J. Ancestrally high elastic modulus of gecko setal beta-keratin. J R Soc Interface 4: 1071–1076 (2007) [32] Autumn K, Majidi C, Groff R E, Dittmore A, Fearing R. Effective elastice modulus of isolated gecko setal arrays. J Exp Biol 209: 3558–3568 (2006) [33] Persson B. On the mechanism of adhesion in biological systems. J Chem Phys 118: 7614–7621 (2003) [34] Schubert B, Majidi C, Groff R E, Baek S, Bush B, Maboudian R, Fearing R S. Towards friction and adhesion from high modulus microfiberarrays. J Adhes Sci Technol 21: 1297–1315 (2007) [35] Kwak J S, Kim T W. A review of adhesion and friction models for gecko feet. Int J Precis Eng Manuf 11: 171–186 (2010) [36] Campolo D, Jones S, Fearing R S. Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces. In Proceedings of 2003 IEEE International Conference on Nanotechnology, SAN FRANCISCO, USA, 2003: 856–859. [37] Aksak B, Murphy M P, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 23: 3322–3332 (2007) [38] Reyes M P, Fearing R S. Macromodel for the mechanics of gecko hair adhesion. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2008: 1602–1607. [39] Jagota A, Bennison S J. Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42: 1140–1145 (2002) [40] Gao H J, Wang X, Yao H M, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37: 275–285 (2005) [41] Yao H, Gao H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. J Mech Phys Solids 54: 1120–1146 (2006) [42] Yao H, Gao H. Bio-inspired mechanics of bottom-up designed hierarchical materials: Robust and releasable adhesion systems Friction 1(2): 114–129 (2013) 126 of gecko. Bull Pol Acad Sci-Tech 55: 141–150 (2007) [43] Bhushan B, Peressadko A G, Kim T W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion'. J Adhes Sci Technol 20: 1475– 1491 (2006) [44] Kim T W, Bhushan B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21: 1–20 (2007) [45] Kim T W, Bhushan B. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy 107: 902–912 (2007) [46] Zeng H B, Pesika N, Tian Y, Zhao B, Chen Y, Tirrell M, Turner K L, Israelachvili J N. Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems. Langmuir 25: 7486–7495 (2009) [47] Shah G J, Sitti M. Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004: 873–878. [48] Peressadko A G, Gorb S N. Surface profile and friction force generated by insects. In Proceedings of the 1st International Industrial Conference Bionik 2004, Hannover, 2004: 257–261. [49] Huber G, Gorb S N, Hosoda N, Spolenak R, Arzt E. Influence of surface roughness on gecko adhesion. Acta Biomater 3: 607–610 (2007) [50] Kendall K. Thin-film peeling—The elastic term. J Phys D Appl Phys 8: 1449–1452 (1975) [51] Peng Z L, Chen S H, Soh A K. Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struct 47: 1952–1960 (2010) [52] Pesika N S, Tian Y, Zhao B X, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili J N. Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83: 383–401 (2007) [53] Zhang L, Wang J. A generalized cohesive zone model of the peel test for pressure-sensitive adhesives. Int J Adhes Adhes 29: 217–224 (2009) [54] Lin Y Y, Hui C Y, Wang Y C. Modeling the failure of an adhesive layer in a peel test. J Polym Sci Pol Phys 40: 2277–2291 (2002) [55] Zhou M, Tian Y, Pesika N, Zeng H, Wan J, Meng Y G, Wen S Z. The extended peel zone model: Effect of peeling velocity. J Adhes 87: 1045-1058 (2011) [56] Tian Y, Pesika N, Zeng H B, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. P Natl Acad Sci USA 103: 19320–19325 (2006) [57] Endlein T, Ji A, Samuel D, Yao N, Wang Z, Barnes W P, Federle W, Kappl M, Dai Z D. Sticking like sticky tape: [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] Tree frogs use friction forces to enhance attachment on overhanging surfaces. J Roy Soc Interface 10: 20120838 (2011) Fuller K, Tabor D. Effect of surface-roughness on adhesion of elastic solids. P Roy Soc Lond A Mat 345: 327–342 (1975) Briggs G, Briscoe B J. Effect of surface-topography on adhesion of elastic solids. J Phys D Appl Phys 10: 2453–2466 (1977) Persson B, Gorb S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119: 11437–11444 (2003) Peng Z L, Chen S H. Effects of surface roughness and film thickness on the adhesion of a bio-inspired nanofilm. Phys Rev E 83: 051915 (2011) Sponberg S, Hansen W, Peattie A, Autumn K. Dynamics of isolated gecko setal arrays. Am Zool 41: 1594–1594 (2001) Schargott M, Popov V L, Gorb S. Spring model of biological attachment pads. J Theor Biol 243: 48–53 (2006) Wang Z Y, Gu W H, Wu Q, Ji A, Dai Z D. Morphology and reaction force of toes of geckos freely moving on ceilings and walls. Sci China Technol Sci 53:1688–1693 (2010) Zhao B X, Pesika N, Zeng H B, Wei W, Chen Y, Autumn K, Turner K, Israelachvili J. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. J Phys Chem B 113: 3615–3621 (2009) Wan J, Tian Y, Zhou M, Zhang X-J, Meng Y-G. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Phys Sin 61: 016202 (2012) Hill G, Soto D, Peattie A, Full R J, Kenny T W. Orientation angle and the adhesion of single gecko setae. J Roy Soc Interface 8: 926–933 (2011) Pesika N, Gravish N, Wikinson M, Zhao B, Zeng H, Tian Y, Israelachvili J, Autumn K. The crowding model as a tool to understand and fabricate gecko-inspired dry adhesives. J Adhes 85: 512–525 (2009) Filippov A, Popov V L, Gorb S N. Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J Theor Biol 276: 126–131 (2011) Kumar A, Hui C Y. Numerical study of shearing of a microfibre during friction testing of a microfibre array. P Roy Soc Lond A Mat 467: 1372–1389 (2011) Cheng Q H, Chen B, Gao H J, Zhang Y W. Sliding-induced non-uniform pretension governs robust and reversible adhesion: A revisit of adhesion mechanisms of geckos. J Roy Soc Interface 9: 283–291 (2012) Chen B, Wu P D, Gao H J. Pre-tension generates strongly reversible adhesion of a spatula pad On substrate. J Roy Soc Interface 6: 529–537 (2009) Boesel L F, Greiner C, Arzt E, del Campo A. Gecko-inspired Friction 1(2): 114–129 (2013) [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] surfaces: A path to strong and reversible dry adhesives. Adv Mater 22: 2125–2137 (2010) Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J Roy Soc Interface 4: 271–275 (2007) Stork N E. Experimental-analysis of adhesion of chrysolinapolita (chrysomelidae, coleoptera) on a variety of surfaces. J Exp Biol 88: 91–107 (1980) Chan E P, Greiner C, Arzt E, Crosby A J. Designing model systems for enhanced adhesion. Mrs Bull 32: 496–503 (2007) Kroner E, Arzt E. What we can learn from geckos. Nachr Chem 57: 137–139 (2009) Varenberg M, Peressadko A, Gorb S, Arzt E. Effect of real contact geometry on adhesion. Appl Phys Lett 89: 121905 (2006) Gao H J, Ji B H, Jager I L, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. P Natl Acad Sci USA 100: 5597–5600 (2003) Varenberg M, Murarash B, Kligerman Y, Gorb S N. Geometry-controlled adhesion: Revisiting the contact splitting hypothesis. Appl Phys A-Mater 103: 933–938 (2011) Spolenak R, Gorb S, Gao H J, Arzt E. Effects of contact shape on the scaling of biological attachments. P Roy Soc Lond A Mat 461: 305–319 (2005) Gorb S N, Varenberg M. Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21: 1175–1183 (2007) Varenberg M, Gorb S. Close-up of mushroom-shaped fibrillar adhesive microstructure: Contact element behaviour. J Roy Soc Interface 5: 785–789 (2008) Creton C, Gorb S. Sticky feet: From animals to materials. Mrs Bull 32: 466–472 (2007) Gorb S N. Biological attachment devices: Exploring nature's diversity for biomimetics. Philos T R Soc A 366: 1557–1574 (2008) Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2: 461–463 (2003) Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. P Natl Acad Sci USA 106: 5639–5644 (2009) Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J Roy Soc Interface 6: 1223–1232 (2009) Yoon H, Jeong H E, Kim T I, Kang T JAuthor Vitae, Tahk DAuthor Vitae, Char K, Author VSuh K Y. Adhesion hysteresis of janus nanopillars fabricated by nanomolding 127 and oblique metal deposition. Nano Today 4: 385–392 (2009) [90] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/ nano-structures as dry adhesives. J Adhes Sci Technol 17: 1055–1073 (2003) [91] Glassmaker N J, Jagota A, Hui C Y, Kim J. Design of biomimetic fibrillar interfaces: 1. Making contact. J Roy Soc Interface 1: 23–33 (2004) [92] Hui C Y, Jagota A, Lin Y Y, Kramer E J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18: 1394–1407 (2002) [93] Spolenak R, Gorb S, Arzt E. Adhesion design maps for bioinspired attachment systems. Acta Biomater 1: 5–13 (2005) [94] Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomaterialia 5: 597–606 (2009) [95] Zhou M, Pesika N, Zeng H, Wan J, Zhang X, Meng Y, Wen S, Tian Y. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: A numerical analysis of peel-zone. J Roy Soc Interface 9: 2424–2436 (2012) [96] Crosby A J, Hageman M, Duncan A. Controlling polymer adhesion with "pancakes". Langmuir 21: 11738–11743 (2005) [97] Campo D A, Greiner C. Su-8: A photoresist for high-aspectratio and 3D submicron lithography. J Micromech Microeng 17: R81–R95 (2007) [98] Lamblet M, Verneuil E, Vilmin T, Buguin A, Silberzan P, Léger L. Adhesion enhancement through micropatterning at polydimethylsiloxane-acrylic adhesive interfaces. Langmuir 23: 6966–6974 (2007) [99] Greiner C, Campo D A, Arzt E. Adhesion of bioinspired micropatterned surfaces: Effects of pillar radius, aspect ratio, and preload. Langmuir 23: 3495–3502 (2007) [100] Lu G W, Hong W J, Tong L, Bai H, Wei Y, Shi G. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano 2: 2342–2348 (2008) [101] Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir 24: 10587– 10591 (2008) [102] Campo D A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23: 10235–10243 (2007) [103] Campo D A, Greiner C, Alvarez I, Arzt E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bio-attachment devices. Adv Mater 19: 1973–1977 (2007) [104] Aksak B, Murphy M P, Sitti M. Gecko inspired microfibrillar adhesives for wall climbing robots on micro/ nanoscale rough surfaces. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2008: 3058–3063. 128 [105] Lee D Y, Lee D H, Lee S G, Cho K. Hierarchical geckoinspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter 8: 4905–4910 (2012) [106] Davies J, Haq S, Hawke T, Sargent J P. A practical approach to the development of a synthetic gecko tape. Int J Adhes Adhes 29: 380–390 (2009) [107] Haefliger D, Boisen A. Three-dimensional microfabrication in negative resist using printed masks. J Micromech Microeng 16: 951–957 (2006) [108] Sameoto D, Menon C. Direct molding of dry adhesives with anisotropic peel strength using an offset lift-off photoresist mold. J Micromech Microeng 19: 1–5 (2009) [109] Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett 89: 261911 (2006) [110] Jin K, Tian Y, Erickson J S, Puthoff J, Autumn K, Pesika N S. Design and fabrication of gecko-inspired adhesives. Langmuir 28: 5737–5742 (2012) [111] Sameoto D, Menon C. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives. J Micromech Microeng 20: 115037 (2010) [112] Krahn J, Sameoto D, Menon C. Controllable biomimetic adhesion using embedded phase change material. Smart Mater Struct 20: 015014 (2011) [113] Kim S, Sitti M, Hui C Y, Long R, Jagota A. Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Appl Phys Lett 91: 161905 (2007) [114] Kustandi T S, Samper V D, Yi D K, Ng W S, Neuzil P, Sun W. Self-assembled nanoparticles based fabrication of gecko foot-hair-inspired polymer nanofibers. Adv Funct Mater 17: 2211–2218 (2007) [115] Yu J, Chary S, Das S, Tamelier J, Pesika N S, Turner K L, Israelachvili J N. Gecko-inspired dry adhesive for robotic applications. Adv Funct Mater 21: 3010–3018 (2011) [116] Reddy S, Arzt E, Campo D A. Bioinspired surfaces with switchable adhesion. Adv Mater 19: 3833–3837 (2007) [117] Sato H, Houshi Y, Shoji S. Three-dimensional microstructures consisting of high aspect ratio inclined micro-pillars fabricated by simple photolithography. Microsyst Technol 10: 440–443 (2004) [118] Kustandi T S, Samper V D, Ng W S, Chong A S, Gao H. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng 17: N75–N81 (2007) [119] Greiner C, Arzt E, Campo D A. Hierarchical gecko-like adhesives. Adv Mater 21: 479–482 (2009) [120] Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl Mater Inter 1: 849–855 (2009) Friction 1(2): 114–129 (2013) [121] Bhushan B, Lee H. Fabrication and characterization of multi-level hierarchical surfaces. Faraday Discuss 156: 235–241 (2012) [122] Lee J, Bush B, Maboudian R, Fearing R S. Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir 25: 12449–12453 (2009) [123] Sameoto D, Li Y S, Menon C. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. J Bionic Eng 5: 189–196 (2008) [124] Northen M T, Greiner C, Arzt E, Turner K L. A geckoinspired reversible adhesive. Adv Mater 20: 3905–3909 (2008) [125] Tian Y, Wan J, Pesika N, Zhou M. Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array. Sci Rep 3: 1382 (2013) [126] Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2004: 3058–3063. [127] Sitti M, Fearing R S. Nanomolding based fabrication of synthetic gecko foot-hairs. In Proceedings of the 2002 2nd IEE Conference on Nanotechnology, Washington, 2002: 137–140. [128] Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir 24: 10587– 10591 (2008) [129] Dai Z D, Yu M, Gorb S. Adhesion characteristics of polyurethane for bionic hairy foot. J Intel Mat Syst Str 17: 737–741 (2006) [130] Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448: 334–338 (2007) [131] Ajayan P M, Zhou O Z. Applications of carbon nanotubes. In Carbon Nanotubes. Berlin: Springer, 2001: 391–425. [132] Yurdumakan B, Raravikar N R, Ajayan P M, Dhinojwala A. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun: 3799–3801 (2005) [133] Dhinojwala A, Ge L H, Sethi S, Yurdumakan B, Lijie C, Ajayan P M. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. In 2007 Spring National ACS Meeting, Chicago, 2007: 64. [134] Zhao Y, Tong T, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Interfacial energy and strength of multiwalledcarbon-nanotube-based dry adhesive. J Vac Sci Technol B 24: 331–335 (2006) [135] Wirth C T, Hofmann S, Robertson J. Surface properties of vertically aligned carbon nanotube arrays. Diam Relat Mater 17: 1518–1524 (2008) [136] Ge L H, Sethi S, Ci L, Ajayan P M, Dhinojwala A. Carbon Friction 1(2): 114–129 (2013) 129 nanotube-based synthetic gecko tapes. P Natl Acad Sci USA 104: 10792–10795 (2007) Qu L, Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv Mater 19: 3844–3849 (2007) Qu L, Dai L, Stone M, Xia Z, Wang Z L. Carbon nanotube arrays with strong shear binding-on and easy normal liftingoff. Science 322: 238–242 (2008) Majidi C S, Groff R E, Fearing R S. Attachment of fiber array adhesive through side contact. J Appl Phys 98: 103521 (2005) Zhou M, Liu K, Wan J, Li X, Jiang K, Zeng H, Zhang X, Meng Y G, Shizhu Wen S Z, Zhu H W, Tian Y. Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon 30: 5372–5379 (2012) Hu S H, Xia Z H, Gao X S. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. ACS Appl Mater Inter 4: 1972–1980 (2012) Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3: 178–182 (2007) [143] Lee J H, Fearing R S, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays. Appl Phys Lett 93: 191910 (2008) [144] Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small 5: 170–175 (2009) [145] Tamelier J, Chary S, Turner K L. Vertical anisotropic microfibers for a gecko-inspired adhesive. Langmuir 28: 8746–8752 (2012) [146] Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. J Micromech Microeng 19: 115002 (2009) [147] Shon J K, Kong S S, Kim J M, Ko C H, Jin M, Lee Y Y, Hwang S H, Yoon J A, Kim J N. Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chem Commun 14: 650–652 (2009) [148] Gravish N, Wilkinson M, Sponberg S, Parness A, Esparza N, Soto D, Yamaguchi T, Broide M, Cutkosky M, Creton C, Autumn K. Rate-dependent frictional adhesion in natural and synthetic gecko setae. J Roy Soc Interface 7: 259–269 (2010) Yu TIAN, born 1975, is the Professor and Associate Director of the State Key Laboratory of Tribology at Tsinghua University in China. Tian gained his BA and PhD in Mechanical Engineering at Tsinghua University in 1998 and 2002, respectively. Then he became a faculty of the State Key Laboratory of Tribology at Tsinghua University. He did his postdoc at the University of California, Santa Barbara with Professor Jacob Israelachvili (from 2005 to 2007). He has been a visiting associate professor at Nanyang Technology University for five months. His research interest is the science and technology at the interface of physics, materials, engineering and biology to understand the physical laws of adhesion, friction and rheology. He has published over 70 peer-reviewed journal papers. He has received the Wen Shizhu-Maple Award-Young Scholar award (2012), the Young Scholar Achievement Award of the Society of Mechanical Engineering of China (2011), Outstanding Young Scholar Award of the Chinese Tribology Institute (2009), and the National Excellent Doctoral Dissertation of China (2004). Ming ZHOU, graduated in 2007 from Tsinghua University, and received her PhD degree in 2013 from the SKLT, Tsinghua University. Now she is working as an engineer in the Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics. She has published 9 papers. Her research interests include the mechanism and application of gecko adhesion and the gecko-inspired surfaces, nano contact mechanics, nano-tribology, and more recently, the techniques and mechanisms of ultra-precision machining. [137] [138] [139] [140] [141] [142] Friction 1(2): 130–142 (2013) DOI 10.1007/s40544-013-0015-1 ISSN 2223-7690 REVIEW ARTICLE Skin tribology: Science friction? E. VAN DER HEIDE1,2,*, X. ZENG1, M.A. MASEN1 1 Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands 2 TNO, De Rondom 1, 5612 AP Eindhoven, The Netherlands Received: 01 February 2013 / Revised: 30 March 2013 / Accepted: 23 May 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is frequently one of the interacting surfaces in relative motion. People seem to solve these problems related to skin friction based upon a trial-anderror strategy and based upon on our sense for touch. The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy? In other words: Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction? This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods. Skin tribology requires in vivo, subject and anatomical location specific test methods. Current predictive friction models can only partially be applied to predict in vivo skin friction. The reason for this is found in limited understanding of the contact mechanics at the asperity level of product–skin interactions. A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale. Only largely simplified power law based equations are currently available as general engineering tools. Finally, the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort. Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the product. Keywords: friction; bio-tribology; skin; soft tissue; surface texture; brush coatings 1 Skin friction in daily life The application of tribological knowledge, i.e., knowledge on the science and technology of interacting surfaces in relative motion, is not restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to tribology related questions are evident in our everyday life, as illustrated in fascinating examples described by D. Dowson’s “A tribological day” [1]. An important part of the effective solutions in daily life situations is related to skin tribology, as the human skin is frequently one * Corresponding author: E. VAN DER HEIDE. E-mail: [email protected] of the interacting surfaces in relative motion. These questions are typically related to optimizing friction and lubrication problems in skin–product interactions, rather than to optimising wear. Take for example the swimming pool or bathroom where material selection and application of anti-slip coatings prevent us from falling when the floor gets wet. Yet, if such coatings do not sufficiently increase friction, one will optimize the tribological system, e.g., by pressing our full foot to the floor and subsequently increasing the true area of contact or by changing the operational conditions, e.g., by minimising the sliding velocity, in order to prevent falling. Another striking example of optimising the frictional response of a skin–product interaction Friction 1(2): 130–142 (2013) in the bathroom is found in shaving. The application of tailored operational conditions during shaving, i.e., person specific pressure and sliding velocity during the shaving action, combined with tailored boundary layers—shaving soap—gives a close shave. Another modern-day typical aspect of our current lifestyle is the interaction with touch screens, which are dominantly present around us world-wide, especially among the younger generation of consumers. Touching screens with the index finger clearly illustrates the relative importance of skin friction: reduced control over friction during the interaction, e.g., because of the environmental conditions, will reduce the ability to manipulate the device. People will change the operational conditions, i.e., sliding velocity or contact pressure, in such a situation to regain control based on a trial-and-error strategy. This probably holds for more skin–product interactions such as selection of clothing and textiles. People seem to solve these problems related to skin friction based upon a trial-anderror strategy and based upon on our sense for touch. The question rises whether or not a trained tribologist would make different choices based upon a science based strategy? In other words: Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction? This paper tries to formulate an answer to this question by elaborating on the specific nature of the tribological system, by elaborating on the feasibility of current friction models to skin tribology, and by the possibilities to influence friction in skin–product interactions by surface texturing and polymer coatings. 2 2.1 131 situations is reduced in the case of skin tribology to the interaction between a product surface and a skin surface in the presence of a possible “lubricant” and surrounded by a specific environment (see Fig. 1). In product–skin interactions, the function of the systems is related to the application, i.e., sports or personal care with a process that depends on the selected product, like for example making a sliding on artificial turf or wet-shaving, respectively. The connections between the system and the rest of the application can generally be reduced to input: the operating variables, and output: friction and wear. In the case of skin tribology one of the contacting surfaces is a living material. The implication of this condition is only limitedly explored in current engineering practise [4]. Emphasis is put on the connection with the human somatosensory system, see Refs. [5−9] for touch related literature and on the characteristics of individual subjects [10] in relation to best practises in panel testing. The human somatosensory system has a tribological aspect. In fact, the exploratory procedure that is used to touch a surface is similar to experimentally determining friction in a reciprocating test. By pressing your finger(s) at the surface of interest and sliding to feel specific features, friction is generated in the contact. Friction in skin–product interactions The systems approach and living materials A well accepted method for analysing the tribological performance is based upon the so-called systems approach [2, 3]. Basically this means that a tribological contact situation is separated from the application studied, by using a hypothetical system envelope. The contact situation separated by this envelope is regarded as a system, that is, a set of elements interconnected by structure and function. Hence, the structure of contact Fig. 1 Schematic presentation of the tribological system in skin−product contacts, showing the interaction of the product’s surface with the top layer of the human skin, in the presence of a lubricant and surrounded by the environment. The input, i.e., the operating variables and the output, i.e., friction and wear, connect the tribo system with the rest of the application. Histology by P. van Erp, Dermatology, Nijmegen, NL. Friction 1(2): 130–142 (2013) 132 Pressure in this contact is linked to the applied normal force of for example the finger that “feels” the surface and sliding velocity is related to the exact exploratory procedure that is selected for feeling. A key aspect of the human sense for touch is formed by a group of sensory cells, an assortment of morphologically and functionally distinct mechanosensory cell types that are tuned to selectively respond to various mechanical stimuli, such as vibration, stretch and pressure. In glabrous skin of the palms and fingertips, Pacinian corpuscles, rapidly adapting Meissner’s corpuscles, Merkel cell-neurite complexes, Ruffini corpuscles make up the majority of touch receptors [11, 12]. From the tribological action, signals are produced by the sensory cells that are transmitted by the nerve system, through the spinal cord, to the thalamus and from there to the somatosensory part of the brain. Next, the sensory information is processed by the brain, i.e., organised, identified, and interpreted in order to fabricate a mental representation, which essentially determines the touch perception or tactility of a surface. The relation between finger ridges, vibrations, friction and surface texture is subject of research in Refs. [13, 14], yet a straightforward translation to comfort during use [15] or an application to for example touch perception of robotic fingers is at the very beginning of development [9]. The set of operating variables, involved in tribological contact situations in skin–product interactions and their relative importance strongly depends on the actual application. Sliding velocity and the load or interfacial pressure are usually taken as main operating variables. The loss-output of a tribo-system is described by measuring and classifying the friction and wear characteristics of the system. Wear is typically discussed in terms of removal of the stratum corneum, the presence of scratches or wounds or by indirect measures such as trans epidermal water loss, skin irritation and redness or the occurrence of blisters [16, 17]. Friction data and models are presented by Refs. [13, 18−20] and are discussed in more detail in Section 2. The systems approach is designed to handle complex processes that influence wear or unexpected friction levels in industrial practice and shows a way to simulate critical aspects of the operation at a laboratory scale. By changing the operating variables and studying the tribological characteristics it becomes possible to optimise the function of the system, without necessarily understanding the structure of the system in detail. Secondly, it is possible to study the structure of a system by varying the elements and comparing the performance at given operational conditions. Both techniques are used in skin tribology. 2.2 Modeling and predicting friction The science of friction typically starts with theempirical rules formulated by Amontons and Coulomb for elastically deforming, dry contacts, i.e., the force of friction is directly proportional to the applied load, the force of friction is independent of the apparent area of contact and the force of dynamic friction is independent of the sliding velocity. These empirical rules are summarized by Eq. (1) in which µ is the coefficient of friction, Ff the friction force and Fn the normal force. Ff Fn (1) The coefficient of friction given by Eq. (1) can be determined experimentally, maintaining a sliding contact with the contacting surfaces of interest and using a limited range of operating variables. In vivo experimental research on skin friction is conducted basically with four contact set-ups, i.e., the contact material moves with respect to skin linearly, the contacting material rotates with the axis of rotation parallel to the skin or rotates with the axis of rotation perpendicular to the skin, or the skin moves linearly in contact with a non-moving surface. A summary of the experimental research on skin friction, given by Derler and Gerhardt [21], and recently by Veijgen [4] reveals a large range of values for the coefficient of dynamic friction [4], i.e., from 0.07 [22] to 5.0 [23]. This is also found for the coefficient of static friction [4] that ranges from 0.11 [24] to 3.4 [25]. Based on these results it is concluded that the coefficient of friction in skin–product interaction is not constant and depends greatly upon the operational conditions, the environmental conditions, materials selection and possibly upon the type of motion that is used for the study, see Table 1 for an overview extracted from Ref. [4]. This Friction 1(2): 130–142 (2013) Table 1 133 Coefficient of (a) dynamic friction and (b) static friction from experimental research, extracted from Ref. [4]. (a) Reference used in Ref. [4] Asserin et al. [26] Location at human body* Forearm (V) Counter surface Ruby Bobjer et al. [27] Finger PC Hand (D) PTFE PA, sheet PE Wool PA, knitted Terylene Comaish & Bottoms [28] Cua et al. [29, 30] Derler et al. [31] Forehead Upper arm Forearm (V) Forearm (D) Postauricular Hand (P) Abdomen Upper back Lower back Thigh Ankle Finger Forearm (V) El-Shimi [22] Forearm (D) Gee et al. [32] Finger PTFE Wool Polished steel Polished steel Rough steel Rubber PC Steel Glass PE Paper Scar tissue Li et al. [33, 34] PE Prosthetic / healthy skin Naylor [35] Lower leg (V) PE Pailler-Mattei et al. [23] Forearm (V) Steel Forearm (V) Ramalho et al. [36] Glass Palm Sivamani & Maibach [37] Finger (D) * (V) ventral, (D) dorsal and (P) palmar side Stainless steel μdynamic 0.7 2.22 0.85 0.61−1.21 0.11−0.30 0.09−0.28 0.10−0.72 0.20 0.47 0.30−1.3 0.40 0.37 0.40 0.34 0.23 0.26 0.23 0.34 0.21 0.12 0.25 0.19 0.15 0.21 0.27−0.71 0.31 0.07−0.38 0.37 0.12 2.4 2.7 1.8 1.2 1.6 0.6 0.8 0.6 0.72 0.47 0.17 0.5−0.6 Max 1.1 Max 1.1 1.1−1.4 0.15−1.07 0.17−0.87 0.10−0.84 0.5−1.35 0.8−1.4 1.21 0.90 1.24 0.45−0.7 0.8−1.4 1.1 0.55 0.3−0.9 Remarks – 1 N normal load 20 N normal load Sweat Glycerol Paraffin oil Lard Untreated Silicone oil, velocity Dry Dry 0.1 N normal load 0.7 N normal load 0.1 N normal load 0.7 N normal load 8.0 N normal load Wweating Cleaned skin Standard Washed Alcohol Glycerine Petrolatum Standard Washed Alcohol Glycerine Petrolatum 0.05 N normal load 0.45 normal load Cream Friction 1(2): 130–142 (2013) 134 (b) Reference used in Ref. [4] Location at human body* Counter surface PTFE PA, sheet PE Wool PA, knitted Terylene PE PE Hand (D) Comaish & Bottoms [28] Hand (P) Lower leg Al (lacquered) Lewis et al. [24] Finger Label paper Mossel & Roosen, adapted from Ref. [4] Mossel, adapted from Ref. [4] μstatic 0.25 0.55 0.43 0.45 0.42 0.45 0.62.1 0.6−1.3 0.26 0.54 0.11 0.29 0.41 0.13 Finger Stainless steel 0.35−1.13 Finger Stainless steel 0.35−0.94 Remarks 0.03−10 N normal load Dry Wet Oil Dry Wet Oil * (V) ventral, (D) dorsal and (P) palmar side dependence of friction on the system characteristics is consistent with the non-linear, visco-elastic mechanical behavior of the skin and with the strong dependence of the mechanical properties of the outermost layers of the skin with the environmental conditions [21]. An explanation for the nonlinear relation between the friction force and the normal force in skin–object interactions could be found in analyzing the frictional response with the two term (non-interacting) model of friction [13, 18−21]. The friction force in skin–object interactions is seen as the sum of the forces required to break the adhesive bonds between the two surfaces at the asperity level, Ff, adh, and the forces related to the deformation of the bodies in contact, Ff, def. This concept was recently applied to the contact of a regularly patterned surface in contact with in vivo skin by van Kuilenburg et al. [13]. The regular pattern consisted of an array of summits of equal height with a common radius Rsummit at a distance λ in both x and y direction, made by direct laser texturing. The term related to adhesion in the contact between the summits and the skin, is assumed to be proportional to the real area of contact for each summit individually, Areal, summit, see Eq. (2). Ff ,adh τAreal ,summit (2) The interfacial shear strength, τ, depends on subject specific or anatomical location specific “lubricating” properties of the skin, like the sebum content, hydration of the skin, the amount of sweat, any effects due to treatments of the skin, such as the use of creams and conditioners [26] and possibly the hair density [4]. The deformation related term is assumed to be determined by the indentation of an individual summit into the skin, see Eq. (3) [38], Ff ,adh 3 Fn 16 R (3) in which β is the visco elastic loss fraction, the radius of the contact area and R the radius of the individual summit present at the textured surface. Expressions for the area of contact H and the indentation depth H in the Hertzian case for an individual summit–skin contact are depicted in Eqs. (4) and (5), respectively. n H * 4 E 3 RF 1/ 3 9 Fn 2 H *2 16 RE (4) 1/ 3 (5) in which E* equals the reduced elastic modulus given by Eq. (6): 1 1 vskin 2 1 vproduct E* Eskin Eproduct 2 (6) Friction 1(2): 130–142 (2013) 135 with Eskin, Eproduct, vskin, and vproduct the Young’s moduli and Poisson’s ratios of the skin and product surface, respectively at the asperity level. As the elastic moduls of skin is not a material property but a system property—values depend e.g., on the indentation depth and the indentors radius, see Ref. [39] —it is necessary to use values that are measured with indenter that have equal or similar dimensions as the summits of interest. Values for Eskin and vskin could therefore be taken from representative experimental research presented in Ref. [40]. Although the viscous character of skin is not incorporated in this contact model yet, it is possible to improve the quality of the model greatly by adding adhesion to the Hertzian contact model. As demonstrated by Ref. [13], the normal force acting on an individual summit must be corrected to an effective normal force, Feff,summit to correctly estimate the increased contact area for that specific summit–skin contact. Feff,summit Fn 2 Fadh 2 Fadh ( Fn Fadh ) (7) with the adhesive force Fadh based on the JKR theory of adhesion [41], Fadh 3 RW12 2 (8) The work of adhesion at the asperity level, W12, gives the opportunity to fine tune the overall contact by tailoring individual summits to the presence of specific layers. The feasibility of this approach however, is to be validated by future research. From Eqs. (3)−(8) one can construct an expression for the real or true area of contact, as a function of the material properties of the skin and product, as a function of the two controlling roughness parameters and the nominal contact area A0, see Eq. (9): 2 Areal 2 2 3 3 R 3 E 3 * eff A0 4 E A0 (9) Similarly, an expression for the deformation related term of friction for an individual summit–skin contact with radius asummit-skin relative to the radius of that specific summit R can be constructed, see Eq. (10). 1 Equations (9) and (10) can be used as building blocks for predicting skin-friction, as shown in more detail in the work of Van Kuilenburg et al. [13]. The presented approach , although developed for a specific texture, could possibly be extended to rough product surfaces in general, as it is based on the contact behavior of individual summits. An alternative approach that circumvents these issues has been followed by Veijgen et al. [4, 10], who used multivariable statistical analyses to develop a quantitative model for the friction of human skin based on a large dataset composed of several hundred friction measurements and recording the associated tribo- system properties, including contact conditions and the environment, but also subject characteristics, and dietary habits. However, a complete physics-based model describing the friction behaviour of human skin is still a subject of debate and research and is not expected to be ready for engineering purposes at short notice. In the meantime a power law expression given by Eq. (11) is frequently suggested as simplified model for the coefficient of friction: 2 1 asummit-skin 3 3 3 Eeff 3 * R 4 E R A0 (10) c1 Fnc 2 1 (11) One could start with c2 = 2/3 for contact situations where adhesion is dominant, compare Eqs. (9) and (1), and with c2 = 4/3 for situation where deformation is dominant, compare Eqs. (10) and (2) and fine-tune with c1. 3 3.1 Engineering skin friction The role of skin friction in comfort perception Materials selection by manufacturers of sports and care products includes optimising the complex interaction of manufacturing costs, functionality, durability and product specific aspects like colour. The degree of comfort or the degree of discomfort, important from the user’s point of view, is incorporated as well in this selection process. Analysis of comfort and discomfort in skin–product interactions that involve sliding actions—thinking of making a sliding on artificial turf—clearly reveals the relative importance of skin friction in relation to comfort and discomfort. Friction 1(2): 130–142 (2013) 136 Deformation of the skin during sliding could cause discomfort. A threshold for that is given by Xu et al. [42] as the threshold for stress at the nociceptor location and is assumed to be 0.2 MPa. The depth of the nociceptor varies in the range of 75 to 200 μm below the skin surface. Below the threshold values for mechanical damage, σcrit, tactile sensation is determined by the subsurface stresses and strains at the locations of the mechanoreceptors in the skin: Merkel cells—points, edges and curvatures; Meissner corpuscles—slip, friction and vibrations (10−200 Hz); Ruffini endings—(direction of) motion; Pacinian corpuscles—surface roughness, vibrations (70−1000 Hz). A linear relation between the firing rate of the nerve endings and the subsurface stress and strain distribution in the skin is known to exist as shown by Sripati et al. [43]. Innervation density and psychophysical thresholds of defined stimuli at the skin surface have been investigated thoroughly within the scope of for example haptics and plastic surgery [44]. The subsurface stress and strains within the skin are influenced by skin friction. For estimation of the influence of friction load at the surface on the magnitude of stresses within the skin explicit equations are available [45]. For example, the maximum tensile stress beneath a sliding spherical contact occurs at the skin surface at the back edge of the contact and contains a term that increases linearly with the coefficient of friction and with the maximum contact pressure, pmax. In other words, the absolute stress value at the skin surface could rise an order of magnitude if friction changes from µ = 0.1 to µ = 1, e.g., due to changes in environmental conditions. As such, it is important to characterize the mechanical intensity of a contact, e.g., by defining a dimensionless mechanical intensity number MI given by MI pmax crit was found and modelled successfully using an Arrhenius equation by Tropea and Lee [46]. Tissue specific values are found experimentally by calibration. Non-invasive tests with a thermal imager confirmed that the temperature of the skin surfacs rises after friction testing [47]. A solution for local surface temperature rise presented in Ref. [48] and summarized by Eq. (3) can now be used to predict skin temperature rise by frictional heating in real asperity contacts. Tf Fn v a Keff (13) with Keff the effective thermal conductivity that takes into account the operational conditions and the thermal properties of the contacting materials. From Eq. (13) it is clear that the local temperature increases linearly with the coefficient of friction and is equally sensitive for an increase in sliding velocity. In other words, higher sliding velocities require low friction forces in skin–product interactions. From Eq. (3) one can construct a thermal intensity number given by TI Fn v Tcrit a Keff (14) in which Tcrit represents the critical contact temperature. Combining the MI and TI parameters with a measure that represents comfort during use, enables the construction of a skin comfort map, which can serve as a design diagram. A conceptual version of such a diagram is given in Fig. 2. No experimental evidence exists yet for this diagram, but nevertheless (12) Secondly, frictional heating during sliding is strongly associated with discomfort. Temperature and exposure time determine to a great extent of the severity of skin burns [46]. From pathologic examination a reciprocal relationship between temperature and exposure time Fig. 2 Conceptual version of a comfort diagram based on the mechanical and thermal intensity of a sliding contact. Friction 1(2): 130–142 (2013) 137 it clearly illustrates the need to predict and control friction. Two promising directions to influence friction in a controlled way are the use of surface textures and the use of brush coatings. 3.2 Changing friction by surface texture In “hard” tribological contacts, the (macroscopic) apparent area of contact is significantly larger than the real area of contact and there is only a negligible influence of the surface roughness on the friction force. When one of the contact partners is a compliant material, such as an elastomeric material or skin, the area of real contact may approach the area of apparent contact, which means that the adhesion component of friction can be quite substantial, particularly when the surface has a low roughness. Indeed, in describing the friction behaviour of human skin, any effects due to deformation (e.g., viscoelastic losses and mechanical interlocking) are often ignored, and only adhesion phenomena are taken into account, see Ref. [22]. The relation between the surface roughness and the adhesive component of the friction force has been be described as Ff,adh Rq h (15) in which Rq represents the root mean square roughness of the counter surface and the exact value of the exponent h is, as yet, unknown. Hendriks and Franklin [49] reported a factor 5 decrease in the coefficient of friction measured on skin when the roughness of the counter material was increased from 0.1 to 10 μm, from which the exponent h can be estimated to be approximately −2. In contrast, based on a fully elastic approximation combined with a GreenwoodWilliamson-like statistical approach, Masen [50] estimated h to range between −0.66 and −1. However, this latter estimate is an over-simplification because the mechanical properties of skin vary with the size of the contact [39], and a deterministic approach to account for the effects of surface roughness seems more appropriate. For surfaces with a roughness Rq in the order of micrometres and more, the adhesive model gives rather low coefficients of friction, and such low values are not obtained in experiments. The increased surface roughness will result in a larger separation between the mean planes of the two contacting surfaces causing a reduction in the amount of adhesion, provided that the lateral spacing between the asperities is small enough so that the skin does not fill the valleys, which would result in an increased area of contact and, hence, high friction. Indeed Peressadko et al. [51] showed that the lateral geometry such as the wavelength or the spacing between the individual asperities can play an important role. One could visualise the influence of the spacing of the micro-geometry by imagining the skin surface wrapping itself around the roughness asperities of the rigid surface, meaning that full surface-to-surface contact also occurs inside the valleys of the rough surface. When the asperities are too high, or positioned too close to each other, the valleys will not be filled and only partial contact occurs. The deformation component of friction in skinobject interactions is often neglected. For surfaces with high roughness and waviness, the ploughing of the roughness asperities through the skin causes viscoelastic losses as well as mechanical interlocking between the asperities and the friction ridges of the finger pad. This contribution can be substantial and provide an opportunity to create high friction and increased grip. The viscoelastic loss factor β is often estimated to amount to about 24% of the total energy involved in the deformation process and, as a general guideline, for skin interactions with surfaces with a roughness Rq in the order of several micro-meters and more, the deformation component can be used to change the frictional response of a product–skin interaction substantially. 3.3 Changing friction by brush coatings Brush coatings, a relatively new and promising strategy for boundary lubrication, is a way to control the friction in skin–product interactions. Brush coatings represent polymer layers developed on a supporting surface by tethering long polymer chains with a sufficiently high grafting density. A schematic illustration of a polymer brush coating in an aqueous solution is shown in Fig. 3. When in good solvent, the end-grafted polymer chains allow the fixation of a large number of solvent molecules to form brush-like structure [52]. Many experimental and computer-simulation studies 138 Fig. 3 Schematic illustration of a polymer brush coating on a glass surface in an aqueous solution. have been performed to investigate the lubrication mechanism of polymer-bearing surfaces and it was thought that the origin of the low frictional forces between brush-bearing surfaces is attributed both to the steric repulsion between the polymers supporting high normal loads and to intermolecular interactions between the polymer brushes and the solvent molecules which maintain a lubricating fluid layer at the sheared interfacial region [52, 53]. By varying the polymer architecture, such brushes can profoundly modify interfacial properties and change surface properties like wettability, surface energy, adhesion and friction to desirable state [54−57]. Friction and lubrication of skin play a major role in product development for cosmetics, textiles, artificial turf, medical devices, floor, etc. Some of these systems are in aqueous environment, like wet shaving, showering in bathroom, playing football on artificial turf after raining, etc. To enhance skin comfort during these activities, hydration lubrication by hydrophilic polymer brushes can be applied. Most tribological studies concerned with brush coatings have been performed at the nano-scale in a very low-load regime [58−60]. A translation of these results to engineering applications is one of the challenges of current skin tribological research. Application-oriented studies on macroscopic scale contacts have been conducted to develop appropriate Friction 1(2): 130–142 (2013) surfaces for the control of skin–product interactions [61, 62], in which the contact pressures applied were higher than 0.004 MPa, reported as clinically realistic for supine person on a foam mattress, and lower than 0.23 MPa, measured for highly stressed local contact at the forefoot during walking. A study on the effect of polyacrylic acid (PAA) grafted with poly(ethylene glycol) (PEG) (PAA-g-PEG) on friction was carried out using a reciprocating flat-on-flat test setup involving silicone skin L7350 [63]. The result shows that effective lubrication by water is able to reduce friction coefficient from above 1 to below 0.01 at low sliding velocities. The great friction reduction of more than one order of magnitude is contributed to the change of the hydrophobic-hydrophobic tribopair to the hydrophobic-hydrophilic tribopair with PAA-g-PEG brush coating, which can bind water in its structure and result in a lubricating water layer to remain in the contact. Thus, the sliding between two surfaces can be accommodated by shearing of a thin water film that is created in the contact area by applying a normal load. Such a layer is able to effectively separate the two tribological surfaces during sliding contact and as a consequence minimize the high adhesive contribution to friction that occurs for dry contact. Another study with hydrophilic brush coatings was conducted using a rotating pin-on-plate test setup involving polyurethane as mechanical skin equivalent. In this study, the influence of end group type (hydroxyl, methyl, lactide) and hydrophilicity (PEG, polyglycerol (PGO)) was evaluated. Result indicates that the friction coefficient is in the order of methyl>lactide>hydroxyl and PGO<PEG, which correlates to the hydrophilicity, that is, the higher the hydrophilicity, the lower the friction coefficient in aqueous environment. In addition, with the increasing of normal load, the friction coefficient increases and the difference is more obvious for brush coating with hydrophobic end group. This may be because the hydrophobic end group makes the polymer chains less densely packed, leading to weak steric repulsion, which cannot support high normal load. Therefore, under high normal load, the bound water molecule can be easily squeezed out, causing the increasing of friction. Further studies on the effect of skin temperature, the interactions between brush coatings and emulsions are under investigation. Friction 1(2): 130–142 (2013) 4 Conclusions 139 [8] Lui X, Yue Z, Cai Z, Chetwynd D G, Smith S T. Quantifying touch-feel perception: Tribological aspects. Measurement This paper shows the relative importance of skin friction, not only for everyday situations but also in the design process of consumer products. Skin friction has a clear and distinct role in the perception of discomfort and comfort. For that, modelling of skin friction is important. Current friction models can only partially be applied to predict in vivo skin friction and are not ready yet to serve as general engineering tools. The specific nature of the tribological system limits furthermore, the use of conventional methods and stresses the need for in vivo, subject and anatomical location specific test methods. The need to control friction especially in product–skin interactions with a sliding component is evident. For that, surface texturing and polymer coatings are promising directions. Science and Technology 19: 084007 (2008) [9] Mathew Mate C, Carpick R W. A sense for touch. Nature 480: 189–190 (2011) [10] Veijgen N K, Masen M A, van der Heide E. A multivariable model for predicting the frictional behaviour and hydration of the human skin. Skin Res Technol, in press, DOI: 10.1111/srt.12053 [11] Johnson K O. The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology 11: 455−461 (2001) [12] Lumpkin E A, Marshall K L, Nelson A M. The cell biology of touch. J Cell Biol 19: 237–248 (2010) [13] Van Kuilenburg J, Masen M A, van der Heide E. The role of the skin microrelief in the contact behaviour of human skin: Contact between the human finger and regular surface textures. Tribology International, in press, DOI: 10.1016/ Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. j.triboint.2012.11.024 [14] Fagiani R, Massi F, Chatelet E, Berthier Y, Akay A. Tactile perception by friction induced vibrations. Tribology International 44: 1100–1110 (2011) [15] Kuijt-Evers L F M, Twisk J, Groenesteijn L, De Looze M P, Vink P. Identifying predictors of comfort and discomfort in References [1] [16] Davis B L. Foot ulceration: Hypotheses concerning shear Dowson D. A tribological day. Proc IMechE Part J: J and vertical forces acting on adjacent regions of the skin. Engineering Tribology 223: 261–272 (2009) Med Hypotheses 40: 44–47 (1993) [2] Czichos H. Tribology: A Systems Approach to the Science and Technology of Friction, Wear and Lubrication. Amsterdam (The Netherlands): Elsevier Scientific Publishing Company, 1978. [3] Salomon G. Application of systems thinking to tribology. [4] using hand tools. Ergonomics 48: 692–702 (2005) [17] Comaish J S. Epidermal fatigue as a cause of friction blisters. Lancet 301: 81–83 (1973) [18] Wolfram L. Friction of skin. Journal of the Society of Cosmetic Chemists 34: 465–476 (1983) [19] Johnson S A, Gorman D M, Adams M J, Briscoe B J. The ASLE Trans 17: 295–299 (1974) friction and lubrication of human stratum corneum. In Veijgen N K. Skin friction—A novel approach to measuring Proceedings of the 19th Leeds-Lyon Symposium on Tribology in vivo human skin. PhD Thesis. Enschede (The Netherlands): held at the Institute of Tribology, University of Leeds, 1993: University of Twente, 2013. 663–672. [5] Hollins M, Risner S R. Evidence for the duplex theory of [20] Adams M J, Briscoe B J, Johnson S A. Friction and tactile perception. Perception & Psychophysics 62: 695–705 lubrication of human skin. Tribology Letters 26: 239–253 (2000) [6] (2007) Hollins M, Bensmaia S J. The coding of roughness. [21] Derler S, Gerhardt L. Tribology of skin: Review and analysis Canadian journal of experimental psychology 61: 184–195 of experimental results for the friction coefficient of human (2007) skin. Tribology Letters 45: 1–27 (2011) [7] Smith A M, Chapman C E, Deslandes M, Langlais J S, Thibodeau M P. Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp Brain Res 144: 211–223 (2002) [22] El-Shimi A F. In vivo skin friction measurements. J Soc Cosmet Chem 28: 37–52 (1977) [23] Pailler-Mattéi C, Pavan S, Varigiolu R, Pirot F, Falson F, Zahouani H. Contribution of stratum corneum in determining Friction 1(2): 130–142 (2013) 140 bio-tribological properties of the human skin. Wear 263: 1038–1043 (2007) [24] Lewis R, Menardi C, Yoxall A, Langley J. Finger friction: Grip and opening packaging. Wear 263: 1124–1132 (2007) [25] Koudine A A, Barquins M, Anthoine P, Aubert L, Lévèque J L. Frictional properties of skin: Proposal of a new approach. Int J Cosmet Sc 22: 11–20 (2000) [26] Asserin J, Zahouani H, Humbert P, Couturaud V, Mougin D. Measurement of the friction coefficient of the human skin in vivo. Colloids Surf B Biointerfaces 19: 1–12 (2000) [27] Bobjer O, Johansson S E, Piguet S. Friction between hand and handle. Appl Ergon 24: 190–202 (1993) [28] Comaish S, Bottoms E. The skin and friction: Deviations from Amonton’s laws. Br J Dermatol 84: 37–43 (1971) [29] Cua A B, Wilhelm K P, Maibach H I. Frictional properties [40] Yuan Y, Verma R. Measuring microelastic properties of stratum corneum. Colloids and Surfaces B: Biointerfaces 48: 6–12 (2006) [41] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc R Soc Lond A 324: 301–313 (1971) [42] Xu F, Li T J, Seffen K A. Skin thermal pain modeling—A holistic method. J Therm Biol 33: 223–237 (2008) [43] Sripati A P, Bensmaia S J, Johnson K O. A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95: 3852–3864 (2006) [44] Johansson R S, Vallbo Å B. Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences 6: 27–32 (1983) of human skin: Relation to age, sex and anatomical region, [45] Hamilton G M. Explicit equations for the stresses beneath stratum corneum hydration and transepidermal water loss. a sliding spherical contact. Proc Instn Mech Engrs 197C: Br J Dermatol 123: 473–479 (1990) 53–59 (1983) [30] Cua A B, Wilhelm K P, Maibach H I. Skin surface lipid and [46] Tropea B I, Lee R C. Thermal injury kinetics in electrical skin friction: Relation to age, sex and anatomical region. trauma. Journal of Biomechanical Engineering 114: 241–244 Skin Pharmacol 8: 246–251 (1995) (1992) [31] Derler S, Schrade U, Gerhardt L-C. Tribology of human [47] Li W, Pang Q, Jiang Y S, Zhai Z H, Zhou Z R. Study of skin and mechanical skin equivalents in contact with textiles. physiological parameters and comfort sensations during Wear 263: 1112–1116 (2007) friction contacts of the human skin. Tribology Letters 48: [32] Gee M G, Tomlins P, Calver A, Darling R H, Rides M. A new friction measurement system for the frictional component of touch. Wear 259: 1437–1442 (2005) [33] Li W, Qu X, Zhou Z R. Reciprocating sliding behaviour of human skin in vivo at lower number of cycles. Tribology Letters 23: 165–170 (2006) [34] Li W, Kong M, Liu X D, Zhou Z R. Tribological behavior of scar skin and prosthetic skin in vivo. Tribol Int 41: 640–647 (2007) [35] Naylor P F D. The skin surface and friction. Br J Dermatol 67: 239–248 (1955) 293–304 (2012) [48] Van der Heide E, Schipper D J. On the frictional heating in single summit contacts: towards failure at asperity level in lubricated systems. Journal of Tribology 126: 275–280 (2004) [49] Hendriks C P, Franklin S E. Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol Lett 37: 361–373 (2010) [50] Masen M A. A system based experimental approach to tactile friction. J Mech Behav Biomed Mater 4: 1620–1626 (2011) [36] Ramalho A, Silva C L, Pais A A C C, Sousa J J S. In vivo [51] Peressadko A G, Hosoda N, Persson B N J. Influence of friction study of human skin: Influence of moisturizers on surface roughness on adhesion between elastic bodies. Physical different anatomical sites. Wear 263: 1044–1049 (2007) [37] Sivamani R K, Maibach H I. Tribology of skin. Proc Inst Mech Eng J 220: 729–737 (2006) [38] Greenwood J A, Tabor D. The friction of hard sliders on lubricated rubber: The importance of deformation losses. In Proceedings of the Physical Society, 1958: 989–1001. [39] Van Kuilenburg J, Masen M A, van der Heide E. Contact Review Letters 95: 124301 (2005) [52] Brittain W J, Minko S. A structure definition of polymer brushes. Journal of Polymer Science: Part A: Polymer Chemistry 45: 3505–3512 (2007) [53] Raviv U, Tadmor R, Klein J. Shear and frictional interactions between adsorbed polymer layers in a good solvent. J Phys Chem B 105: 8125–8134 (2001) modelling of human skin: What value to use for the modulus [54] Grest G S. Interfacial sliding of polymer brushes: A of elasticity? Proc IMechE Part J: J Engineering Tribology molecular dynamics simulation. Physical Review Letters 227: 349–361 (2012) 76(26): 4979–4982 (1996) Friction 1(2): 130–142 (2013) [55] Muller M, Lee S, Spikes H A, Spencer N D. The influence of molecular architecture on the macroscopic lubrication 141 brush surfaces using QCM-D and AFM. Colloids and Surfaces B: Biointerfaces 74: 350–357 (2009) properties of the brush-like co-polyelectrolyte poly(L-lysine)- [60] LeMieux M C, Lin Y H, Cuong P D, Ahn H S, Zubarev E R, g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide Tsukruk V V. Microtribological and nanomechanical pro- surfaces. Tribology Letters 15: 395–405 (2003) perties of switchable Y-shaped amphiphilic polymer brushes. [56] Vyas M K, Schneider K, Nandan B, Stamm M. Switching of friction by binary polymer brushes. Soft Matter 4: 1024–1032 (2008) [57] Nordgren N, Rutland M W. Tunable nanolubrication between dual-responsive polyionic grafts. Nano Letters 9: 2984–2990 (2009) [58] Zhang Z, Morse A J, Armes S P, Lewis A L, Geoghegan Advanced Functional Materials 15: 1529–1540 (2005) [61] Drobek T, Spencer N D. Nanotribology of surface-grafted PEG layers in aqueous environment. Langmuir 24: 1484– 1488 (2008) [62] Van Der Heide E, Lossie C M, Van Bommel K J C, Reinders S A F, Lenting H B M. Experimental investigation of a polymer coating in sliding contact with skin-equivalent silicone M, Leggett G J. Effect of brush thickness and solvent rubber in an aqueous environment. Tribology Transactions composition on the friction force response of poly(2- 53: 842–847 (2010) (methacryloyloxy)ethylphophorylcholine) brushes. Langmuir 27: 2514–2521 (2011) [59] Kitano K, Inoue Y, Matsuno R, Takai M, Ishihara K. Nanoscale evaluation of lubricity on well-defined polymer [63] Zeng X, Van Der Heide E. Bio-inspired tribological interfaces design for reducing friction in sliding contacts with skin equivalent in aqueous lubrication system. In Proceedings of Bio-Inspired Materials, Potsdam, Germany, 2012: 26. Emile VAN DER HEIDE holds the chair “Skin Tribology” at the Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology at the University of Twente. His current research focuses on skin friction fundamentals, sensing & control of friction in product-skin interactions and on bio inspired interfaces. He worked for the Dutch Organization for Applied Scientific Research TNO as researcher, programme leader and senior scientist in Tribology since 1995. In 2002 he received his PhD from the University of Twente in Tribology on lubricant failure in sheet metal forming processes. He is currently active in more than 15 European and national projects on materials and tribology as Principal Investigator or Coordinator. Marc MASEN is a senior lecturer in mechanical engineering and industrial design engineering at the University of Twente. He obtained his PhD in 2004 on wear mechanisms in sheet metal forming processes. After this, he worked as a research scientist for Hydro Aluminium Extrusion, in the UK and Belgium. His research interests include the tribology of viscoelastic materials, wear mechanisms and friction of the human skin, with special attention to the prevention of decubitus ulcers. As a Principal Investigator, he has obtained over 2Meuros in research funding, e.g., from the Dutch Technology Foundation STW, the European Union or directly by Industry. He has delivered over 40 papers in scientific journals and to international conferences. 142 Xiangqiong ZENG. Assistant professor, obtained her Master degree in Applied Chemistry in 2003 and PhD degree in Material Science and Engineering in 2006 from Shanghai Jiao Tong University (SJTU). Her PhD research was on the design and tribological study of environmental friendly boundary lubrication additives. She worked for the Emerging Market Innovation Center of Johnson & Johnson (China) and Johnson & Johnson Asia Pacific R&D Center (Singapore) during 2006–2010 as staff scientist in Skin Care technology. Since 2011, she is Friction 1(2): 130–142 (2013) appointed as a tenure track assistant professor at the University of Twente (UT). She is currently active in the research on bio-inspired tribological interfaces design, tribo-mechanical and tribo-chemical modeling of product-tissue interactions, skin comfort prediction and surface/interface layers in hydration lubrication, with grants from UT UTWIST program, UT Incentive Fund, European FP7 Marie Curie Career Integration Grant and Double Degree program between UT and SJTU. She has published around 20 papers in peerreviewed international journals, 5 patents, one book and one book chapter. Friction 1(2): 143–149 (2013) DOI 10.1007/s40544-013-0009-z ISSN 2223-7690 RESEARCH ARTICLE Use of opposite frictional forces by animals to increase their attachment reliability during movement Zhouyi WANG1,2, Yi SONG1,3, Zhendong DAI1,* 1 Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China 2 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Nanjing, 210016, China 3 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Nanjing, 210016, China Received: 08 January 2013 / Revised: 04 March 2013 / Accepted: 13 March 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: Many animals have the natural ability to move on various surfaces, such as those having different roughness and slope substrates, or even vertical walls and ceilings. Legged animals primarily attach to surfaces using claws, soft and hairy pads, or combinations of them. Recent studies have indicated that the frictional forces generated by these structures not only control the movement of animals but also significantly increase the reliability of their attachment. Moreover, the frictional forces of various animals have opposite characteristics and hierarchical properties from toe-to-toe and leg-to-leg. These opposite frictional forces allow animals to attach securely and stably during movement. The coordination of several attachment (adhesion) modes not only helps animals adhere, which would be impossible in single mode, but also increases the overall stability of the attachment (adhesion) system. These findings can help the design of highly adaptable feet for bionic robots in the near future. Keywords: opposite frictional forces; claw interlocks; soft pad adhesion; hairy pad adhesion; attachment reliability 1 Introduction Motion is a fundamental animal characteristic that defines behavioral traits such as predation, escape, courtship, and reproduction. Although there are numerous legged species with various types of complex movements, all of them require the animals to overcome their body weight, and adapt to complex land morphology and environment. Therefore, legged animals have evolved different morphological structures, topological structures, and movement modes to adapt to their living environment [1] and have developed superb abilities to maintain dynamic stability [2], climb obstacles [3, 4], and achieve shock absorption and antifriction [5, 6]. In particular, many animals move with easiness in a variety of complex surfaces using highly evolved feet. For example, the ability of geckos [7–9], insects [10–14], and spiders * Corresponding author: Zhendong Dai. E-mail: [email protected] [15, 16] to move on different types of surfaces is valuable to bionic design. Moreover, the stability, flexibility, robustness, adaptability, and use of energy displayed by animals are still challenges for bionic robots [17]. Previous studies have indicated that the first obstacle a robot must overcome is the fast and reliable attachment (adhesion) of the robot’s feet to the surface. The contact between the robot’s feet and the surface should generate frictional or adhesive forces, which the robot uses to move. This study discusses how animals increase their attachment reliability by using opposite frictional forces. Finally, the principle behind the mechanism of opposite frictional forces is introduced into the design of highly adaptable robot soles. 2 Opposite friction and animal adhesion Animals primarily attach to surfaces using claw interlocking, pad adhesion, and setal adhesion; 144 Friction 1(2): 143–149 (2013) opposite frictional forces were found in all these attachment modes. 2.1 Opposite friction and claw structures Animals use claw attachment to balance the gravitational and inertial forces with the help of the frictional force between the chitin-based claws and the surface, which has a microprofile that can be regarded as spheres compared with the animal’s claws [18]. The frictional mechanism of a single claw on a spherical surface closely resembles that of a point on a surface with the stable margin located in the friction cone (Fig. 1(a)). The stability of this type of attachment mode depends on the physical properties of the claws and the contact surface. For example, the stability of a beetle’s attachment on a rough surface is determined by the friction coefficient of its claws with the corresponding contact surface and the curvature of the contact tips [18] (Fig. 1(a)). Locusts can safely attach on rough ceilings where the diameters of the rough peaks are larger than the radii of the claw tips but they fail when they try to attach on smooth substrates where the diameters of the smooth peaks are equivalent to or smaller than the tips [13]. A single-claw interlock has poor anti-interference ability and can easily become unstable. Thus, most wall-climbing animals have two claws on the terminals of their legs; a feature that enhances their attachment stability (Fig. 1(b)) because of the generated opposite forces [19]. Figures 1(c) and 1(d) show how the opposite frictional forces at two different contact points prevent the claws from lateral slipping, which extends the contact model proposed by Dai et al. [18]. Assuming that the attachment system is laterally self-balanced according to its specific geometrical structure; that is FQx FPx , the load along the leg axis Fxz will strengthen the mechanical locking and result in good contact, when the force angle is smaller than the friction angle, which helps animals attach to rough and inclined surfaces. On the other hand, a small disturbance force against the leg axis will eliminate locking, showing the evident asymmetric character of this attachment mode. Moreover, animals regulate the shared loads on two claws to generate unequal opposite frictional forces and increase the antirollover ability within a safe frictional margin (Fig. 1(d)). Fig. 1 (a) Model of single claw contact with micro surface particle, where α is the contact angle, R is the radius of the particle, F is the force acting on the claw, N is the normal load, and fN is the tangential force. The shaded area is the frictional cone [18]. (b)–(d) Threedimensional models of an insect claw attaches to a micro surface granule. (The coordinate origin is the midpoint of line between two contact points; x axis is along the line between two contact points; z axis is parallel to the substrate and perpendicular to the x axis; x, y, z axis accord with the Cartesian coordinate system.) 2.2 Opposite friction and soft pad structures Animals reduce the impact force during attachment and generate capillary-based adhesion by using soft pads [20]. Dendrocola ants can resist separating forces of 40–150 times their body weight on smooth surfaces. The elastic deformation of oscules also contributes to frictional forces because the adhesive and frictional forces produced by mucus alone are not strong enough to secure the movements of ants as determined by interference reflection microscopy (IRM) analyses and estimates of the thickness and viscosity of the mucous membranes [21]. When Lycorma delicatula specimens contact glass, the contact areas in the tangential contact state are typically larger than those in the normal contact state with frictional and adhesive forces per unit area of 312–900 mN/mm2 and 83–119 mN/mm2, respectively [14]. The deformable epidermis of locust claws has different material and mechanical properties, and microstructure compared with the neighboring epidermis. Such differences lead to different mechanical Friction 1(2): 143–149 (2013) properties [22]. The geometry, structure, material design, and plasma and other internal tissues give locust pads very low contact stiffness (Fig. 2(a)) [20]. As a result, locusts have large contact areas. In locusts, because the directions of the grovy structures on the endosexine of the epidermis of the pads are parallel to the primary cuticula, the grovy structures cannot restrict the deformation of the epidermis in these directions. Hence, flexible pads have large contact areas and adapt to contact surfaces well (Fig. 2(a)) [23]. Consequently, animals create large adhesive forces and opposite frictional forces by increasing their contact areas through the elastic deformation of their pads if pad adhesion is used [20]. In addition, opposite frictional forces significantly contribute to adhesion in this mode. According to finite element method (FEM) results [20] (Fig. 2(b)), the biggest pulling stresses in the entire pad were located at the grovy structures. In addition, the deformation of the contact structures showed that there were lateral displacements at projecting parts during the contact process, indicating that the presence of opposite frictional forces in these parts. Similar to the interlocks of double claws, the scalar sum of FQy and FPy equals the normal load while their vector sum balances the tangential load (Fig. 2(c)). Thus, the safety margin for adhesion and friction, and the antisideslip ability are enhanced. The difference derives from the fact that the contact areas obviously change depending on the loads because of the special structure of the pads, and these changes help increase the friction coefficient, frictional force, and adhesive stability. 2.3 Opposite friction and hairy structures Flies, geckos, and some beetles have the ability to move on various inclined substrates by using hairy pads 145 and the so-called dry adhesion. Previous studies have shown that the pads of the soles of flies have an elliptical profile and primarily consist of an elastic epidermis. They are covered with setae, which increase the actual adsorption areas [24]. Furthermore, the direction of the setae arrays helps flies control the adhesive and friction forces, and thus generate opposite frictional forces on the right and left pads. Geckos’ setae exhibit anisotropic features in opposite directions as well. First, Young’s modulus differ along the direction that the setae bend and the opposite direction [25]. Second, the deformation of the setae creates crush and friction forces with the rubbing surfaces, whereas the normal forces obey Coulomb’s friction law in the direction opposite to the direction that the setae bend. For preloads, the adhesive and friction forces were measured four times along the bending direction of the setae [26, 27] (Fig. 3(a)). A friction force of about 200 μN and a maximum adhesive force of about 40 μN were measured for the adhesion of a micron-sized single-sheared seta that detaches around 30° [28]. The setae arrays and toes of geckos also display asymmetric friction. Moreover, the friction forces along the setae arrays and toes are larger than those in the opposite direction [26]. The angles between the tangential forces on the contact plane and the toes on the vertical walls and ceilings are 12.6° and 3.1°, respectively, whereas the angles between the reaction forces and motion planes are approximately equal to 20°, thus securing attachment (Fig. 3(b)). The adhesive forces perpendicular to the surfaces are sufficient to balance the animals’ weight and the moments caused by weight. The opposite friction forces at the first and fifth toe of the geckos form an interlock on the contact plane, which increases the stability and reliability of the attachment [29] (Fig. 3(c)). Fig. 2 (a) Cross-sectional structural representation of locust’s pad. EXO is the pad epidermis, which contains rod-shaped tissues and appeared to be smooth when observed with a light microscope. (b) Vectorial deformation field of locust pad [20]. (c) Force analysis of locust pad. Friction 1(2): 143–149 (2013) 146 Fig. 3 (a) Experiments on opposite frictions of setae arrays [26]. (b) Measurements of lateral forces of a single gecko toe along its direction [29]. (c) Patterns of gecko sole on ceiling. 3 of their feet to stably attach to different substrates. Geckos catch surface particles with their claws on rough surfaces while they use their setae to attach to smooth inclined surfaces [8, 26]. Gampsocleis gratiosa [30] creeps along vertical glass using flexible pads, where the tangential forces (friction forces) are much larger than the normal adhesive forces because they can insert pad cuticles into the microstructures of the glass surface. Locusts, which belong to Orthoptera just like Gampsocleis gratiosa, can reliably grasp the surface particles on sandpaper with microsurface profiles containing spheres of 12–41 μm in diameter [21]. Animals can move on surfaces with a roughness comparable to their critical microscale by coordinating the opposite frictions generated by the different attachment modes. Geckos can securely attach to a smooth glass ceiling by overcoming the adhesive angle increment caused by gravity and keep this angle smaller than the critical angle at all times by using the opposite friction forces at their two toes [9, 31, 32] (Fig. 4(a)). Clearly, these findings will increase the operating range of bionic robots. The coordination of the different attachment modes ensures that the animals have the ability to attach to multiple surfaces. Without considering their internal microstructures and reciprocities, the setae-and-setae Opposite friction between different adhesion modes No attachment mode is completely versatile because the physical properties of contact surfaces heavily influence attachment. For example, the stability of the claw interlock is limited by the roughness and friction coefficient of the substrates, and the relative scales of the claws and surface particles [18]. Pad adhesion is highly influenced by the actual microcontact areas, whereas setae adhesions are affected by the actual microcontact angles of the setae [26, 28]. Many animals have more than one tool for attaching on the various substrates. The soles of the toes of geckos are covered with setae even though each toe has a terminal claw; soft pads or setae pads and claws exist concurrently on the tarsal extremities of many insects. Animals make intelligent use of the different adhesion modes Fig. 4 (a) Pattern of gecko sole on incline. (b) Electron micrograph of Erthesina fullo sole. (c) Mechanical model of coupled attachment modes. Friction 1(2): 143–149 (2013) 147 (Fig. 4(a)) and claw-and-pads (Fig. 4(b)) attachment modes can be simplified to the module shown in Fig. 4(c). Equivalent frictional angles are introduced for the attachment modes that are different at the two contact areas. The equivalent frictional angle P and Q at points P and Q, respectively, satisfies the inequality. FQy FQx tan( Q ) F F tan( ) Py P Px (1) Hence, the system can be also described by tan( ) FPy tan( P ) FQy / tan( Q ) FPy FQy (2) where is the total equivalent frictional angle and from Formula (2) Q , and P . These two inequalities imply that because of the opposite friction forces, the total equivalent frictional angle of the synergetic attachment modes is larger than that of any single mode, which is the most unique trait of opposite frictional attachment, and increases the attachment safety margin. Combined with earlier findings, it is easy to see that animals form stable triangles on contact planes and stable tetrahedra using the reciprocities of the leg mechanisms and surfaces because the directions of the frictional forces at different contact areas are different. Two of the toes of geckos can exert a couple of opposite frictional forces, whereas all toes and the surface form a tridimensional stable area. The combined attachments not only are more reliable and safer than single-mode attachments but also show high antijamming ability. In addition, the research regarding the climbing ability of geckos [8], tree frogs [33], and locusts [13] show that their left and right legs in the stance phase need to generate opposite lateral forces, or sometimes opposite shear forces, to increase the stability of the attachment on an inclined surface. This suggests the contribution of opposite forces at different scales, from the basic-level—toe-to-toe in geckos, claw-to-claw in beetles, and left-to-right projections in the soft pads of locusts—to higher-level legs between the left and right side of the animals. Therefore, the movements of animals are processes in which opposite frictional forces operate from the micro- to the macro-level. This means that multiscale opposite frictional forces guarantee the stability and reliability of the locomotion of animals. Acknowledgments This work was supported by the National Natural Science Foundation of China (Grant No. 60910007) and the Fundamental Research Funds for the Central Universities (Grant Nos. CXZZ11_0198 and BCXJ10_10). Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. Reference [1] Lu Y X. Significance and progress of bionics. J Bionic Eng 1(1): 1–3 (2004) [2] Jindrich D L, Full R J. Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205: 2803–2823 (2002) [3] Lammers A R, Earls K D, Biknevicius A R. Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209: 4154–4166 (2006) [4] Lammers A R. Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110: 93–103 (2007) [5] Zhou Q, He B, Qian M G, Yue J G. Analysis on friction and adhesive force of insects pads. J Uni Shanghai Sci Technol 2(30): 143–146 (2008) [6] Zhou Q, He B, Qian M G, Yue J G. Testing of wet adhesive forces of ants and ANSYS analysis. J Tongji Uni (Nat Sci) 35: 670–673 (2008) [7] Chen J J, Peattie A M, Autumn K, Full R G. Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209: 249–259 (2006) [8] Wang Z Y, Wang J T, Ji A H, Dai Z D. Locomotion behavior and dynamics of geckos freely moving on the ceiling. Chin Sci Bull 55: 3356–3362 (2010) [9] Pesika N S, Tian Y, Zhao B X, Rosenberg K, Zeng H, McGuiggan P, Israelachvili J N. Peel-zone model of tape peeling based on the gecko adhesive system. J Adhesion 83: 383–401 (2007) Friction 1(2): 143–149 (2013) 148 [10] Chen D H, Tong J, Sun J Y, Ren L Q. Tribological behavior [22] Jiao Y, Gorb S, Scherge M. Adhesion measured on the of Gampsocleis gratiosa foot pad against vertical flat surfaces. attachment pads of tettigonia viridissima (Orthoptera, insecta). J Bionic Eng 2(4): 187–194 (2005) J Exp Biol 203(12) : 1887–1895 (2000) [11] Gorb S N. Attachment Devices of Insect Cuticle. Berlin: Kluwer Academic Publishers, 2002. [12] Gorb S N, Jiao Y, Scherge M. Ultrastructural architecture [23] Gorb S. N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265: 747–752 (1998) and mechanical properties of attachment pads in Tettigonia [24] Eisner T, Aneshansley D J. Defense by foot adhesion in a viridissima (Orthoptera Tettigoniidae). J Comp Physiol A beetle (Hemisphaerota cyanea). PNAS 97(12): 6568–6573 186: 821–831 (2000) (2000) [13] Han L B, Wang Z Y, Ji A H, Dai Z D. Grip and detachment [25] Autumn K, Majidi C, Groff R E, Dittmore A, Fearing R. of locusts on inverted sandpaper substrates. Bioinspir Biomim Effective elastice modulus of isolated gecko setal arrays. 6: 386–392 (2011) J Exp Biol 209: 3558–3568 (2006) [14] Frantsevich L, Ji A H, Dai Z D, Wang J, Frantsevich L, [26] Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Gorb S N. Adhesive properties of the arolium of a lantern- Frictional adhesion: A new angle on gecko attachment. J Exp fly, Lycorma delicatula (Auchenorrhyncha, Fulgoridae). Biol 209: 3569–3579 (2006) J Insect Physio 54: 818–827 (2008) [27] Zhao B X, Pesika N, Rosenberg K, Tian Y, Zeng H, [15] Niederegger S, Gorb S N. Friction and adhesion in the tarsal McGuiggan P, Autumn K, Israelachvili J. Adhesion and and metatarsal scopulae of spiders. J Comp Physiol A 192: friction force coupling of gecko setal arrays: Implication for 1223–1232 (2006) structured adhesive surfaces. Langmuir 24: 1517–1524 (2008) [16] Wang Z Y, Wang J T, Ji A H, Li H K, Dai Z D. Movement [28] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, behavior of a spider on a horizontal surface. Chin Sci Bull Kenny T W, Fearing R, Full R J. Adhesive force of a single 56(25): 2748–2757 (2011) gecko foot-hair. Nature 405: 681–684 (2000) [17] Dickinson M H, Farley C T, Full R J, Koehl M A R, Kram R, [29] Wang Z Y, Gu W H, Wu Q, Ji A H, Dai Z D. Morphology Lehman S. How animals move: An Integrative view. Science and reaction force of toes of geckos freely moving on ceilings 288(7): 100–106 (2000) and walls. Sci China Technol Sci 53: 1688–1693 (2010) [18] Dai Z D, Gorb S N and Schwarz U. Roughness-dependent [30] Chen D H, Tong J, Sun J Y, Ren L Q. Tribological behavior of friction force of the tarsal claw system in the beetle Pachnoda gampsocleis Gratiosa foot pad against vertical flat surfaces. marginata (Coleoptera, Scarabaeidae). J Exp Biol 205: 2479– 2488 (2002) [19] Dai Z D, Yu M, Ji A H. Study on tribological characteristics of animals’ driving pads and their bionic design (in Chinese). Chin Mech Eng 8: 1454–1457 (2005) J Bionic Eng 2: 187–194 (2005) [31] Autumn K, Hsieh S T, Dudek D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos running vertically. J Exp Biol 209: 260–272 (2006) [32] Wang Z Y, Wang J T, Ji A H, Zhang Y Y, Dai Z D. [20] Dai Z D, Gorb S N. A study on contact mechanics of grass- Behavior and dynamics of gecko locomotion: The effects of chopper's pad (Insecta: Orthoptera) by finite element methods. moving directions on vertical surface. Chin Sci Bull 56: Chin Sci Bull 54(4): 549–555 (2009) 573–583 (2010) [21] Federle W, Riehle M, Curtis A S G, Full R G. An [33] Endlein T, Ji A H, Samuel D, Yao N, Wang Z H, Barnes W integrative study of insect adhesion: Mechanics and wet J, Federle W, Kappl M, Dai Z D. Sticking like sticky tape: adhesion of pretarsal pads in ants. J Integr Comp Biol 42: Tree frogs use friction forces to enhance attachment on 1100–11061 (2002) overhanging surfaces. J R Soc Interface 10: 1742 (2013) Friction 1(2): 143–149 (2013) 149 Zhouyi WANG Doctor, obtained his Master degree in 2009 from Nanjing University of Aeronautics and Astronautics (NUAA). He studied as a PhD Candidate since 2009 at Institute of Bio-inspired Structure and Surface Engineering, NUAA. His interested research areas include tribology, bionics, animal kinematics and dynamics. He has participated in many research projects and has published 12 papers on international journals. Zhendong DAI Professor and tutor of PhD students, obtained his doctor degree in 1999 from College of Mechanical and Electrical Engineering, NUAA. He is one of the Chinese delegates of International Institute of Bionic Engineering, an executive member of the council of Chinese Mechanical Engineering in Tribology, and a member of the academic committee of State Key Laboratory of Solid Lubrication. He also is a member of editorial board of many academic journals such as Journal of Bionic Engineering, International Journal of Vehicle Autonomous System, Tribology and so on. He was invited to attend the Advisory Seminar about the development planning of American science foundation and invited to give lectures in Case Western Reserve University, UC San Diego, GIT, Kyoto University, Yonsei University, Cambridge University in 2010. His research areas include bionics, light material, control of bionics, bio-robots, and biological robots. He has successively presided and participated in many research projects and has published more than 200 papers and gotten more than 15 patents. Friction 1(2): 150–162 (2013) DOI 10.1007/s40544-013-0010-6 ISSN 2223-7690 RESEARCH ARTICLE Influence of synovia constituents on tribological behaviors of articular cartilage Teruo MURAKAMI1,*, Seido YARIMITSU1, Kazuhiro NAKASHIMA2, Yoshinori SAWAE2, Nobuo SAKAI3 1 Research Center for Advanced Biomechanics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan 2 Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan 3 Department of Applied Science for Integrated System Engineering, Graduate School of Engineering, Kyushu Institute of Technology, 1-1, Sensuicho, Tobata-ku, Kitakyushu, 804-8550, Japan Received: 31 December 2012 / Revised: 18 February 2013 / Accepted: 16 March 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: The extremely low friction and minimal wear in natural synovial joints appear to be established by effective lubrication mechanisms based on appropriate combination of articular cartilage and synovial fluid. The complex structure of cartilage composed of collagen and proteoglycan with high water content contributes to high load-carrying capacity as biphasic materials and the various constituents of synovial fluid play important roles in various lubrication mechanisms. However, the detailed differences in functions of the intact and damaged cartilage tissues, and the interaction or synergistic action of synovia constituents with articular cartilage have not yet been clarified. In this study, to examine the roles of synovia constituents and the importance of cartilage surface conditions, the changes in friction were observed in the reciprocating tests of intact and damaged articular cartilage specimens against glass plate lubricated with lubricants containing phospholipid, protein and/or hyaluronic acid as main constituents in synovial fluid. The effectiveness of lubricant constituents and the influence of cartilage surface conditions on friction are discussed. In addition, the protectiveness by synovia constituents for intact articular cartilage surfaces is evaluated. Keywords: articular cartilage; synovial fluid; synovial joint; lubrication; biotribology 1 Introduction In various biotribological systems, it is widely known that the healthy synovial joints maintain superior load-carrying capacity and lubricating properties with extremely low friction and minimal wear even in heavily loaded hip, knee and ankle joints. The synovial joints are prominent natural bearings different in geometric congruity depending on joint positions/ movements and are in general covered with soft layers of biphasic articular cartilage lubricated with synovial fluid containing appropriate lubricating constituents. The superior tribological properties of synovial joints appear to be established by a well-suited combination * Corresponding author: Teruo Murakami. E-mail: [email protected] of articular cartilage and synovial fluid. However, the detailed cooperative and/or interactive behaviors between articular cartilage and synovial fluid under various rubbing conditions have not yet been clarified. In this paper, we will focus on the influence of main synovia constituents such as phospholipid, protein and hyaluronic acid on tribological behaviors of articular cartilage different in surface conditions particularly as related to lubrication mechanism. The operating conditions in human synovial joints change under variable loading and motions including sliding and rolling depending on joint types in various daily activities. Therefore, the superior lubricating performance of natural synovial joints is likely to be actualized not by a single lubrication mode but by the synergistic combination of various modes from fluid film lubrication to boundary lubrication [1, 2]. Friction 1(2): 150–162 (2013) Other specific lubrication mechanisms such as weeping lubrication [3], boosted lubrication [4], biphasic lubrication [5], micro-elastohydrodynamic lubrication (micro-EHL) [6] and so on have been proposed. The ingenious lubrication mechanism as the synergistic combination of various modes depending on the severity of operating conditions was called the adaptive multimode lubrication mechanism [7, 8]. For example, during normal walking, fluid film lubrication mechanisms such as soft-EHL and/or micro-EHL play major roles to maintain low friction and minimize wear. In contrast, in thin film conditions such as at slow motion or at movement after standing for a long time, it is expected that adsorbed films [9–12], surface gel films [13], hydration lubrication [14] and polymeric brush-like layers [15, 16] contribute to keep friction low and protect rubbing surfaces. Another new development in lubrication theory is the elucidation of the biphasic lubrication mechanism. Since an experimental finding [17] and a proposal of boundary friction model based on biphasic lubrication by Ateshian [18], the important phenomena on the effectiveness of biphasic lubrication with interstitial fluid pressurization have been demonstrated on the basis of the biphasic finite element (FE) analyses and experimental observations [19, 20]. The articular cartilage has high water content from 70% to 80% in tissue as porous media composed of type II collagen, proteoglycan and chondrocytes, and thus exhibits a time-dependent biphasic behavior due to the simultaneous coexistence of solid and liquid phases [21]. When articular cartilage as biphasic material with low permeability is applied by compressive load, the fluid content in the tissue is trapped within contact area and the collagen matrix network resists interstitial fluid pressure in aggregate solid matrix. Thus, the interstitial fluid pressure supports significant proportion of total load in contact area and this situation consequently causes the reduction of contact force of solid phase for a considerable time. The timedependent change in load support by interstitial fluid pressure in biphasic cartilage depends on the extent of exudation from cartilage tissue and rehydration of cartilage. If the fluid load support is maintained at high level for a long time, the low friction is maintained because of low level for solid-to-solid contact [20]. 151 For reciprocating sliding under constant load, Pawaskar et al. [22] introduced sliding motion into their FE model and indicated the importance of migrating contact area for the sustainability of the biphasic lubrication in their biphasic FE analysis. Sufficient stroke for rehydration of cartilage tissue in reciprocating motion maintained the high level of load support by interstitial fluid pressure. Sakai et al. [23] examined the compressive response of the articular cartilage by high precision testing machine with a feedback-controlled servomotor and estimated material properties in physiological condition for the biphasic FE model, which included (1) the depth-dependence of apparent Young’s modulus of solid phase, (2) straindependent permeability as compaction effect, and (3) collagen reinforcement in tensile strain. These properties (parameters) were estimated by the curve fitting between the experimental time-dependent compressive behavior and simulation in indentation tests for cartilage specimens with cylindrical rigid indenter of 5 mm radius. In the reciprocating test, the load of 0.5 N/mm was applied at the center of the cylindrical indenter in 1 s and then the reciprocating motion was introduced with the speed of 4 mm/s over a stroke length of 8 mm. FE analyses using commercial package ABAQUS (6.8-4) showed that the tensile reinforcement by spring elements representing the collagen network and the depth-dependent elastic properties improved the proportion of the fluid load support especially in the sliding condition. The compaction effect on permeability of solid phase was functional in a condition without the migrating contact area, whereas under sliding condition the compaction effect showed a little effect in terms of the proportion of the fluid load support. In the next stage, the influence of operating conditions on the effectiveness of biphasic lubrication in reciprocating sliding was examined. The differences in frictional behaviors between the reciprocation with migration of contact zone, i.e., at on-off loading on articular cartilage (model A) as described above, and without migration of contact zone, i.e., at continuous loading on cartilage (model B), shown in Fig. 1 were compared in FE analysis [24]. In this simulation of reciprocating test with similar method to the previous study [23], the load of 0.5 N/mm was applied by Friction 1(2): 150–162 (2013) 152 Fig. 1 Time-dependent frictional behaviors estimated by biphasic theory for cartilage. the rigid cylindrical indenter against flat cartilage specimen or by the rigid flat plate against cylindrical cartilage specimen with a ramp time of 1 s and then the load was held constant during reciprocation. The reciprocation of rigid cylinder or flat plate at 4 mm/s was started immediately after loading and continued for 508 s, 127 cycles at period of 4 s. The initial fluid load support percentages are very high as 90% and 91% for models A and B, respectively. After 127 cycles, it is noticed that the high percentage of fluid load support (83%) was maintained even after 508 s in model A, but the percentage of fluid load support was remarkably decreased to 27% in the model B. The time-depending changes in friction coefficient eff were estimated for eq as coefficient of friction for solid-to-solid contact using the following formula by Ateshian et al. [20, 25]. eff = eq (1 – (1 – ) Wp /W ) (1) where W is the total load support, Wp the load support by fluid pressure and the fraction of contact area of solid phase. In Fig. 1, the time-dependent changes in friction estimated from total traction force in biphasic FE analysis for assumption of eq = 0.2 [24] are shown. It is worth noting that the lower friction level is maintained due to the sustainability of interstitial fluid pressure in the reciprocating sliding for model A. In contrast, significant gradual increase to high level in friction is observed in reciprocation for model B. It is supposed that the tribological problems are more likely to occur for model B with high friction level and thus the method to suppress friction increase is required. In this study, the combination of cartilage-on-glass was used to simplify the frictional condition, although articular cartilage is rubbed against cartilage or meniscus in natural synovial joints. The glass plate has very smooth, hard and non-porous/impermeable surface compared with articular cartilage but hydrophilic surface with negatively charged property similar to proteoglycan on superficial cartilage layer in wet condition [12]. The adsorption of synovia constituents on glass plate appears to be considerably similar to boundary film formation on intact cartilage as shown by in situ observation for fluorescent images of adsorbed molecules during reciprocating rubbing process [26], while the interaction to the smooth, hard and non-porous/impermeable glass surface may induce certain different behaviors. Smooth glass surface minimizes ploughing resistance, but may enhance the adhesive resistance by interaction with adsorbed protein molecules at intimate contacts in very thin film condition. However, the intrinsic tribological properties of compliant and biphasic articular cartilage are expected to be reflected appropriately in the effectiveness of lubricant constituents even in sliding pair of articular cartilage and glass plate. As a matter of course, the difference in tribological behaviors between for cartilage-cartilage and cartilage-glass combinations should be explored. The influence of glass plate on frictional behaviors is discussed in Section 4. Thus, the frictional behaviors in a sliding pair of ellipsoidal articular cartilage specimens and reciprocating glass plate were examined in the sliding condition for model B without migration of contact zone for cartilage. 2 Materials and methods The reciprocating test for the sliding pair of the upper stationary ellipsoidal articular cartilage specimen and the lower reciprocating flat glass plate was conducted in the reciprocating tester shown in Fig. 2. The continuous loading condition without migration of contact zone for articular cartilage corresponds to the severe operating condition for cartilage (model B) as described above in related to the biphasic FE analysis. Friction 1(2): 150–162 (2013) 153 was added for protein solutions. The combinations of lubricant constituents used in reciprocating tests are shown in Table 1. Table 1 1 2 3 4 5 6 7 8 9 10 11 12 13 Fig. 2 Reciprocating apparatus. 2.1 Materials An upper intact cartilage specimen with subchondral layer was prepared from a femoral condyle in a porcine knee joint (6 to 7 months old). The damaged cartilage specimen was prepared by wiping 15 times with a wiping tissue (Kimwipe), where the partial removal of surface gel layer was confirmed by observation with atomic force microscopy (AFM). AFM images in tapping mode (in Dimension Icon, Bruker Corpration, USA) in saline solution for intact and damaged specimens are shown in Fig. 3. On the damaged cartilage surface, the partial removal of surface gel-like layer is recognized with some exposed collagen fibers. The glass plate as a lower specimen is a slide glass. The lubricants are saline solution containing 0.15 M NaCl (Otsuka Pharmaceutical Factory Inc., Japan), saline solution of 0.5 wt% sodium hyaluronate (HA, molecular weight: 9.2 × 105), HA solutions containing 0.7 wt% or 1.4 wt% bovine serum albumin (Wako Pure Chemical Industries Ltd., Japan) and/or 0.7 wt% human serum -globulin (Wako Pure Chemical Industries Ltd., Japan) and/or 0.01 wt% L-dipalmitoyl phosphatidylcholine (L-DPPC) as an phospholipid liposome. In order to prevent bacterial growth in protein solutions as lubricant, 0.3 wt% sodium azide 2.2 0 0 0 0.5 0.5 0.5 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0.7 0 0 0.7 0 0 0.7 0 0 0.7 0 1.4 0 0 0.7 0 0 0.7 0 0 0.7 0 0 0.7 0.7 Experimental methods The reciprocating test was conducted at a sliding speed of 20 mm/s for rectangular reciprocating mode and at a stroke of 35 mm at a constant load of 9.8 N. The glass plate was cleaned ultrasonically in a solution of 0.5 vol% Triton X-100, distilled water and ethanol, and then dried. The lubricants were supplied in liquid bath. At room temperature, the reciprocating sliding was started immediately after loading, and interrupted after 514 cycles at sliding distance of 36 m for running time of 30 min, and then the unloading state was maintained for 5 min. Subsequently, the reciprocating test was restarted immediately after reloading and continued for a further sliding distance 36 m. The restarting processes after unloading were repeated three times. The changes in friction force were continuously monitored to compare the differences in time-dependent frictional behaviors. The number of tests under the same condition was three. 3 Fig. 3 AFM images of articular cartilage surfaces in saline solution: (a) intact cartilage and (b) damaged cartilage. Compositions of lubricants (wt%) as saline solutions. HA:sodium DPPC Albumin -globulin hyaluronate Results Time-dependent frictional behaviors for intact cartilage lubricated with saline, saline solutions of albumin, -globulin, HA and DPPC are shown in Fig. 4. It is noted that the initial friction is very low between 0.01 154 Fig. 4 Influence of lubricant constituents on frictional behaviors for intact articular cartilage. and 0.02 as coefficient of friction for all lubricants, as typical for intact natural articular cartilage. However, the friction gradually increases with sliding distance until the sliding stops at 36 m. The final values are different as the order of -globulin > saline > albumin > HA > DPPC. The addition of a single constituent into saline usually reduced the friction level at the final stage except -globulin. For -globulin, initial friction is lower than saline but the friction gradually increases to a higher level with thinning of lubricating film. At reloading-restarting after 5 min unloading at 36 m sliding, the restarting friction is remarkably reduced from the previous high level at interruption, but it is slightly higher than the initial friction, as reported by Murakami et al. [26, 27]. This friction reduction was considered to be brought by the recovery of both the hydration and some deformation of articular cartilage, in which the hydration lubrication and biphasic lubrication becomes partly effective accompanied with adsorbed film formation although initial adsorbed film may have been partly removed. In the second reciprocating sliding process, the friction again gradually increases with sliding distance. In the second to fourth processes where the cartilage surface was partly injured, albumin showed higher friction than the saline (Fig. 4). The results mentioned above indicate the limitation of effectiveness of single additive for improvement of steady or final friction at each 36 m sliding. Therefore, it is required to examine the possibility in which the Friction 1(2): 150–162 (2013) combination of different synovia constituents should be effective. As reported by our previous study [26], on the reduction of final friction at each 36 m sliding, the synergistic effect of -globulin and HA was confirmed, but the coexistence of albumin and HA showed the adverse interaction for intact and damaged cartilage. It was considered that the combination of HA and -globulin form adsorbed film cooperatively, and furthermore HA as a viscosity improver is likely to alleviate the friction resistance by its viscous property to improve the fluid film formation in a mixed lubrication regime. It was pointed out for the combination of albumin and HA that the repulsive properties of negatively charged molecules prevented the lubricating adsorbed film formation. In this study, the lubricity in the combination of DPPC and albumin or -globulin was examined for intact and damaged cartilage specimens. As shown in Fig. 5 for intact articular cartilage, the coexistence of DPPC and albumin or -globulin reduced friction compared with DPPC alone in saline. In contrast, some interaction between DPPC and proteins brought increase in friction for damaged roughened cartilage surfaces with partially removed gel-like layer as shown in Fig. 6. Next, the effectiveness of DPPC to HA solutions with and without proteins is evaluated. Figure 7 shows frictional behaviors for intact cartilage. It is noteworthy that even the addition of 0.01 wt% DPPC alone to HA solution exhibited a remarkable reduction in friction. Furthermore, the addition of 0.01 wt% DPPC accompanied with 1.4 wt% albumin, 0.7 wt% -globulin Fig. 5 Influence of DPPC and proteins on frictional behaviors for intact articular cartilage. Friction 1(2): 150–162 (2013) Fig. 6 Influence of DPPC and proteins on frictional behaviors for damaged articular cartilage. Fig. 7 Influence of DPPC, proteins and HA on frictional behaviors for intact articular cartilage. in HA solution demonstrated the lowest frictional behaviors as about 0.01 without gradual increase until each 36 m sliding. In this lubricant composition, it is confirmed that the friction does not increase but maintains a very low steady level. On the contrary, the addition of DPPC with albumin alone or -globulin alone in HA solution shows higher friction than DPPC alone in HA solution but lower than saline solution. In Fig. 8 the frictional behaviors of these combinations for damaged cartilage are shown. Compared with intact cartilage, the friction levels are generally increased and the order of friction level is partly changed, i.e., HA solution containing DPPC 155 Fig. 8 Influence of DPPC, proteins and HA on frictional behaviors for damaged articular cartilage. becomes higher than HA solution containing DPPC and -globulin. HA solution with 0.01 wt% DPPC, 1.4 wt% albumin and 0.7 wt% -globulin maintains minimum friction but friction gradually increases until the level of 0.05 as coefficient of friction at each 36 m sliding for damaged cartilage. The comparison of friction at restart and at steady state for both intact and damaged cartilage is summarized in Fig. 9. It is noteworthy for intact articular cartilage that the lubricant of HA solution with 0.01 wt% DPPC, 0.14 wt% albumin and 0.7 wt% -globulin showed the minimum coefficient of friction 0.003 and 0.01 at restart and at steady state, respectively. For damaged cartilage, these values showed 0.004 and 0.05, respectively. It was confirmed that the optimum combination of DPPC, albumin and -globulin with HA for minimum friction is common (No. 13 in Table 1) for intact and damaged cartilage specimens. To sustain superior tribological properties of articular cartilage, not only low friction but minimum wear are required in various daily activities. Therefore, wear on cartilage surfaces was evaluated. The articular cartilage contains plenty of water, therefore, it is difficult to measure actual changes due to wear in weight. In this study, the changes in surface photographs were compared with a surface before testing. Representative photographs are shown in Fig. 10. Intact Friction 1(2): 150–162 (2013) 156 articular cartilage has smooth surface with some irregularity (left picture). Tests lubricated with No. 10 lubricant (HA solution containing 0.01 wt% DPPC) and No. 12 (HA solution containing 0.01 wt% DPPC and 0.7 wt% -globulin) exhibited the low friction and mild wear with scratches on surfaces. On the contrary, minimum friction as 0.01 and little wear were confirmed for lubricant No. 13 (HA solution containing 0.01 wt% DPPC, 1.4 wt% albumin and 0.7 wt% -globulin), where superficial gel-like layer may have been slightly removed without scratching during rubbing. 4 Discussion Fig. 9 Friction levels at restart and steady state for intact and damaged cartilage (error bars indicate standard deviation): (a) friction at restart and (b) friction at steady state. For natural synovial joint systems, the synergistic action between articular cartilage and synovial fluid appears to play an important role in minimizing friction and wear. In this study, the repeated reciprocating tests including interrupting-unloading periods for 5 min for ellipsoidal cartilage specimen against flat glass plate were conducted, where the contact zone of articular cartilage was not migrated and thus the effect of the interstitial fluid pressurization in articular cartilage Fig. 10 Average friction levels at steady state and cartilage surface photographs for intact cartilage (error bars indicate standard deviation). Friction 1(2): 150–162 (2013) was gradually diminished. Under such severe rubbing conditions as model B in Fig. 1, the effectiveness of lubricant constituents and the influence of cartilage surface conditions on tribological behaviors were evaluated. The common features in frictional behaviors of articular cartilage in the reciprocating tests are as follows. (1) Initial low friction is established by biphasic/ hydration and/or mixed lubrication for cartilage surface with sufficient adsorbed films. (2) Time-dependent gradual increase in friction during rubbing process is controlled by biphasic property of cartilage, interaction of adsorbed molecules and/or slight removal of cartilage surfaces. (3) Reduction in restarting friction is brought by the recovery of hydration and biphasic property with recovery of deformation accompanied with adsorbed film formation after unloading for 5 min. As indicated by the Eq. (1) in FE analysis, we can estimate the frictional behaviors of various cartilage surfaces different in adsorbed film formation, i.e., coefficient of friction for solid-to-solid contact eq. In Fig. 11, the changes in friction estimated from total traction force in biphasic FE analyses during rubbing process under constant load are shown for eq = 0.01 and 0.2. Most cases of frictional behaviors in this study except for addition of a single protein seem to be located between the upper (high friction) and lower (low friction) curves in Fig. 11, although FE analysis was conducted for two dimensional model. Fig. 11 Influence of eq on time-depending frictional behaviors estimated by biphasic theory for cartilage. 157 In cases of addition of a single constituent into saline solution (Fig. 4), the frictional features as described above are observed, but the friction levels change depending on the properties of lubricant constituents. The addition of protein, i.e., albumin or -globulin into saline solution improved the restarting friction but increased the final friction at each 36 m sliding. Particularly, the addition of -globulin brought a remarkable lowering in restarting friction but higher final friction than albumin. The reason why two kinds of proteins show different friction levels was considered that -globulin has stronger adsorption ability on cartilage than albumin as indicated by fluorescent images [27], and thus -globulin showed lower restarting friction with appropriate adsorbed film formation in mild condition immediately after reloading, but exhibited higher friction due to molecular interaction as a bonding effect in very thin film condition after each 36 m sliding. In the in situ observation of the rubbing pair of poly(vinyl-alcohol) (PVA) hydrogel and glass plate by Yarimitsu et al. [28], the fluorescent images for proteins adsorbed on glass plate, protein aggregates between rubbing surfaces and proteins on PVA hydrogel surface were discriminately observed in reciprocating tests for boundary lubrication regime at low sliding speed of 0.2 mm/s and the average contact pressure of 0.104 MPa. This reciprocating apparatus was constructed on the stage of the inverted fluorescent microscope. In saline solution of albumin, the easy peeling of albumin was observed, but in saline solution of -globulin, quick adsorption and uniform adsorbed film formation were observed. These phenomena indicate the differences in adsorption abilities for both proteins. In binary protein solutions with coexistence of albumin and -globulin, the relative ratio and concentration of proteins had an intense influence on adsorbed film formation [29]. Furthermore, the observation of adsorbed molecules in the evanescent field within about 200 nm from surface by using the total internal reflection fluorescence (TIRF) microscopy indicated in binary protein solutions that the bottom layer of stable protein adsorbed film is mainly composed of -globulin and the friction-induced enhancement of forming protein adsorbed film occurs 158 in lubricant with appropriate protein composition [30, 31]. The competitive adsorption of albumin and -globulin appears to affect these behaviors as indicated in study of adsorption and desorption of both proteins with TIRF spectroscopy by Tremsina et al. [32]. Furthermore, the differences in adsorption behaviors of serum proteins depend on the changes in conformation, molecular weight, charge condition, hydrophobic/hydrophilic properties of proteins and solid surfaces, pH of lubricant, and so on. Particularly under rubbing, denatured proteins change their conformations and adsorption properties, and thus affect the tribological behaviors [33–35]. Therefore, overall viewpoints are required to elucidate the actual adsorption behaviors of serum proteins. The addition of HA with viscous property in lubricants was expected to improve the fluid film thickness, and subsequently improved friction level compared with saline [26]. The addition of DPPC alone is the most effective in reduction of friction but the final coefficient of friction is not so low (about 0.1) in Fig. 4. Therefore, the effect of combination of different constituents was evaluated. The influences of coexistence of protein with HA on friction were examined in our previous study [26]. The coexistence of -globulin and HA showed the lowering of both the restarting and final or steady friction compared with HA solution. However, albumin exhibited higher final friction than HA solution although it showed a little lower restarting friction than HA solution. These facts suggest the synergistic effect of -globulin and HA, but indicate the adverse interaction of albumin and HA for intact cartilage. It is reported that albumin and HA show repulsive interaction [36] and the HA-protein complexes in natural synovial fluid contain globulin but almost no albumin at pH 7–8 [37]. These frictional trends for both proteins are similar for damaged cartilage with partially removed surface proteoglycan gel layer. The suppressive action between negatively charged albumin and negatively charged HA molecules was observed in fluorescent images of sparsely distributed adsorbed films, compared with intimate adsorbed films for -globulin and HA [26]. In this study, the effect of addition of neutral Friction 1(2): 150–162 (2013) phospholipid DPPC with and without protein was examined. It should be noted that the coexistence of DPPC with protein is effective for intact cartilage (Fig. 5), but increases friction for damaged cartilage (Fig. 6). This difference appears to be brought about by changes in adsorbed film formation on damaged cartilage surface. For reciprocating tests of PVA hydrogel and glass plate lubricated with saline solution of DPPC alone, the Janus-faced property for high or low friction was affirmed in accord to either irregular adsorbed film or uniform DPPC adsorbed film formation in AFM images [38]. It is pointed out by Hills [10] that even only the oligolamellar phospholipid plays an effective lubricating role in natural synovial joints. By in situ fluorescent observation of forming adsorbed films for sliding pair of PVA hydrogel and glass plate in coexistence of DPPC and albumin [38], it was clarified that the formation of albumin-DPPC sheet-like composite film was found and therefore the friction was reduced. It is pointed out that DPPC with a neutral charge is likely to bind to albumin [39]. Next, the influence of addition of DPPC in HA solution with and without proteins was examined. The addition of DPPC alone in HA solution was considerably effective in reduction of friction for intact cartilage compared with coexistence of DPPC and either albumin or -globulin in HA solution (Fig. 7). This fact may suggest the formation of lubricating complex materials as membrane-like and roller structures composed of DPPC and HA [40]. Mirea et al. [41] indicated that HA has high affinity to phospholipid bilayer in the force-distance curve in AFM study. The detailed structure of HA-DPPC complex has not yet been clarified but the coexistence of DPPC and HA is likely to act synergistically as lamellar lubrication or related mechanism. Furthermore, for coexistence of DPPC and HA, HA-DPPC composite boundary film was visually confirmed [38] and friction was remarkably lowered, where the lubricating ability by HA-DPPC complex as gel-like film is supposed to become effective with high water retention ability of HA. However, HA solution containing DPPC showed an effective but limited protective property with local scratching as shown in Fig. 10. On the contrary, albumin-DPPC composite was not Friction 1(2): 150–162 (2013) found in coexistence of three constituents, i.e., DPPC, HA and albumin [38], probably due to repulsive interaction between albumin and HA. This fact corresponds to the phenomenon in which the friction for HA solution with DPPC and albumin (Fig. 7) is higher than saline solution with DPPC and albumin (Fig. 5). However, the supply of both albumin and -globulin as definite ratio into HA solution containing DPPC (lubricant No. 13) could remarkably improve the friction at very low level of 0.01 as final coefficient of friction (Fig. 7) and high wear resistance (Fig. 10). For damaged cartilage, the friction level increased in general but No.13 lubricant showed the minimum friction (Fig. 8). In natural synovial joints, various lubricating constituents such as HA, proteins, glycoproteins and phospholipds different in molecular properties and sizes play different roles. Therefore, the interaction and/or synergistic action between phospholipids and other constituents seem to control the adsorbed film formation and tribological behavior. The influences of lubricants as HA solutions containing DPPC with or without proteins on the friction at restart and at steady state are summarized in Fig. 9 for intact and damaged cartilage specimens. The effectiveness of adsorbed film on reduction in restarting friction and steady friction is clearly demonstrated compared with saline solution. Particularly, it is noticed that the lubricant No.13 (HA solution with 1.4 wt% albumin, 0.7 wt% -globulin and 0.01 wt% DPPC) provided very low restarting friction for both intact and damaged cartilage specimens (Fig. 9(a)). This lubricant maintained very low friction until each 36 m sliding for intact cartilage, but the friction gradually increased until 0.05 as coefficient of friction for damaged cartilage (Fig. 9(b)). In the study by Nakashima et al. [29], HA solution with 1.4 wt% albumin and 0.7 wt% -globulin (albumin/globulin = A/G ratio of 2:1) or 0.7 wt% albumin and 1.4 wt% -globulin (A/G ratio of 1:2) showed very low wear for rubbing of PVA hydrogel against itself. For low wear condition in the latter, the layered adsorbed film formation was observed by the fluorescent method. In these cases, it is suggested that the -globulin forms protective adsorbed layer on cartilage surface and albumin plays 159 as low shearing layers. On the contrary, HA solution with 1.4 wt% albumin and 1.4 wt% -globulin (A/G ratio of 1:1) formed the heterogeneous adsorbed film and showed higher wear. The lubricant No.13 has similar composition to that in natural synovial fluid as hyaluronate solution containing lubricating constituents such as 1.25 wt% albumin, 0.75 wt% globulin (including --, and -globulins) as medium values [42], 1.1 wt% albumin and 0.7 wt% globulin [36], or 1.9 wt% albumin, 1.1 wt% globulin and 0.01 wt% DPPC [12]. In this lubricant, the lubricating layered structure in adsorbed film is expected for low friction and minimal wear, but the detailed elucidation of this mechanism is required in the future study. As exhibited in Figs. 7 and 9, lubricant No. 13 showed very low and steady friction in repeated reciprocating test at 20 mm/s. In situ fluorescent observation at very slow speed with this lubricant [38] showed the stable mixed adsorbed film containing albumin and -globulin but friction is not so low probably due to very thin film condition at 0.2 mm/s condition. Therefore, we plan to observe in situ the actual adsorbed film formation and frictional behavior at 20 mm/s or so. In various daily activities, synovia constituents appear to play their appropriate roles depending on the severity of operating conditions. DPPC and albumin are likely to act as low shearing layer, and -globulin acts as the protective film as strongly adsorbed on cartilage surface. HA has ability to thicken the lubricating fluid film and form some lubricating gel-like layer. Although some of synergistic mechanisms between lubricating constituents were shown in this study, the overall mechanisms are expected to be clarified from the viewpoint of multiscale level in future. On the role of lubricin as another lubricating constituent, Mirea et al. [41] suggested that it anchors lipid layers on the cartilage. We confirmed that the addition of lubricin in HA solution could reduce friction for intact cartilage in the preliminary test. In future study, we plan to evaluate the effective roles of all influential synovia constituents. For damaged cartilage specimens with partially removed proteoglycan brush-like layer, the best composition in lubricant for low friction is the same lubricant No. 13 which is the best for intact cartilage, but the second one was changed to the HA solution Friction 1(2): 150–162 (2013) 160 containing DPPC with -globulin from the HA containing DPPC solution without protein as the second one for intact cartilage. It is suggested for damaged cartilage that the protective role of -globulin with strong adsorption ability becomes important. As discussed above, the effectiveness of lubricant constituents changes depending on rubbing cartilage properties in reciprocating tests of cartilage-on-glass. To evaluate rigorously the influence of synovia constituents on tribological behaviors of articular cartilage in natural synovial joints, the rubbing pair of cartilageon-cartilage [8, 43] or cartilage-on-meniscus [44] should be used, and therefore the influence of glass plate on tribological behaviors in this study should be discussed. As mentioned in Section 1, the glass plate surface possesses hydrophilic characteristics with negatively charged property similar to proteoglycan on superficial cartilage layer in wet condition, whilst it is hard, smooth and nonporous/impermeable material. The adsorption of synovia constituents on glass plate is expected to be considerably similar to boundary film formation on intact cartilage but the interaction to the smooth, hard and nonporous/ impermeable glass surface may be different. HA and albumin (at pH > 4.7) are negatively charged but -globulin is positively charged (at pH < 7.5). These electrostatic properties of adsorbed molecules have an influence on adsorption. On the contrary, the ploughing friction may be minimized for smooth surface, but adsorbed proteins on very smooth surface may induce high friction by their intense adhesive effect as hydrophobic bonding in watery system in very thin film condition. However, the effectiveness of lubricant constituents on tribological behaviors of compliant and biphasic articular cartilage appear to be reflected appropriately even in sliding pair of articular cartilage and glass plate. In pendulum friction tests for cartilage-on-cartilage of porcine shoulder joints composed of humerus head and glenoid cavity (cup) [8], the effectiveness in friction reduction by addition of 0.01 wt% DPPC or 1.0 wt% -globulin to HA solution for cartilage treated with detergent had been confirmed as similar effect to cartilage-on-glass combination. In contrast, the addition of 1.0 wt% or 3.0 wt% albumin to HA solution did not improve friction of cartilage-on-cartilage, which corresponds to adverse interaction of albumin and HA for cartilageon-glass [26]. In contrast, the sliding pair of cartilage and clean glass plate showed higher friction in HA solution than that of cartilage and glass plate treated with Langmuir–Blodgett (LB) film as 5 to 10 bilayer of DPPC alone or mixed LB film of DPPC and -globulin [12]. As mentioned above, common features and/or some differences seem to occur in frictional behavior for cartilage-glass combination compared with cartilage-cartilage. In the next stage, therefore, further studies for cartilage-on-cartilage or cartilage-onhydrogel (artificial cartilage) are required to elucidate strictly the influence of synovia constituents on tribological behaviors of articular cartilage in natural synovial joints. The sustaining of the synergistic mechanism of various synovia constituents on matched cartilage surfaces in natural synovial joints is expected to maintain the healthy condition. 5 Conclusions In this study, at repeated reciprocating tests including restarting after interrupting-unloading process, the changes in friction were observed for intact and damaged articular cartilage specimens against glass plate lubricated with lubricants containing phospholipid, protein and hyaluronic acid as synovia constituents. The optimum composition in lubricants for low friction and minimum wear of both intact and damaged cartilage specimens was exhibited to be similar composition to natural synovial fluid. Furthermore, it was shown that the effectiveness of lubricant constituents changes depending on the surface conditions of articular cartilage. Acknowledgements Financial support was given by the Grant-in-Aid for Specially Promoted Research of Japan Society for the Promotion of Science (23000011). Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. Friction 1(2): 150–162 (2013) References [1] Dowson D. Modes of lubrication in human joints. Proc Inst Mech Engrs 181: 45–54 (1966) [2] Unsworth A, Dowson D, Wright V. Some new evidence on human joint lubrication. Ann Rheum Dis 34(4): 277–285 (1975) [3] McCutchen CW. The frictional properties of animal joints. Wear 5: 1–17 (1962) [4] Walker P S, Dowson D, Longfield M D, Wright V. Boosted lubrication in synovial joints by fluid entrapment and enrichment. Ann Rheum Dis 27(6): 512–520 (1968) [5] Mansour J M, Mow V C. On the natural lubrication of synovial joints: Normal and degenerate. J Tribol 99: 163–173 (1977) [6] Dowson D, Jin Z M. Micro-elastohydrodynamic lubrication of synovial joints. Eng Med 15: 65–67 (1986) [7] Murakami T. The lubrication in natural synovial joints and joint prostheses. JSME International Journal Ser III 33(4): 465–474 (1990) [8] Murakami T, Higaki H, Sawae Y, Ohtsuki N, Moriyama S, Nakanishi Y. Adaptive multimode lubricaion in natural synovial joints and artificial joints. Proc Inst Mech Eng Part H 212: 23–35 (1998) [9] Swann D A, Hendren R B, Radin E L, Sotman S L, Duda E A. The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum-US 24: 22–30 (1981) [10] Hills B A. Oligolamellar lubrication of joints by surface active phospholipids. J Rheum 16(1): 82–91 (1989) [11] Higaki H, Murakami T. Role of constituents in synovial fluid and surface layer of articular cartilage in joint lubrication (part 2) the boundary lubricating ability of proteins. Jpn J Tribol 40(7): 691–699 (1996) [12] Higaki H, Murakami T, Nakanishi Y, Miura H, Mawatari T, Iwamoto Y. The Lubricating ability of biomembrane models with dipalmitoyle phosphatidylcholine and γ-globulin. Proc Inst Mech Eng Part H 212: 337–346. (1998) [13] Murakami T, Sawae Y, Horimoto M, Noda M. Role of surface layers of natural and artificial cartilage in thin film lubrication. In Lubrication at Frontier. A msterdam: Elsevier, 1999: 737–747. [14] Ikeuchi K. Origin and future of hydration lubrication. Proc Inst Mech Eng Part J 221: 301–305 (2007) [15] Klein J. Molecular mechanisms of synovial joint lubrication. Proc Inst Mech Eng Part J 220: 691–710 (2006) [16] Zappone B, Ruths M, Greene W G, Jay G D, Israelachvili J N. Adsorption, lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior of a glycoprotein. Biophysical J 92: 1693–1708 (2007) 161 [17] Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng Part H 210: 109–119 (1996) [18] Ateshian G A. Theoretical formulation for boundary friction in articular cartilage. J Biomech Eng 119(1): 81–86 (1997) [19] Krishnan R, Kopacz M, Ateshian G A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res 22: 565–570 (2004) [20] Ateshian G A. The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42: 1163–1176 (2009) [21] Mow V C, Kuei S C, Lai W M, Armstrong C G. Biphasic creep and stress relaxaion of articular cartilage in compression: Theory and experiments. ASME J Biomech Eng 102: 73–84 (1980) [22] Pawaskar S S, Jin Z M, Fisher J. Modelling of fluid support inside articular cartilage during sliding. Proc Inst Mech Eng Part J 221: 165–174 (2007) [23] Sakai N, Hagihara Y, Furusawa T, Hosoda N, Sawae Y, Murakami T. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol Int 45: 225–236 (2012) [24] Murakami T. Importance of adaptive multimode lubrication mechanism in natural and artificial Joints. Proc Inst Mech Eng Part J 216: 827–837 (2012) [25] Ateshian G A, Wang H, Lai W M. The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. ASME J Tribol 120: 241–248 (1998) [26] Murakami T, Nakashima K, Yarimitsu S, Sawae Y, Sakai N. Effectiveness of adsorbed film and gel layer in hydration lubrication as adaptive multimode lubrication mechanism for articular cartilage. Proc Instn Mech Eng Part J 225: 1174–1185 (2011) [27] Murakami T, Nakashima K, Sawae Y, Sakai N, Hosoda N. Roles of adsorbed film and gel layer in hydration lubrication for articular cartilage. Proc Inst Mech Eng Part J 223: 287–295 (2009) [28] Yarimitsu S, Nakashima K, Sawae Y, Murakami T. Study on mechanisms of wear reduction of artificial cartilage through in situ observation on forming protein boundary film. Tribol Online 2(4): 114–119 (2007) [29] Nakashima K, Sawae Y, Murakami T. Study on wear reduction mechanisms of artificial cartilage by synergistic protein boundary film formation. JSME Int J 48(4): 555–561 (2005) [30] Yarimitsu S, Nakashima K, Sawae Y, Murakami T. Effect of lubricant composition on adsorption behavior of proteins on rubbing surface and stability of protein boundary film. Tribol Online 3(4): 238–242 (2008) Friction 1(2): 150–162 (2013) 162 [31] Yarimitsu S, Nakashima K, Sawae Y, Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol Int 42: 1615–1623 (2009) [32] Tremsina Y S, Sevastianov V I, Petrash S, Dando W, Foster M D. Competitive adsorption of human serum albumin and gamma-globulin from a binary protein mixture onto hexadecyltrichlorosilane coated glass. J Biomater Sci Polym Ed 9(2): 151–162 (1998) [33] Heuberger M P, Widmer M R, Zobeley E, Glockshuber R, Spencer N D. Protein-mediated boundary lubrication in arthroplasty. Biometarials 26: 1165–1173 (2005) [34] Nakashima K, Sawae Y, Murakami T. Influence of protein conformation on frictional properties of poly)vinyl alcohol) hydrogel for artificial cartilage. Tribol Lett 26: 145–151 (2007) [35] Nakashima K, Sawae Y, Murakami T. Effect of conformational changes and differences of proteins on frictional properties of poly(vinyl alcohol) hydrogel. Tribol Int 40: 1423–1427 (2007) [36] Oates K M N, Krause W E, Jones R L, Colby R H. Rheopexy of synovial fluid and protein aggregation. J R Soc Interface 3: 167–174 (2006) [37] Curtain C C. The nature of protein in the hyaluronic complex Teruo MURAKAMI. Professor at Research Center for Advanced Biomechanics, Kyushu University. He graduated from Kyushu University in 1970 and received his PhD degree from Kyushu University in 1978. He was appointed a professor of [38] [39] [40] [41] [42] [43] [44] of bovine synovial fluid. Biochem J 61(4): 688–697 (1955) Yarimitsu S, Nakashima K, Sawae Y, Murakami T. Influences of synovia constituents on frictional behavior of artificial cartilage material and formation of boundary lubricating film (in Japanese). Tribologist 55(7): 489–498 (2010) Hernández-Caselles T, Villalaín J, Gómez-Fernáindez J C. Influence of liposome charge and composition on their interaction with human blood serum proteins. Mol Cell Biochem 120: 119–126 (1993) Pasquali-Ronchetti I, Quaglino D, Mori G, Bacchell B. Hyaluronan-phospholipid interactions. J Struct Biol 120: 1–10 (1997) Mirea D A, Trunfio-Sfarghiu A-M, Matei C I, Munteanu B, Piednoir A, Rieu J P, Blanchin M G, Berthie Y. Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol Int 59: 302–311 (2013) Sasada T, Tsukamoto Y, Mabuchi K. Biotribology (in Japanese). Sangyo Tosho, 1988. Roberts B J, Unsworth A, Mian N. Modes of lubrication in human hip joints. Ann Rheum Dis 41: 217–224 (1982) McCann L, Ingham E, Jin Z, Fisher J. Influence of the meniscus on friction and degradation of cartilage in natural knee joint. Osteoarthr Cartilage 17: 995–1000 (2009) Mechanical Engineering in 1988 and a distinguished professor in 2011 at Kyushu University. Research fields are biotribology, biomechanics and bionic design. He is a research leader of a Grant-in–Aid for Scientific Research on artificial hydrogel cartilage with super lubricity as Specially Promoted Research supported by Japan Society for the Promotion of Science. Friction 1(2): 163–177 (2013) DOI 10.1007/s40544-013-0013-3 ISSN 2223-7690 RESEARCH ARTICLE Potential hydrodynamic origin of frictional transients in sliding mesothelial tissues Stephen H. LORING1,*, James P. BUTLER2 1 Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA 2 Department of Medicine, Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02215, USA Received: 26 January 2013 / Revised: 26 April 2013 / Accepted: 20 May 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: Steady-state and transient variations in frictional force observed in tribological experiments of mesothelial tissues sliding in lubricant were analyzed with a mathematical model to test the hypothesis that such phenomena are manifestations of elastohydrodynamic lubrication and, importantly, do not require physical contact between the sliding surfaces. The model incorporates three phenomena characteristic of elastohydrodynamic lubrication: thinning of the liquid layer between sliding surfaces under a normal load (“squeeze-out”), thickening of the liquid layer due to hydrodynamic pumping, and smoothing of the elastic surfaces caused by hydrodynamic pressure gradients. Observations in soft mesothelial tissues sliding in lubricant showed variations in steady state friction with velocity, load, and lubricant viscosity. In non-steady sliding, the decay rate of frictional transients at the start of rotation varied with velocity, the amplitudes of these transients varied with the preceding periods without rotation, and frictional force varied during sinusoidal sliding. Model simulations were qualitatively similar to experimental results, supporting these mechanisms. Higher lubricant viscosity increased lubricating layer thickness and lowered friction at low speeds and increased friction at high speeds, supporting hydrodynamic pumping. We conclude that the frictional variations seen with sliding mesothelial tissues are consistent with elastohydrodynamic lubrication without contact between the sliding surfaces. Keywords: pleural space; breathing; pericardium; lubrication; model 1 Introduction Throughout life, the mesothelial surfaces within the body slide against each other, lubricated by a thin layer of serous fluid. The relationships between frictional force and tribological parameters such as sliding velocity, normal load, and viscosity have been used to infer the nature of the physical interactions between these tissues [1–5]. For example, D’Angelo et al. [4] studied pleural tissues during oscillatory rectilinear sliding and found the friction coefficient, defined as the ratio of shear stress to normal stress on the sliding surfaces, to be nearly independent of the frequency * Corresponding author: Stephen H. LORING. E-mail: [email protected] of oscillation at a constant displacement amplitude. They concluded that this independence with respect to velocity was consistent with boundary lubrication in which contact or near-contact between asperities bears the normal load [4]. By contrast, in a subsequent study using a rotating tribometer that measured the friction coefficient as torque divided by normal load, Loring et al. [5] found that the friction of wetted pleural tissues on a rotating plate varied with rotation rate and hence circumferential velocity, which is inconsistent with boundary lubrication but consistent with mixed elastohydrodynamic or fully-developed hydrodynamic lubrication, in which hydrodynamic pressure in the fluid bears much or all of the normal load. In a similar rotational apparatus, Lin et al. [6] measured the thickness of the fluid layer Friction 1(2): 163–177 (2013) 164 between sliding mesothelial tissues and a rotating glass plate and found that the thickness of the fluid layer beneath the tissue surface depended on sliding velocity. In particular, higher velocities resulted in greater fluid thickness and a faster approach to the steady state fluid thickness, consistent with hydrodynamic lubrication. In addition, soft materials sliding in lubricant are smoothed by hydrodynamic pressure gradients, making the lubricant layer more uniform in thickness [7]. Considered together, the latter three studies suggest that soft materials with statically uneven surfaces sliding in lubricants are smoothed and deformed so as to become load-bearing, thus maintaining a layer of lubricant between sliding surfaces [8, 9]. The latter studies and subsequent observations suggest that the tribological behavior of sliding tissue samples in these experiments can be largely explained by the following three phenomena characteristic of elastohydrodynamic lubrication. (1) Squeeze-out: thinning of the liquid layer between the sliding surfaces due to centrifugal flow driven by load-dependent pressure gradient. An example of this effect in vivo is the flow of pleural liquid away from the region between a convex rib indenting the lung towards the surrounding regions of the pleural space where the normal stress and fluid pressure are lower. (2) Hydrodynamic pumping: thickening of the fluid layer between the sliding surfaces due to centripetal fluid flow driven by local hydrodynamic pressure gradients caused by the sliding of slightly uneven surfaces that are nearly, but not completely, parallel. This phenomenon is responsible for load support in hydrodynamic lubrication. An example of this effect in vivo is the hydrodynamically driven flow of pleural fluid from a relatively thick layer of liquid near a lobar margin into the pleural space covering the costal surface of the lung [10]. (3) Elastohydrodynamic smoothing: reversible deformation and flattening of the sliding surfaces caused by hydrodynamic pressure gradients that result in a decrease in the spatial nonuniformity of thickness of the fluid layer. An example of this effect in vivo is the small-scale reversible deformation that would smooth mesothelial surfaces wherever they slide relative to each other in the presence of serous fluid. In this report, examples of steady state and transient friction observed experimentally in vitro are presented and then simulated with a mathematical model that synthesizes the three phenomena above: thinning of the fluid layer due to squeeze-out, thickening due to hydrodynamic pumping, and elastohydrodynamic smoothing. The model is based on geometrical and physical parameters of our experimental preparations, variations in velocity similar to those in the experiments, and a free parameter relating the velocity of sliding to the magnitude of the hydrodynamic pressure opposing squeeze-out. Simulations were compared with experimental results to quantify the importance of these mechanisms to the transient phenomena observed under different experimental conditions. 2 2.1 Methods Experimental preparation and apparatus Tribological experiments on mesothelial tissues were conducted using the peritoneal surface of rat belly wall sliding on a rotating glass plate (Fig. 1) as described previously [5, 6] or on a rotating plate covered with tissue. Briefly, a tissue sheet consisting of the inner layer of the abdominal wall, including the peritoneum and attached muscle layers, was dissected free and mounted, mesothelial side outward, at the mouth of a shallow tissue-cup (3.2 cm diameter). In the top-fixed experimental apparatus [5], the mesothelial tissue and cup, mounted on a shaft and bearing for measurement of rotational torque, were held close (< 1 mm) to the surface of a rotating glass plate lubricated with physiologic saline. The tissue sheet was then pressed against the glass plate using air pressure within the tissue cup, thus applying a known normal stress on the sliding mesothelial surface. Data from those experiments were reanalyzed to characterize the transient changes in torque at the onset of motion. In new experiments using a top-weighted apparatus, the torque measuring apparatus was mounted on a balance arm and pressed against the rotating glass plate by an applied weight. With this apparatus, friction between tissue surfaces was also measured by mounting mesothelial tissue, prepared as above, on a rotating platform slightly larger than the stationary tissue and cup. Friction 1(2): 163–177 (2013) 165 Fig. 1 Schematic of apparatus illustrating some of the features of the rotational tribometers used in the experiments. The glass plate or tissue platform was rotated by a computer-controlled stepper motor, and the applied pressure, torque, and angular displacement of the drive system were recorded at > 750 Hz (Dataq Instruments, Akron, OH). Friction was quantified by rotational torque measured with a strain gauge [5] and divided by normal load to produce a rotational coefficient of friction (CF). Details of individual experiments are described in Section 3. 2.2 Fig. 2 Model of a soft tissue disk with an uneven bottom surface pressed by a normal load against a rotating flat disk, all bathed in lubricant. The minimum fluid thickness (hmin), amplitude of unevenness (hamp) and characteristic wavelength (L) are not to scale. Table 1 Constant Description Value Rdisk disk radius (R in the equations above) 1.5 cm 0 hamp initial undeformed amplitude of unevenness 70 µm Model simulation A mathematical model was used to simulate the experiments and explore mechanism. The model incorporates a disc of soft tissue with an undulating bottom surface pressed against a flat plate rotating in the presence of lubricating fluid (Fig. 2). The unevenness of the bottom tissue surface decreases as the tissue approaches the opposing plate. The parameters of the model are similar to those of the experiment and are presented in Table 1. Experimental input variables include rotation rate and normal pressure load as functions of time. Output variables include frictional force (quantified by torque) and fluid thickness. The dynamic behavior of the system is determined by the three phenomena introduced above and further defined below: (1) thinning of the fluid layer due to squeezeout of fluid caused by the normal load, (2) thickening of the fluid layer due to hydrodynamic pumping of fluid from the surrounding reservoir, and (3) elastic deformation and flattening of the surface unevenness causing elastohydrodynamic smoothing of the tissue surface, decreasing the amplitude of surface roughness. * Constants of the model simulations. L wavelength of unevenness lubricant viscosity k pump constant of hydrodynamic pumping* hmin, crit hmin below which Phydro progressively decreases* 1000 µm 0.01 poise 100 8 µm Parameters used for fitting simulation to experimental data 2.3 2.3.1 Mechanisms of hydrodynamic lubrication Squeeze-out Squeeze-out is based on the physics of a piston sinking under a normal load in lubricant toward a flat surface (see Eq. (9) below). The normal load is balanced by the effective hydrodynamic pressure caused by downward movement of the piston. The rate of descent (fluid thinning) is directly proportional to the load and inversely proportional to fluid viscosity, the cube of the harmonic mean fluid layer thickness, and the radius of the disk to the 4th power. Friction 1(2): 163–177 (2013) 166 2.3.2 Hydrodynamic pumping The load-supporting pressure due to hydrodynamic pumping is added to the hydrodynamic pressure due to squeeze-out. When the pressure due to the normal load is greater than that produced by hydrodynamic pumping, fluid flow is centrifugal (from disk center) and the fluid layer gets thinner. Conversely, when the hydrodynamic pumping pressure is greater than the normal load, fluid flow is centripetal and the fluid layer gets thicker. Hydrodynamic pumping pressure is the global effect of highly local hydrodynamic pressures generated between sliding surfaces that are nearly but not completely parallel. Consistent with the major features of lubrication theory [11], hydrodynamic pumping is assumed to be proportional to sliding velocity and fluid viscosity and inversely proportional to the minimum fluid thickness, hmin . To simulate the increase in CF at very high sliding speeds, hydrodynamic pumping pressure is assumed to diminish as the fluid thickness gets large compared with the characteristic wavelength of the surface unevenness. 2.3.3 Elastohydrodynamic smoothing Relative flattening of the surface undulations due to hydrodynamic pressure is assumed to occur as the uneven tissue approaches the flat plate. The amplitude ( hamp ) of the unevenness of the tissue disk remains relatively constant near its initial undeformed amplitude 0 when the mean fluid thickness (h) is large and hamp decreases smoothly and progressively as the minimum thickness hmin 0 , or equivalently, as h approaches 0 . The harmonic mean thickness ( hhm ) and hmin of hamp 0 the fluid are derived from h and hamp . Flattening of the surface to an extreme degree is assumed to reduce hydrodynamic pumping, leading to an increase in CF at very low sliding speeds. Simulations of the model, including fluid thickness and coefficient of rotational friction, were compared to experimental data obtained with the following velocity−time protocols: (1) steady-state sliding at different constant rates, loads, and lubricant viscosities; (2) a step increase in rotation rate from zero to various constant speeds following 30 s without motion; (3) constant speed rotation at different rates interrupted by different periods without rotation; and (4) sinusoidal rotation at various frequencies and peak rotation rates. 2.4 Model details Conceptually, the model is a disk of tissue with an uneven bottom surface pressed against a coaxial rotating flat surface, the “bottom plate” (Fig. 2). The flow of fluid within the space between tissue disk and bottom plate depends on the pressure gradient caused by the combined effects of the normal force (load) applied to the tissue disk, which causes centrifugal flow and fluid layer thinning (squeeze-out) and the pressure generated by hydrodynamic pumping, which causes centripetal flow and fluid layer thickening. When the tissue is pressed close to the bottom plate, it is smoothed (flattened) by normal stresses caused by hydrodynamic pressures. Whereas the physics underlying squeeze-out is well understood and a rigorous solution exists, the physics of hydrodynamic pumping and soft tissue smoothing are only partially understood, and a rigorous solution in general is lacking. The theoretical basis for the model starts with a dynamical argument to find the relationship between normal force, Fn , in relation to the rate of change in the height of the fluid channel between the disk and the plate. In what follows, we assume circular symmetry and deal only with the radial dependence of variables. The volume flow rate (or flux) of fluid inward at any radius r is dh Q (r ) r 2 dt (1) where h is the mean height of the tissue surface above the plate. In particular, the flow rate, Q , into the region between the disk and the bottom plate from the reservoir is dh Q Q ( R) R2 dt (2) where R is the radius of the tissue disk. The cylindrical cross-sectional area of the fluid channel at radius r is A(r ) 2 rh , and so the mean fluid radial velocity U (r ) is given by U(r ) Q (r ) r dh A(r ) 2 h dt (3) Friction 1(2): 163–177 (2013) 167 dP , the dr pressure gradient driving flow in the channel. In steady state, the fully developed fluid velocity is quadratic in height, y, and vanishes at the bottom and top surfaces secondary to a no slip condition. 4 Thus, U ( y , r ) U (r )max 2 y( h y) , where U (r )max is the h This is used at each r to determine velocity at mid-channel. The average velocity U (r ) h 1 2 U ( y , r ) U max (r ) , and so, from Eq. (3), we have 3 h0 U max (r ) 3 r dh 4 h dt (4) The gradients in U ( y , r ) with respect to y induce a viscous drag on the boundary, which must be balanced by radial gradients in pressure. The force on a differential volume of fluid between r and r dr of angular width d due to the two boundaries is thus twice product of the shear stress and the area, given by 2 dU / dy y 0 rdrd (8 U max / h)rdrd . The force on the differential element due to a pressure gradient is simply hr d dP . Equating these yields dP / dr 6 r dh h 3 dt (5) hmin The pressure at any radius is dP 3 dh 2 2 R r (r ) P0 3 d r h dt R r P(r ) P0 (6) where P0 is pressure in the surrounding reservoir. The normal force (load) is R Fn 2 P(r ) r dr 0 3 R4 dh 2 h 3 dt (7) and therefore 2 h 3 Fn dh dt 3 R 4 (8) or, in terms of average pressure ( P ), dh 2h3 P dt 3 R2 rate of change in thickness of the fluid layer is a function of the effective average pressure, i.e., the sum of the average pressure load, acting to decrease thickness, and a hydrodynamic pressure ( Phydro ) due to sliding of the uneven tissue surface against the rotating disk, acting to increase thickness. Phydro is assumed to have the same spatial distribution as that of the pressure load and to oppose the gradients caused by the load or downward movement of the tissue disk. Constants of the model include the disk radius (R) and fluid viscosity ( ). The pressure load and rotation rate ( f , signed such that f 0 when rotation is counterclockwise, typical units are revolutions per second) are input variables. Hydrodynamic pressure caused by tissue sliding is due to wedge-like deformations of these otherwise symmetrical undulations of the tissue surface of amplitude, hamp . The wavelength (L) and initial undeformed amplitude of microscopic sinusoidal 0 unevenness of the tissue surface ( hamp ) are specified. 0 0 When h hamp , hamp hamp . As the tissue approaches the bottom plate, hamp is reduced by adjusting the local minimum thickness of the liquid layer ( hmin h hamp ) to maintain hmin 0 according to the following equation, The rate of increase or decrease in the average h (Eq. (9)) is calculated using the harmonic mean thickness hhm , given by 1/ hhm 1 2 (1/ hmin 1/ hmax ) , where 1 2 ( hmax hmin ) h . The equation for Phydro is a simplification based on lubrication theory [11]. In essence, the normal (lifting) force is assumed to be proportional to velocity, viscosity, the area of the uneven sliding surface, and roughly inversely proportional to the minimum fluid thickness, Phydro (9) The model simulations are based on Eq. (9). The h . 0 h 1 hamp k pump f 2 R 2 hmin , where k pump is a constant. We modified the formula to simulate a reduction of lift when the tissue surface is far separated from the disk ( h hamp ), Friction 1(2): 163–177 (2013) 168 Phydro k pump f 2 R 2 hmin L , L hmin where L is the undulation wavelength. We further modified this formula to simulate a reduction in lift when the undulations in the tissue surface flatten in close proximity to the bottom plate, Phydro k pump f 2 R2 0.25 hmin h min, crit hmin L , L hmin where hmin, crit is a constant. Eq. (9) is integrated to determine changes in h . Shear stress on a differential area ( dS ) of the disk (based on hhm ) is dS hhm rf , which is integrated to obtain torque Torque 3 3.1 hhm R 0 rfSr dr fR . hhm 2 4 Results Steady state rotation at constant rates: effects of velocity, load, and viscosity 3.1.1 Experimental: tissue sliding on tissue, effects of rotation rate and load Seven experiments were performed with the topweighted apparatus with tissue rotating on tissue under loads of 5 or 10 g, the upper tissue disk being pressurized with 100 or 200 Pa. The bottom tissue surface was rotated at various rates in alternating directions with a square-wave pattern that allowed steady state CF determinations after transients died out. The coefficient of friction (torque/load) vs. velocity curves were reminiscent of classical Stribeck curves, with relatively high CF at the lowest rotation rates, lower CF at transitional rates and increasing CF at higher rates, but there was substantial variability among experiments, both in the magnitude of CF and the pattern of its variation with velocity. These results were similar to those of tissue sliding on glass published previously using the top-fixed apparatus [5]. CF did not vary systematically with load in these experiments (Fig. 3). In general, the tribological behavior of tissue sliding on tissue was similar to that of tissue sliding on glass, suggesting a common mechanism. 3.1.2 Experimental: tissue sliding on glass, effects of rotation rate and viscosity Seven experiments were performed with the topweighted apparatus with tissue rotating on flat glass under loads of 0.10 or 0.15 N, with the tissue disk pressurized with 200 or 300 Pa. The CF measured with saline lubricant, viscosity ~1 centipoise (cp), was compared to that with solutions of 4.0 or 6.5 mg/ml carboxymethylcellulose in saline, viscosity ~0.020 or ~0.033 cp (measured with a U-tube viscometer). At the lowest rotation rates, CF tended to be lower with the higher viscosity lubricant, whereas at the highest rotation rates, the opposite was true (Fig. 4). 3.1.3 Model simulations and mechanism: effects of velocity, load, and viscosity In steady state simulations (Fig. 5), CF is relatively constant at lower velocities, decreasing slightly at intermediate speeds and increasing at higher speeds, reproducing the experimental changes in CF with speed. The mechanism of CF variation in the simulation can be related to the changes in h at low and high velocities. In lubrication theory and in our model, the normal force supporting the load above a wedge sliding with velocity U and the shear force both vary roughly as h 1 . In our simulations, h varies as U 0.4 throughout the range of velocities studied. At very low velocities, decreases in velocity cause fractional decreases in h that re-establish the steady state hydrodynamic pressure to balance the normal load without causing large changes in shear stress. When h 0 , hydrodynamic smoothing degrades approaches hamp the hydrodynamic pumping, causing a large decrease in h and consequent increase in CF at very low speeds. Conversely, at very high speeds, increases in velocity cause relatively small fractional increases in h, and shear force increases with speed. Figure 5 also shows the effects of lubricant viscosity and load. Doubling of the load decreases h and increases CF at low speeds while slightly reducing CF Friction 1(2): 163–177 (2013) 169 Fig. 3 Coefficient of friction (CF) of tissue rotating on tissue. Rotation was alternating clockwise (CW) and counter-clockwise (CCW, CF shown as negative) under loads (L) of 0.05 or 0.10 N (See Section 3.1.1) 170 Friction 1(2): 163–177 (2013) Fig. 4 CF of tissue rotating on glass under loads (L) of 0.10 or 0.15 N with saline lubricants of viscosity () of 1, 2, or 3.3 cp. Rotation alternated direction as in Fig. 3. Friction 1(2): 163–177 (2013) 171 (rps), torque increased progressively during rotation without reaching a maximum during 30 s rotation. At rotation rates of 0.05–0.8 rps, peak torque was reached soon after the onset of rotation and then decayed to the steady state value, this decay being faster at higher rotation rates (Fig. 6(a)). The normalized rate of transient decay (the characteristic slope of torque decrease with time after peak torque divided by the peak-steady state torque difference) was significantly correlated with rotation rate (Fig. 7(a)). Fig. 5 Simulations of steady state CF (a) and fluid thickness (b) as a function of rotation rate with pressure load (P) of 100 or 200 Pa and lubricant viscosity () of 1 or 3 cp. at high speeds without changing CF over the entire mid-range of rotation rates (compare with Fig. 3). Increasing viscosity increases h and reduces CF at low speeds while increasing CF at high speeds, reproducing the experimental results in Fig. 3. 3.2 3.2.1 Decay of frictional transients at the onset of rotation at various rates Experimental observations Data from 8 experiments in an earlier study of steady state friction [5] were re-analyzed to determine how the rate at which torque decayed from its peak after the onset of rotation varies with speed of rotation. In a top-fixed apparatus, pressure loads of 100–200 Pa were applied 30 s before the start of rotation. At rotation speeds below ~0.02 revolutions per second Fig. 6 (a) An example of the torque transients at the onset of rotation at various rates. The peak torque was greater and the decay of the torque transient was quicker at higher rotation rates. (b) Simulated transients at the start of rotation. There is a greater rate-dependence of peak torque in the simulations than in the experimental results. We speculate that deformation of mesothelial tissue by stresses at the onset of rotation reduce the initial torque and redistribute fluid beneath the tissue, whereas peak torques in the simulation are not limited by this mechanism. Friction 1(2): 163–177 (2013) 172 Fig. 7 (a) Characteristic rate of decrease from peak torque normalized by the peak-to-steady state difference in torque at various rotation rates under normal stress of 100 or 200 Pa in 8 experiments. The normalized rate of torque decrease was significantly related to rotation rate in 5 of 8 experiments and in the group as a whole (ANOVA, p < 0.0001). The rate of decay was also related to the individual tissue preparation (P < 0.0001) and pressure ( p = 0.0054). (b) Simulation: normalized rate of torque decrease after the onset of rotation in simulations at various speeds after a squeeze-out period of 30 s. Normalized decay rate was calculated as the inverse of the initial half-time of the decay. Increasing rotation rate increases the rate of torque decay from the peak to the steady state value. 3.2.2 Model simulations and mechanism The model simulations (Figs. 6(b), 7(b)) started with an initial fluid thickness of 0.1 mm and a 30 s period with 100 Pa pressure load to cause squeeze-out before rotation. At the onset of rotation at lower rotation rates, torque increased relatively slowly to a peak and decreased slowly to the steady state value, whereas at higher rates, torque increased and decreased more rapidly. Peak torque and the rate of decay of torque were greater at higher rotation rates because the shear stress and lifting force due to hydrodynamic pumping pressure were greater, and higher rates of fluid thickening increased h and reduced torque more quickly at higher rotation rates. As in the experiments, the onset of rotation at rates below 0.04 rps caused a progressive increase in torque (and h) without a subsequent torque decrease, because h had not decreased to its steady state value in the 30 s before rotation began. 3.3 3.3.1 Transient peaks in friction after different periods of squeeze-out Experimental observations In six experiments with the top-fixed apparatus, we measured peak torque at the onset of rotation after periods without rotation ranging from 0.1 s to 128 s. Rotation rates ranged from 0.002 to 2 rps at pressure loads of 100 or 200 Pa. The peak torque increased with increasing length of the preceding period without rotation in all runs in all experiments. The data were fit to an equation derived from the rudimentary squeeze-out model described in Section 2.4, together with the additional assumption that the initial peak force is inversely proportional to the thickness of the fluid layer at the onset of rotation. Without rotation, thickness decreases from the steady state thickness at the end of the previous rotation due to squeeze-out. As given by Eq. (8), the height Friction 1(2): 163–177 (2013) 173 of the tissue disk above the bottom plate (h) changes 2 h 3 Fn dh at the rate , where Fn is the normal force dt 3 R4 applied, R is the disk radius, and is fluid viscosity. 2 Fn Integration yields h(t ) where ti is 3 R 4 t ti 3.3.2 Model simulations and mechanism The simulation results were similar to the experimental data. Figure 9 shows the peak torque and thickness of the liquid layer at the end of intervals without motion. The basic squeeze-out model (Eq. (1)) fits data at individual speeds well. the time that would have been required for squeezeout to reduce h from an initial large value to its previous steady state value, which in turn is the initial value during pure squeeze-out. The equation of peak torque has the form, PeakTorque k t t i (10) where k is a constant. Figure 8 shows two representative experimental results. Fig. 9 Simulated peak torques following intervals without rotation of various durations (left axis) and h values at the end of the intervals (right axis) with rotation rates of 0.1 or 1 rps with a pressure load of 100 Pa. The progressive increase in torque with increasing time without motion can be attributed to the progressive reduction in h due to squeeze-out. Note that the initial difference in h at the two rotation rates almost disappears by 128 s, and the curves rapidly converge, consistent with the h3 dependence of the squeeze-out rate (Eq. (9)). 3.4 Sinusoidal rotation 3.4.1 Fig. 8 Peak torque in a top-fixed apparatus at the onset of rotation after various intervals without rotation. In Expt 0121, pressure was 200 Pa and rotation rates were 0.05, 0.1, and 0.2 rps. One squeeze-out model simulation (Eq. (1)) fits all the data relatively well for these 5 runs with a limited range of rotation rate. The constant ti (see Section 3.3.1) ranged from 2.1 to 3.7 s in theses experiments. In Expt 1126, pressure was 100 Pa, and there was a wider range of rotation rates. Although Eq. (1) continued to fit individual curves relatively well, no single simulation could fit all curves. The large difference in the toque magnitudes between the two experiments is typical of previous results [5], and we speculate that it arises from differences in surface topography and mechanical properties of individual tissue preparations. Experimental observations Sinusoidal rotation was applied in 9 experiments with the top-fixed apparatus at frequencies from 0.005 to 1.25, with peak rotation rates from 0.006 to 1.25 rps and pressures of 100 or 200 Pa. Figure 10 shows examples of the force-displacement and force-velocity plots at high and low frequencies in one experiment. At higher frequencies, torque vs. displacement plots were rounded (Fig. 10(a)) and force vs. velocity plots were nearly linear (Fig. 10(b)), indicating that torque varied with velocity. By contrast, at low frequencies, force displacement plots were relatively rectangular (Fig. 10(c)), indicating that torque was relatively constant with speed, changing sign with direction of rotation (Fig. 10(d)). Friction 1(2): 163–177 (2013) 174 Fig. 10 Torque during sinusoidal oscillation at 1 Hz (a, b) and 0.05 Hz (c, d), with 1 rps peak velocity and a pressure load of 100 Pa. Torque was nearly in phase with velocity at the higher frequency and nearly invariant with velocity at the lower frequency. These results were typical. 3.4.2 Model simulations and mechanism Model simulations showed similar variations in the shapes of torque-displacement and force-velocity characteristics with frequency. At high frequencies and velocities, torque is nearly proportional to velocity (Figs. 11(a) and 11(b)). This can be attributed to the fact that h is relatively constant because the short period of the oscillatory cycle does not permit substantial squeeze-out (Fig. 11(c)). At low frequencies, (Figs. 11(d) and (e)), torque was nearly independent of velocity and the forcedisplacement characteristic was more rectangular. At high velocities and low frequencies, the relatively constant torque can be attributed to relatively large variation in both h and hmin due to the dynamic equilibrium between hydrodynamic pumping and squeeze-out that stabilizes shear stress as velocity changes (Figs. 11(c) and (f)). The asymmetry of the torque-displacement curves at high frequency and the cusps on torque-displacement and torque-velocity curves at low frequency (Figs. 11(a), (d), and (e)) are caused by the transiently low values of h following squeeze-out during the preceding low velocity (Figs. 11(c) and (f)). These asymmetries were sometimes observed in the experimental data (note the similar asymmetry in Fig. 10(a)). 4 Discussion Here, we have interpreted steady state and transient behavior of tissues sliding in saline with a model that synthesizes physical principles and phenomena of elastohydrodynamic lubrication. This analysis extends earlier theoretical work suggesting a hydrodynamic mechanism that could explain a relatively constant CF with decreasing velocity [12] to transient and nonsteady state sliding. Although elastohydrodynamic mechanisms are able to explain many experimental phenomena, their importance in mesothelial lubrication in vivo is debated. Conventionally, a transient peak in force at the onset of sliding has been interpreted as implying that the surfaces initially in contact exhibit static friction [13]. Force increases with increasing elastic deformation until the surfaces break free and slide at a lower frictional force in the steady state; if contact returns Friction 1(2): 163–177 (2013) 175 Fig. 11 Simulations of oscillatory rotation at 2 or 0.02 Hz with a load of 100 Pa and velocity amplitude of 1 rps (See Section 3.4.2). and this cycle repeats, it constitutes the classical “stick-slip” behavior. By contrast, in our simulations surfaces are never in contact, and there is no elastic deformation caused by shear stress of tissues before sliding begins. Instead, the transient variations in torque are due to history-dependent variations in the thickness of the lubricating fluid layer, which is decreased by squeeze-out, increased by hydrodynamic pumping, and influenced by elastic smoothing of the surface roughness. Without motion, the thickness of the liquid layer decreases at a rate inversely proportional to the square root of time. The coefficients of friction observed in the experiments described are variable, and, in general, much greater than those in the model simulation. In a previous study [5], we noted a remarkable variability among tissue specimens in the steady state torque and patterns of torque variation with velocity, and we speculated that such variability is due to topographical features peculiar to individual tissue specimens that augment or diminish the load bearing effects of hydrodynamic lubrication. We infer that the model’s regular and homogeneous surface unevenness results in lower shear stress with relatively homogeneous fluid thickness. Alternatively, the higher torques in experimental preparations may reflect regions of contact between surfaces. This is the view held by Agostoni, D’Angelo and others [3, 4] who have Friction 1(2): 163–177 (2013) 176 interpreted the velocity-invariant friction observed with mesothelial tissues during rectilinear sliding experiments as evidence for boundary lubrication. However, the velocity-dependent behavior we observed during rotational tribometry [5] was reproduced in experiments using rectilinear tribometry of tissue on glass (unpublished), suggesting that the difference in speed-dependence of CF is not due to rectilinear versus rotational tribometry, but rather to differences in the normal loads and sliding velocities employed. The three elements of the model are based to varying degrees on theory and experimental observation. Squeeze-out is an obvious phenomenon when lubricated surfaces are pressed together without sliding motion, as described by the physics of a piston sinking under a load (see Section 2.4). Hydrodynamic pumping is based on the two-dimensional lubrication theory [11], whereby fluid thickness is increased between sliding surfaces that are nearly parallel. In three dimensions, hydrodynamic pumping is a general phenomenon exhibited by soft shapes sliding in lubricant [9], and has been demonstrated during rotational sliding in biomechanical experiments [6] and in finite element models [8]. Elastohydrodynamic pumping lacks a rigorous general mathematical description, as does hydrodynamic smoothing. The biological relevance of elastic smoothing of mesothelial tissue surfaces has been recently explored through mechanical surface characterization [14]. In conclusion, the friction of mesothelial tissues during steady state and time-varying sliding can be largely reproduced by a synthesis of three phenomena characteristic of elastohydrodynamic lubrication. These phenomena are thinning of the lubricating fluid layer by squeeze-out under a normal load, thickening of the fluid layer through hydrodynamic pumping, and elastic smoothing of surface unevenness by local hydrodynamic stresses. These phenomena provide a plausible mechanism to explain tribological experiments in sliding mesothelial tissues, but they do not preclude the possibility of other mechanisms, including tissue-tissue contact. inappropriately influence this investigation. Acknowledgements The authors are indebted to Richard E. Brown for physiological insights and experimental data presented here, and we thank Jae Hun Kim for help in revision. The work is supported by grant HL-63737 from the National Institutes of Health. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [1] Brandi G. Determinazione del coefficiente di attrito statico tra le due pleure. Boll Soc Ital Biol Sper 46(8): 427−429 (1970) [2] Brandi G. Frictional forces at the surface of the lung. Bull Physiopathol Respir (Nancy) 8(2): 323−336 (1972) [3] D'Angelo E. Stress-strain relationships during uniform and non uniform expansion of isolated lungs. Respir Physiol 23(1): 87−107 (1975) [4] D'Angelo E, Loring S H, Gioia M E, Pecchiari M, Moscheni C. Friction and lubrication of pleural tissues. Respir Physiol Neurobiol 142(1): 55−68 (2004) [5] Loring S H, Brown R E, Gouldstone A, Butler J P. Lubrication regimes in mesothelial sliding. J Biomech 38(12): 2390−2396 (2005) [6] Lin J L, Moghani T, Fabry B, Butler J P, Loring S H. Hydrodynamic thickening of lubricating fluid layer beneath sliding mesothelial tissues. J Biomech 41(6): 1197−1205 (2008) [7] Gouldstone A, Brown R E, Butler J P, Loring S H. Elastohydrodynamic separation of pleural surfaces during breathing. Respir Physiol Neurobiol 137(1): 97−106 (2003) [8] Moghani T, Butler J P, Lin J L, Loring S H. Finite element simulation of elastohydrodynamic lubrication of soft biological tissues. Comput Struct 85(11−14): 1114−1120 (2007) [9] Skotheim J M, Mahadevan L. Soft lubrication: The elastohydrodynamics of nonconforming and conforming Conflict of interest statement The authors have no financial or personal relationship with other people or organizations that could contacts. Physics of Fluids 17(9): 092101−092123 (2005) [10] Butler J P, Huang J, Loring S H, Lai-Fook S J, Wang P M, Wilson T A. Model for a pump that drives circulation of pleural fluid. J Appl Physiol 78(1): 23−29 (1995) Friction 1(2): 163–177 (2013) [11] Batchelor G K. An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press, 1967. 177 [13] Bowden F P, Talbor D. The Friction and Lubrication of Solids. Oxford, UK: Oxford University Press, 2001. [12] Butler J P, Loring S H. A potential elastohydrodynamic origin [14] Kim J H, Butler J P, Loring S H. Influence of the softness of load-support and coulomb-like friction in lung/chest wall of the parietal pleura on respiratory sliding mechanisms. lubrication. J Tribol 130(4): 041201 (2008) Respir Physiol Neurobiol 177(2): 114−119 (2011) Stephen H. LORING received his M.D. from Harvard Medical School in 1973 and joined the Physiology Department at Harvard School of Public in 1977. In 1991 he joined the Department of Anesthesia and Critical Care at Beth Israel Deaconess Medical Center and Harvard Medical School, where his current position is Scientific Director of Respiratory Medicine. His research has centered on respiratory physiology and medicine and the biomechanics and physiology of the pleural space. James P. BUTLER received his Ph.D. in physics from Harvard Univ. in 1974, and for the past 4 decades has worked in a wide variety of applications of physics to respiratory physiology. At the whole organ and integrated level, his particular interests include lung mechanics, gas exchange, aerosol transport, and sleep disordered breathing; at the cellular and tissue level he works in the rheological properties of single cells, migrating monolayers, and elastohydrodynamic fluid/tissue interactions. Friction 1(2): 178–185 (2013) DOI 10.1007/s40544-013-0014-2 ISSN 2223-7690 RESEARCH ARTICLE Damage due to rolling in total knee replacement—The influence of tractive force Markus A. WIMMER1,*, Lars BIRKEN2, Kay SELLENSCHLOH2, Erich SCHNEIDER2 1 Section of Tribology, Rush University Medical Center, Chicago, IL 60612, USA 2 Section of Biomechanics, Hamburg University of Technology, Hamburg, 21071, Germany Received: 05 March 2013 / Revised: 30 April 2013 / Accepted: 20 May 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: The femoral condyles of a knee prosthesis articulate with a combination of rolling and sliding on the tibial polyethylene plateau. Little is known about potential polyethylene damage due to rolling motion. Since rolling does not exclude the presence of tangential surface loads, this study sought to investigate the influence of tractive rolling on the wear of polyethylene. A “wheel-on-flat” apparatus, consisting of a metal wheel and a polyethylene flat, mimicked contact conditions present in total knee replacement. An increasingly tractive force under conditions of pure rolling was applied. It was found that under rolling kinematics a tangential surface load of up to 17% of the normal load could be transferred through the contact. Surface damage was dependent on the amount of tractive force and appeared more severe with higher forces. In the region of highest tractive force, wear features were identified that resembled perpendicular ridges on surfaces of retrieved tibial polyethylene devices. This suggests that tractive rolling may be a relevant wear mode in total knee replacement. Keywords: polyethylene; wear; knee prosthesis; tractive rolling 1 Introduction The knee is the largest and one of the most mechanically complex joints in the human body. The medial and lateral condyles of the distal part of the femur articulate against the medial and lateral compartments of the tibial plateau, similarly to cylindrical wheels on a flat surface. The primary motion of the knee joint is flexion-extension, i.e., the rotation around the “epicondylar axis” of the femoral condyles, but secondary motions, as for example translations on the tibial plateau, occur as well. Hence, the kinematic interaction of the surfaces is best described as a rollingsliding action. Modern, successful designs in total knee replacement mimic the anatomy of the natural joint and allow the same degrees of freedom. Typically, the surfaces of the femoral condyles are replaced with metal that articulate against polyethylene anchored * Corresponding author: Markus A. WIMMER. E-mail: [email protected] on the tibial plateau. This polyethylene component is prone to wear and has been subject of many investigations since wear jeopardizes the longevity of the implant. In many studies, cyclic sliding has been assumed to be the most relevant kinematic action in the generation of polyethylene wear debris and was investigated using a variety of test set-ups [1−3]. Blunn et al. [4] were the first to investigate the influence of rolling versus sliding. For this purpose, they modified a reciprocating pin-on flat device to provide rolling and sliding under cyclic load. The pin was replaced with a polished sphere that rolled or slid over the flat UHMWPE disc. To produce rolling, the “tibial” disc was reciprocated and the “femoral” sphere was rotated in synchrony. To achieve sliding, the sphere was blocked. Rolling resulted in the generation of shallow wear tracks without major damage, while sliding produced deeper impressions with evidence of subsurface cracking. The reduced amount of wear during rolling was attributed to the lack of frictional shear forces across the surface. Friction 1(2): 178–185 (2013) Using the terminology introduced by Johnson [5], “free rolling” had been applied in the experiment mentioned above. Under conditions of free rolling, tangential surface loads are zero. “Tractive rolling”, in contrast, describes dynamic conditions where tangential surface loads are present under pure rolling conditions. In total knee replacements, tractive forces can be substantial and it has been estimated that they can reach up to 20 % of the contact load during walking activity [6]. The purpose of this study was to experimentally study the traction coefficient, i.e., the ratio of tractive to normal force during rolling motion, and to investigate the influence of increasing tractive force on surface wear. 2 Materials & methods A special testing apparatus was designed to simulate increasing tractive forces under conditions of pure rolling. The oscillating “wheel-on-flat” configuration consists of a wheel that drives a polyethylene (PE) flat with increasing tractive force against a pneumatic cylinder (Figs. 1(a) and 1(b)). The following describes one full operating cycle: After wheel and PE flat are in starting position and the desired constant normal load is reached, the wheel starts turning at constant angular velocity. It drives the PE flat, which is mounted on a sledge supported by roller bearings, against a tangential cylinder. The force in the cylinder is regulated via closed loop control and increases linearly with sledge displacement. 179 Thus, an increasing tractive force at the rolling contact between wheel and flat is generated. Tournament of the wheel and cylinder force are stopped immediately when sliding is detected. Wheel and PE flat are then separated from each other and set back to the starting positions to begin a new cycle. This was done in an attempt to avoid the superposition of surface features, which would have been generated during the return stroke of wheel and PE flat. The testing apparatus was designed to provide easy access to the articulating components, the wheel and the PE flat (Fig. 1(b)). The sledge is supported by high precision bearings underneath, which account for negligible friction forces (3–5 N under 1000 N of normal load). A pneumatic short-stroke cylinder, driven by a 3/2 electric directional control valve and a pressure regulator, supplies the normal load in order to bring wheel and flat into contact. The wheel itself is driven by a pneumatic rotary actuator. Both, wheel and actuator are mounted onto a frame being constrained to z-motion and assuring that the rotational axis of the wheel runs parallel to the y-axis of the sledge (Fig. 1(a)). This arrangement ensures correct alignment of the cylindrical wheel on the polyethylene surface and compensates irregularities within the articulation. A tensile spring supports the weight of the free-hanging wheel and actuator unit. A high precision valve, designed for closed loop control, adjusts the air pressure in the rotary cylinder. Two additional 3/2 directional control valves on each side of the doubleacting cylinder are used for quick air release. This Fig. 1 (a) Mechanical concept of the “wheel-on-flat” apparatus: the sledge is driven by the wheel against a tangential force, actively produced by a pneumatic cylinder. (b) Photograph of the wear testing device. Friction 1(2): 178–185 (2013) 180 allows for a quick stop of the system once sliding is detected. An identical arrangement of valves was applied to the linear cylinder which provides the tangential force to the sledge. Ultra-high molecular weight polyethylene (UHMWPE) flats in dimensions of 100 mm × 40 mm × 8 mm were compression molded using Himont 1 900 powder by Zimmer Inc. (Warsaw, IN, USA). UHMWPE powder, pressure, and temperature protocols were similar to those used for Miller–Galante knee inserts and, thus, facilitated the comparison to retrieved components of such design. Cylindrical wheels of 100 mm in diameter and 20 mm in width were manufactured from cast cobalt–chromium–molybdenum alloy (CoCrMo) according to ASTM F75 by Implantcast GmbH (Buxtehude, Germany). A polishing surface finish similar to commercially available prostheses was applied (Ra = 0.04 µm). Three experiments were executed at room temperature using the compressive force mode of the tangential cylinder without lubricant. This was done in an attempt to achieve worst case conditions and the highest tractive forces possible. A constant normal force of 900 N was applied to the wheel. This reflects about 50 % of the average normal load during stance phase of gait of a 60−75 kg person (half of the load is applied because only one of the two femoral condyles is modeled in this wear test). The load characteristics of the tangential cylinder were adjusted so the load increased linearly with 2.3 N/mm starting from zero. Thus, the length of the wear track covered at least 70 mm before the force got too high for pure rolling. This approach made it possible to relate specific locations on the polyethylene flat to precise loading characteristics. 0.5 million cycles were performed. Each pass over the PE flat lasted approximately 1 s. All tests were run under a positive pressure hood to keep contamination to a minimum. Throughout the experiment, tractive force Ft (sensor range 500 N, error < ± 0.1%), normal force Fn (2 kN, ±0.5%), PE flat displacement (100 mm, ±0.1%), and wheel motion (120°, ±0.05%) were measured. The data acquisition was set to 150 Hz per channel and measurements were taken every 5 000 cycles for an interval of 5 cycles. Thereby, the digital resolution was set to approx. 1% of the measured values. The traction coefficient µt = Ft /Fn was calculated from the determined maximum tractive force Ft during rolling movement. At the end of each wear test, CoCrMo wheel and PE flat were rinsed with distilled water to remove any loose wear particles from the surfaces. Then, the specimens were dried for 24 h. Initially, wear characteristics of wheel and PE flat were analyzed and mapped under polarized contrast using a light microscope (Orthoplan, Leitz, Germany). Afterwards, to obtain more detail of characteristic sections, a low voltage scanning electron microscope (LVSEM: S-4500, Hitachi, Japan) was used. No conductive coating was applied during this initial stage of the investigation. Later, samples were carbon sputtered to allow energy dispersive spectroscopy at 15 kV (Link ISIS, Oxford Instruments, England) and to identify any system inherent or extrinsic contaminants which could have influenced the wear process. 3 Results As intended, rolling motion of the wheel was initiated without major tractive force on the polyethylene flat, but plastic deformation at the resting position created constrained forces. This raised the initial force reading to approximately 25−50 N. Once this dip was cleared, the tractive force increased as a linear function of sledge displacement, however, plotted as a time function, the behavior was non-linear (Fig. 2). Fig. 2 Five consecutive cycles showing the tractive force, sledge displacement and wheel displacement. Note that the velocity of the driving wheel was constant during the first 35 mm of displacement and then diminished. A time relay, effective at cycle start, delayed motion initiation until vibrations due to air filling of cylinders faded. In this example, the surface deformation at start was large enough to create an offset in force reading (see text). Friction 1(2): 178–185 (2013) This non-linearity was caused by deceleration of the wheel due to an increasing traction moment with sledge displacement. Maximum traction coefficients yielded 0.13 to 0.17 and were maintained throughout testing. The transition from rolling to sliding was abrupt, but did not cause any instability in the control algorithm. The CoCrMo wheel showed only minor surface damage to the unaided eye after testing. Under the microscope, uni-directional, mild scratching was observed (Fig. 3). For all tested wheels, scratches looked similarly throughout the wear track on the metal surfaces, i.e., an influence of tractive force was not identified. Using LVSEM, it was found that the scratches were up to 0.6 µm in width. The smooth appearance suggested a micro-plowing rather than a micro-cutting mechanism. No foreign material could be identified inside the scratches. Repeated rolling of the wheel across the PE flat generated a macroscopically visible deformed path, mostly from plastic deformation of the polyethylene material. The severity of damage on the polyethylene 181 surface increased with increasing tractive force (Fig. 4). The whole wear track of the polyethylene plateau was covered with fine, longitudinal scratches following the direction of motion. Using microscopy, no differences in morphological appearance could be found along the course. Also, pitting and transferred polyethylene particles were observed over the whole Fig. 3 Fine scratches on the CoCrMo wheel that were aligned in direction of motion. Fig. 4 The appearance of wear on the tibial plateau changes with applied tractive force. The wheel moved from left to right over the PE flat. Friction 1(2): 178–185 (2013) 182 wear track. Pit sizes were usually confined to a diameter of 10 to 20 µm, while re-embedded particles could gain several hundred microns in width. Longitudinal scratching also occurred, however, its appearance varied with location on the wear track. Within the first 30 mm of the wear track, random oriented scratches deviating 0° to 20° from the principal direction of motion were found. From 30 to 50 mm, these scratches became more indented and more oriented (in the direction of movement). Within the last 20 mm of the wear track, scratching as a damage feature disappeared and another wear feature occurred: ridges perpendicular to the direction of motion came into view, pronounced in height and frequency within the last few millimeters of the wear track. In that area the ridges reached about 5 to 10 µm in length and seemed to be built up rather than separated from the surface (Fig. 5). Loose particles with varying sizes, rarely exceeding 1 µm, were found. After carbon coating, the particles were analyzed. Their elemental composition was determined to sodium, potassium and chlorine. In some cases, calcium and phosphor were identified, too. Fig. 5 A close-up of the perpendicular ridges occurring at locations of highest tractive force at the tibial plateau. 4 Discussion This study attempted to relate tractive rolling contact conditions of the knee joint to the appearance of surface wear of the contacting bodies. The specific approach, namely to control the tractive force at the interface by contact displacement (rather than time), allowed to classify the observed wear features relative to the tractive force magnitude. In addition, the traction coefficient during rolling motion of CoCrMo alloy on UHMWPE was studied. The coefficient of traction is an important factor influencing the kinematics of the tibio-femoral articulation [6]. Once the maximum traction coefficient is reached, rolling stops and gross sliding takes place. In this study, maximal traction coefficients of 0.17 occurred. Since no lubricant was used in this study, the value can be considered as the upper limit in total knee replacement. Under lubricated conditions the coefficient should be lower; however, as will be shown below, damage features that occurred under high tractive force in this study were also present on retrieved tibial polyethylene components. This is an indication that tractive rolling is occurring in artificial knee joints. These kinematic characteristics are in contrast to the natural knee where friction is 10 to 100-fold lower [7] and the tractive force negligible. Tractive rolling facilitates antero-posterior translation of the femoral condyles on the tibial polyethylene plateau in the absence of cruciate ligaments1; thus, contributing to femoral rollback of the artificial joint. Femoral rollback is an important mechanism to enable proper knee mechanics. It increases the lever arm between contact point (i.e., the instantaneous center of knee rotation) and extensor muscles during flexion maneuvers as for example during seating onto and rising from a chair. This minimizes the necessary muscle force to flex and extend the knee. Hence, femoral rollback comprises an important functional feature necessary for easy execution of daily activities. In the light of this discussion, a recent manuscript about a new type of a rolling artificial knee joint that has been based on the mechanics of rolling friction is noteworthy [9]. Figure 4 shows the wear appearances of the whole track generated due to tractive rolling. Note that the different damage features are concentrated in certain areas of the PE flat and, thus, are related to tractive 1 In the natural knee joint, the cruciate ligaments form a crossed four-bar linkage facilitating femoral rollback [8]. One or two ligaments are surgically removed during total knee arthroplasty destroying the linkage. Friction 1(2): 178–185 (2013) force. Scratching is present along most of the wear track. Shallow, non-oriented scratches are found within the first 20 mm of the scar, where the tractive forces were low. Longitudinal scratches along the principal direction of motion are found thereafter and are related to tractive forces between 50 and 110 N (or traction coefficients from 0.06 to 0.12). These scratches are more pronounced and deeper than those at the beginning of the wear track. They seem to correspond in appearance and dimension to scratches found on the wheel suggesting third-body wear. Indeed, particles in a size were found matching the dimensions of the scratches. Their elemental composition points towards intrinsic salt contaminants occurring in UHMWPE [10]. Perpendicular ridges are present at the end of the wear track, where the tractive forces were highest. At least 100 N of tractive force (or a traction coefficient of 0.9) were necessary to produce ridges. However, their frequency increases and their appearance becomes more pronounced when the traction coefficient reached values beyond 0.12. Due to the specific (moving) stress field, i.e., compressive stress in front and tensile stress behind the rolling wheel, high cyclic compressivetensile tangential stresses were induced to the polyethylene in that region of the wear scar [11]. Maximum shear stresses moved closer to the surface in that area, too. The applied stress field may have caused plastic deformation of near-surface polyethylene layers, thus leading to the formation of ridges perpendicular to the direction of tractive force. Plumlee and Schwartz [12], using finite element models in a recent study, found areas of plastic deformation within the metal-UHMWPE contact area that were of the same size scale as the ridges observed herein. It should be noted that partially released surface layers and perpendicular ridges are capable of forming particulate debris and/ or initiating progressive delamination if the material embrittles due to oxidation. Ridges similar to those observed in this study were previously found on retrieved UHMWPE tibial plateaus using white light interferometry [13]. Interestingly, they are present on top of antero-posterior oriented “striations”, which protrude from the polyethylene surface and form troughs in between (Fig. 6). On top of the striated hills, the ridges run perpendicular to 183 Fig. 6 Height image taken by white light interferometry. Note the perpendicular ridges (arrow) on the summits of the striated pattern. the main direction of rolling (anerior-posterior). The striated pattern represents a typical wear pattern in total knee replacement and has been reported by several investigators [14−16]. Their specific feature is a topographical profile that has similarities to the threads of a vehicle rubber tire. It is therefore hypothesized that the striated pattern enables the drainage of lubricant through its troughs during rolling contact and thus facilitates high traction coefficients. The occurrence of the perpendicular ridges on top of this surface feature seems to provide indirect proof of this concept. The study has several limitations which shall be briefly highlighted. The “wheel-on-flat” design is a very crude approximation of total knee prosthesis, which is much more complex in shape than a single radius contacting a flat surface. The studied motions are therefore not directly translatable to the interface of an artificial joint. The experiment was conducted under dry conditions at room temperature. This may be looked at as a worst case scenario, but under all likelihood the in vivo contact is wet, thus lowering the coefficient of friction and therefore the tractive force. Despite that, similar surface features produced in this study have been observed in vivo. It should be mentioned that this is an early study which triggered follow-up studies from the same author group [17–19]. None of these studies, however, focuses on surface features as related to tractive force. In general, it is surprising how little scientific effort has been spent to disentangle the mechanistic interactions of sliding and rolling at the knee joint since Friction 1(2): 178–185 (2013) 184 the landmark study of Blunn et al. [4]. Two studies which further contributed to the field are from Cornwall et al. [20], who studied the three basic kinematic contact conditions (sliding, gliding, rolling) in a reciprocating wear tester, and from Keller et al. [21], who studied the microstructural re-organization of polyethylene after sliding-rolling contact. [6] Wimmer M A, Andriacchi T P. Tractive forces during rolling motion of the knee: implications for wear in total knee replacement. J of Biomechanics 30: 131−137 (1997) [7] Unsworth A. Lubrication of human joints. In Mechanics of Human Joints: Physiology, Pathophysiology, and Treatment. Wright V, Radin E L, Eds. New York: Marcel Dekker Inc., 1993: 137−162. [8] O'Connor J J, Zavatsky A. Kinematics and mechanics of 5 Conclusions Tractive rolling is a likely kinematic condition in total knee replacement. Tractive coefficients up to 0.17 may occur, stressing the polyethylene surface. This study demonstrated that the damage features due to rolling are dependent on tractive force and culminate in perpendicular ridges, most likely generated due to flow of near-surface polyethylene layers. the cruciate ligaments of the knee. In Biomechanics of Diathrodial Joints, Vol II. Mow V C, Ratelitte A, Woo S L-Y, Eds. New York: Springer, 1990: 197−241. [9] He Y, Yu Z, Chen M, Wang C. Rolling friction: A design of artificial knee joint (in Chinese). Journal of Biomedical Engineering 22(4): 840−843 (2005) [10] Loos J, Wimmer M A. Observation of salt impurities in ultrahigh-molecular-weight polyethylene (UHMWPE). Journal of Materials Science 34: 3327−3333 (1999) [11] Natarajan R N, Hussain M, Wimmer M A, Rosenberg A G, Jacobs J J. Wear of UHMWPE total knee components of Acknowledgements This work was conducted at the TUHH Hamburg University of Technology, Germany within the framework of a doctoral thesis [13]. total knee replacement depend upon walking pattern. Trans Orthop Res Soc 29: 1035 (2004) [12] Plumlee K G, Schwartz C J. Surface layer plastic deformation as a mechanism for UHMWPE wear, and its role in debris size. Wear, in press, http://dx.doi.org/10.1016/j.wear.2012.11.081. [13] Wimmer M A. Wear of the polyethylene component created Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. by rolling motion of the artificial knee joint. Ph.D. Thesis. Aachen (Germany): Technische Universitaet HamburgHarburg, 1999: 81−117. [14] Wimmer M A, Andriacchi T P, Natarajan R N, Loos J, Karlhuber M, Petermann J, Schneider E, Rosenberg A G. A striated pattern of wear in ultrahigh-molecular-weight References [1] White S E, Whiteside L A, McCarthy D S, Anthony M, Poggie R A. Simulated knee wear with cobalt chromium and oxidized zirconium knee femoral components. Clin Orthop 309: 176–184 (1994) [2] Blunn G W, Lilley A P, Walker P S. Variability of the wear of ultra high molecular weight polyethylene in simulated TKR. Trans Orthop Res Soc 19: 177 (1994) [3] Walker P S, Ben-Dov M, Askew M J, Pugh J. The deformation and wear of plastic components in artificial knee joints—An experimental study. Eng Med 10: 33–38 (1981) [4] Blunn G W, Walker P S, Joshi A, Hardinge K. The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop 273: 253–260 (1991) [5] Johnsen K L. Contact Mechanics, 2nd Editon. Cambridge (UK): Cambridge University Press, 1985. polyethylene components of Miller–Galante total knee arthroplasty. J Arthroplasty 13: 8−16 (1998) [15] Harman M K, DesJardins J, Benson L, Banks S A, LaBerge M, Hodge W A. Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation. J Orthop Res 27(4): 540−548 (2009) [16] Heyse T J, Davis J, Haas S B, Chen D X, Wright T M, Laskin R S. Retrieval analysis of femoral zirconium components in total knee arthroplasty: Preliminary results. J Arthroplasty 26(3): 445−450 (2011) [17] Schwenke T, Borgstede L L, Schneider E, Andriacchi T P, Wimmer M A. The influence of slip velocity on wear of total knee arthroplasty. Wear 259(7–12): 926−932 (2005) [18] Galetz M C, Uth T, Wimmer M A, Adam P, Glatzel U. Determination of the temperature rise within UHMWPE tibial components during tribological loading. Acta Biomaterialia 6(2): 552−562 (2010) Friction 1(2): 178–185 (2013) 185 [19] Schwenke T, Wimmer M A. Cross-shear in metal-onpolyethylene articulation of orthopaedic implants and its relationship to wear. Wear, in press, http://dx.doi.org/10.1016/ j.wear.2013.01.069. [20] Cornwall G B, Bryant J T, Hansson C M. The effect of kinematic conditions on the wear of ultra-high molecular weight polyethylene (UHMWPE) in orthopaedic bearing applications. Proc Inst Mech Eng H 215(1): 95−106 (2001) [21] Keller T F, Engelhardt H, Adam P, Galetz M C, Glatzel U, Jandt K D. Near-surface microstructural reorganization of UHMWPE under cyclic load—A pilot study. Advance Engineering Materials 13(12): 476−482 (2011) Markus A. WIMMER is an Associate Professor of orthopedics and directs the Motion Analysis and Tribology Laboratories at Rush University Medical Center. He is also an Adjunct Professor of bioengineering at the University of Illinois at Chicago. He studied mechanical engineering at the Technical University of Munich, Germany and received his diploma in 1992. After a post-graduate year in the laboratory of Dr. Thomas Andriacchi at Rush University (Chicago, USA), he started as a Research Associate at the Hamburg University of Technology and worked towards a doctoral degree in biomechanics under the supervision of Dr. Erich Schneider. In 1997, Markus Wimmer moved from Germany to Switzerland and started to work at the AO Research Institute in Davos. He returned to Rush University in 2001 to join the faculty of the Medical College. His current research focuses on wear of natural and artificial joints and includes, among other topics, polyethylene damage in knee prostheses. Friction 1(2): 186–194 (2013) DOI 10.1007/s40544-013-0012-4 ISSN 2223-7690 SHORT COMMUNICATION Green tribology: Fundamentals and future development Si-wei ZHANG* School of Mechanical and Storage and Transportation Engineering, China University of Petroleum, 20 Xueyuan Rd, PO Box 902, Beijing 100083, China Received: 30 October 2012 / Revised: 23 Jaruary 2013 / Accepted: 20 May 2013 © The author(s) 2013. This article is published with open access at Springerlink.com Abstract: As green tribology is a new field of tribology still in its infancy, understanding its fundamentals is essential for its further development. In this article, a brief historical retrospective on the emergence of green tribology is introduced first, and then the definition, objectives, and disciplinary features of green tribology are clarified. In particular, the technological connotations of green tribology are expounded comprehensively. Also, the developing directions of this new area are envisaged. These findings may contribute to laying the foundation of further advancement in green tribology. Keywords: green tribology; technological connotations; environmental impact; biological impact; developing directions 1 Background Since the 1980s, energy and environmental problems on a global scale have increased in severity year by year. Against this background, the objectives of tribology expanded gradually, and then some tribologists successively put forward several new notions: “tribology for energy conservation” (1997), “environmental friendly tribology” (2000), and “ecological tribology or ecotribology” (2000). In particular, after entering the new millennium, tribology was expected to have an increasingly important role to play along with the crises of resources, energy, and environment being aggravated in the world. Its basic objectives of “controlling friction, reducing wear, and improving lubrication” have extended to “saving energy and materials, reducing emissions, shock absorption, decreasing noise pollution, developing bio- and ecolubrication and improving quality of life.” It is noticeable that tribology has developed into a new phase. In 2001, to mirror this change in objectives of * Corresponding author: Si-wei ZHANG. E-mail: [email protected] tribology, a term/area “green tribology” was advanced by the present author at a national symposium on tribology in China. A paper was published from this conference [1], in which the concept and objectives of green tribology were clarified. Soon after, another two expressions also emerged successively, namely, “total tribology” (2001–2002) and “lifecycle tribology” (2004). In 2008, the concept of green tribology was raised again by the present author at the 5th China International Symposium on Tribology in a plenary lecture, which was intended to replace similar notions as mentioned above [2]. In the lecture, an investigation of the industrial application of tribology in China was presented. It was found that the industrial enterprises of the whole nation can save 414.8 hundred million USD per year (a lowest figure selected) (1.55% of gross national product, GNP, 2006) by means of the industrial application of tribology. Just based on this investigation, it was concluded that “making tribology green”/green tribology is now able to provide full technical support to the preservation of resources and energy, environmental protection, and improvement of quality of life, and even to reduce natural disasters, and so it is certainly an important way forward to a Friction 1(2): 186–194 (2013) sustainable society [2]. This lecture had every attention of Professor Jost. In the following year, Jost promoted the Chinese Tribology Delegation’s visit to the UK and suggested that the subject of this visit be green tribology: saving energy and materials, improving the environment and the quality of life [3]. During this visit, a keynote address was delivered by the present author, in which the definition, major tasks, and main contents of green tribology were explained. Moreover, the view that “green” embodies an ideology, sense, and values was advanced [4]. In this very period, after repeated deliberating with Jost, an exact definition of green tribology was determined. Soon after, Jost delivered an opening address under the distinct title of “Green Tribology—A footprint where economies and environment meet” at the Fourth World Tribology Congress in Kyoto. He introduced the definition and main objectives of green tribology, and indicated that the expression “green tribology” was first used by Professor Si-weir Zhang about 2 years previously and was launched as a tribology policy in London on June 8 of the same year. This date can be regarded as the acknowledged birthday of green tribology as an international concept [5]. It has since spread rapidly and has become an integral part of tribology in several major countries [6]. The above is a brief historical retrospective on the emergence of green tribology. In recent years, a number of papers, academic books, and reports related to this area have been presented [1, 6−12]. However, up to now, there have been few articles expounding the concepts, objectives, disciplinary features, and technological connotations of green tribology in precise terms and in an all-round way. As green tribology is a new field of tribology still in its infancy, an exact understanding of its fundamentals is essential for further development. Connected with this, the aim of this current work is to clarify the fundamental basics and the developing directions of green tribology based on the analysis, generalization, and summation of the research achievements of green tribology, but it is not intended to review progress in this new field. 187 2 Concepts, definition, and objectives The basic objectives of tribology are “controlling friction, reducing wear, and improving lubrication.” Therefore, the saving of energy and materials is certainly one of the main objectives. Obviously, in this respect, tribology is much better able to meet the demands of a sustainable society. However, it did not consider the ecological balance and environmental impact at that time owing to the limitations of the times. Thereupon, green tribology emerged to keep abreast of the sustainable developments of nature and society. “Green” is meant as a new mode of thinking that represents views on ecological balance and environmental protection, and so embodies the ideology of the sustainable developments of nature and society perfectly. The main task of green tribology is to study and develop the tribological theories, methods, and technologies with the new mode of thinking and a completely new angle of view as stated above. Green tribology is defined as the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts [3−5]. Green tribology might be regarded as a subdiscipline of tribology, such as nanotribology and biotribology. These subdisciplines are all within the general concept of tribology but place more emphasis on their specific characteristics. However, compared with the other subdisciplines of tribology, green tribology is an interdisciplinary subject intersected with a wide range of subjects, such as energy science, environmental science, ecology, science of materials, life science, geosciences, and green chemistry (environmental benign chemistry) [9]. In a broad sense, green tribology involves tribology for life (human biotribology), biomimetic tribology, renewable energy tribology, and a part of geotribology [9]. Guided by the viewpoint of sustainable development of resources and environment, the main objectives of green tribology are the environmental-friendly saving of energy and materials, and the enhancement of the environment and quality of life [3−5]. Thus, the concepts and objectives of green tribology might be summarized into 3L + 1H, namely, low energy consumption, low discharge (CO2), low environmental Friction 1(2): 186–194 (2013) 188 cost, and high quality of life. The mission of green tribology is researching and developing tribological technologies to reach the main objectives, thus making the sustained artificial ecosystems of the tribological parts and tribo-systems in the course of a lifecycle [9]. In view of this, green tribology is a subdiscipline of tribology mainly concerning the environmentally friendly consumption of resources and energy, and the environmental and biological impacts. Moreover, it is also an independent science and technology with definite disciplinary character, namely, researching and applying the tribological theories and technologies forward to a sustainable society and nature. Therefore, in a sense, green tribology could be defined as the science and technology of research on the tribological theories and technologies and the practices related to a sustainable society and nature, and might also be termed “tribology for sustainability” or “sustainable tribology.” Fig. 1 Features of developed tapered roller bearing (TRB) [16]. hybrid bushings in automotive aggregates [17]. It exhibited a much lower coefficient of friction and specific wear rate in comparison to the commercial product, leading to a pronounced reduction in fuel consumption and a better engine efficiency. 3.1.2 Technologies for super-low friction and wear resistance 3 3.1 Technological connotations (research contents/areas) Sustainable tribo-techniques for saving energy and materials, and increasing the lifetime of tribological parts and tribo-systems 3.1.1 Technologies for improving the fuel economy of engine systems Environmental impact and energy consumption have made the improvement of the fuel economy of engine systems an important issue. For this purpose, a number of new lubricants were developed, such as PAO(Polyalpholefin)-based lubricants [13] and new types of synthetic esters [14]. In addition, DLC-Si coating with diesel fuel lubrication has a larger effect on friction reduction than coating with engine oil lubrication [15]. A super-low friction torque tapered roller bearing (TRB) applied to the rear axle differential for passenger cars was developed [16], which obtained a friction torque reduction of up to 75% compared with the conventional low friction torque TRB. Its three features are shown in Fig. 1. A new nanoparticle-modified polyetheretherketone (PEEK) composite was used as the thin coating for A novel fullerene-like hydrogenated carbon film was prepared by pulse bias-assisted plasma enhanced chemical vapor deposition, and its mechanical and tribological properties were investigated [18]. This film exhibited super-low friction and wear in both dry inert and humid ambient atmospheres and less sensitivity to H2O and O2 molecules in air. The mechanism responsible for excellent tribological properties in AlMgB14-TiB2 nanocomposite coatings was identified as oxidation of the TiB2 phase and subsequent reaction of the oxide with moisture to produce a surface layer of boric acid, B(OH)3 [19]. These coatings show sustained friction coefficient values as low as 0.02 in water-glycol-based lubricants, and offer a unique combination of excellent wear resistance and low friction when combined with the high hardness of the mixed-phase composite (30–35 GPa). The wear behaviors of ultra-high molecular weight polyethylene (UHMWPE) coated with hydrogenated diamond like carbon (DLCH) layers were investigated [20]. It was found that the surface hardness and the wear resistance of coated materials were increased compared to that of an uncoated one. The DLCH coatings could be a potential method to reduce backside wear in modular implants. Friction 1(2): 186–194 (2013) 3.2 3.2.1 Sustainable tribo-techniques for removing or reducing the harmful effects on ecological balance (including human health) produced by both tribological parts and tribo-systems in the course of a lifecycle Eco-/bio-lubricants Environmental issues are leading to a growing interest in eco- and bio-lubricants. However, the perfect ecoand bio-lubricants should be eco-non-toxic and biodegraded quickly, and moreover, capable of sustainable large-scale production. SAPS (phosphorus and sulfur)-free additive KWF012122 derived from natural resource “amino acids” was developed [21]. More recently, the use of chitin, chitosan, and acylated derivatives as thickener agents of vegetable oils has been explored [22]. Sliding friction was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans [23]. The structure of biofilms consisted of microbial cells, and their hydrated exopolymeric matrix acts as a lubricant. Very low friction was found on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. This result is of particular significance for dental implant connections and prosthetic joints. Hydration lubrication is a new area explored recently. Klein [24] pointed out that combining the supramolecular benefits of polymer brushes together with the highly hydrated nature of zwitterionic phosphorylcholine monomers could provide important advantages in designing extremely efficient boundary lubricants. Recently, much research and the development of new bio-based metal working fluid based on various vegetable oils have been engaged. From the viewpoint of the qualities required of metal working fluids, the advantages and disadvantages of vegetable oils as lubricants were listed (Table 1) [25]. More recently, Winter and coworkers [26] described the use of ecologically benign lubricants as cutting fluid and hydraulic fluid. They analyzed the usability and resulting technological and ecological consequences of water miscible biopolymers as a substitute, and confirmed the good performance of the polymer fluid as an optimal ecologically benign lubricant for metal processing and hydraulic systems. 189 Table 1 Advantages and disadvantages of vegetable oils as lubricants [25]. Advantages Disadvantages High biodegradability Low thermal stability Low pollution of the environment Low oxidative Compatibility with additives High freezing points Low production cost Poor corrosion protection Wide production possibilities Low toxicity High flash points Low volatility High viscosity indices Tribological study and case analyses of the elastomeric bearings lubricated with seawater for marine propeller shaft systems were conducted [27]. 3.2.2 Biomimetic tribological materials and tribo-techniques As living beings have natural adaptability to ecological environments, biomimetic tribological materials and tribo-techniques became an important area of green tribology. To obtain a much adhesive erosion-protection surface on the hydraulic construction (flood-way concrete structure), UHMWPE was applied as an erosion-resistant material under the condition of high sand-content slurry erosion, and a bionic surface structure based on the epidermis of sandfish and the clamp of a dragonfly’s wing was developed by Jian Li and Chengqing Yuan (Fig. 2). This technique has Fig. 2 Bionic surface structure based on the epidermis of sandfish and the clamp of dragonfly’s wing. Friction 1(2): 186–194 (2013) 190 provided the concrete structure with good protection after three flood seasons (Personal communication, 2010). More recently, the mechanisms of sand erosion resistance of the desert scorpion (Androctonus australis) were investigated to improve the erosion resistance of tribo-components [28]. It was found that the functional surfaces used for sand erosion resistance of the desert scorpion were constructed by the special microtextures such as bumps and grooves. 3.2.3 Noise reduction Brake squeal is a very complex phenomenon. There is as yet neither a complete understanding of the problem nor a generalized theory of squeal mechanism. Recently, an investigation on brake squeal noise was carried out on simplified experimental rigs [29]. It was concluded that a squeal-free design of a brake system should consider not only the out-of-plane dynamics but also the in-plane dynamics, and the role of damping must be thoroughly considered. Moreover, it was found that the stick–slip, detachment between disc and pad, and other nonlinear characteristics of the brake, did not affect the squeal propensity of the brake but played a relevant role on the amplitude of the radiated sound. 3.2.4 Application of lifecycle assessment (LCA) to tribological technologies Recently, Bartz [30] advanced that the green automobile has to be green from the cradle to grave. This means that the lifecycle assessment (LCA) should be the required approach. A procedure based on the digraph and matrix method was developed for modeling and evaluation of the LCA of a tribo-element [31]. This procedure is not only useful for the evaluation of LCA of triboelements at the operational stage, but can also be used for the design and development of tribo-elements at the system design stage from the viewpoint of LCA. An environmental approach to environmentally friendly hydraulic fluid was conducted by MullerZermini and Gaule [32]. They pointed out that the facts of environmental law can be visualized with the sustainability pyramid (Fig. 3), and only a comprehensive lifecycle assessment can show to which category a product belongs. Fig. 3 Sustainability pyramid for hydraulic fluids [32]. 3.3 Research on the tribological aspects of the natural ecological environment (including atmosphere, water, and soil, etc.) and natural disaster (including earthquake, landslide, mudrock flow and volcanic eruption, etc.), which mainly focused on the role, mechanisms, and effects of friction Xianshuihe fault located in the Tibetan plateau in China is a highly active strike-slip fault. To understand its historical seismicity characteristics and to obtain insight into its seismic potential, a numerical simulation of seismic activity was performed using a rate- and state-dependent friction law [33]. It was found that the cumulative distribution function of the recurrence intervals of simulated earthquakes at each segment approximately obeys a Brownian passage time distribution or a lognormal distribution. Later on, using a rate-, state-, and temperaturedependent friction law, a numerical method was developed to investigate the effects of frictional heating and thermal advection on pre-seismic sliding [34]. Han and coworkers [35] investigated the ultra-low friction of carbonate faults caused by thermal decomposition. They demonstrated that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06; moreover, this thermal decomposition may be an important process for the dynamic weakening of faults. 3.4 Tribological technologies for providing technological support to the equipment of both renewable and clean energy Meeting future world energy needs while addressing Friction 1(2): 186–194 (2013) climate change requires deployment of various renewable and clean energies as alternatives to traditional fossil energy; examples include wind energy, solar energy, marine energy, nuclear energy, geothermal energy, and so on. Frictional contacts in wind energy plants are found in gears and bearings. Due to severe operating conditions, the average lifetime of main bearings and multiplier gears is between 5–7 years in Western Europe and about 2–3 years in Asian countries [36]. REWITEC nanocoatings is a metal treatment that can be applied to gearboxes and bearings during regular operation for restoration of its efficiency and economy [37]. The documented tests and evaluations of gearbox operation were reviewed for the REWITEC technology. It has been proven that this technology was validated for improvement of operation in wind turbine gears. Taking specific areas with micro-pitting in the metal surfaces of a wind turbine gear before the application of REWITEC and after 6 months of treatment it was found that the surface damages are filled and the asperities smoothened, and thus the surfaces were smoother with higher surface contact area (Fig. 4). Heemskerk [38] pointed out that wind turbines are complex dynamic systems that require advanced technologies (including tribology) to yield answers to service life and early failure issues. He suggested focusing on nine areas for tribology R&D applied to wind turbine rolling bearing. A six-degree-of-freedom dynamic bearing model (DBM) has been used to simulate roller-raceway slip for a cylindrical roller bearing used in an intermediate shaft location of a wind turbine gearbox [37]. It was found that significant slip occurred during rapid transient accelerations and decelerations, but these high slip conditions decayed to a much lower level of slip at steady state. Moreover, extreme slip occurred for low load and high speed conditions because of concomitant contact area reduction and traction loss at the roller-raceway interfaces. Based on a literature review related to the study of the phenomenon of micro-pitting in wind turbine gearbox roller bearings, a proposed test scheme could be created from which a method to predict the risk of micro-pitting might be determined [39]. 191 Fig. 4 Images in 3D for the metal surface before and after treatment with REWITEC with 6 months difference [36]. The tribology of three marine energy conversion devices, namely, offshore wind turbines, tidal turbines, and wave machines has been reviewed [40]. These devices are sensitive to operation and maintenance costs and thus rely on functioning tribological parts and lubrication. 4 Developing directions Faced with a great number of tribological problems demanding prompt solution, which relate to the earth-scale environmental pollution and crisis of energy, green tribology should be extended in the following areas. 4.1 Large-scale deployment of existing knowledge, methods, and technologies of green tribology More recently, three tribological case studies (micro Combined Heat and Power systems, slipways, recycled plastics) presented by Tzanakis and coworkers are the outstanding examples in this aspect [12]. Friction 1(2): 186–194 (2013) 192 4.2 Research and development of novel green tribological technologies (1) Low-carbon bio- and ecolubricants Halogen-free and biodegradable oils Carbon-neutral vegetable oils (2) Environmental-friendly tribological materials and coatings Tribological applications of ecomaterials Biological coatings applied on the surface of implants or medical devices (3) New tribo-techniques based on bionics 4.3 Making the traditional tribo-materials and lubricating materials “green” in the course of a lifecycle, namely, realizing cleaner production or ecodesign of the above materials 4.4 Research and development of tribo-techniques to support diversification and hybridization of renewable and clean energy 4.5 Building up the theory and methodology of green tribology (1) Setting up the theories and methods of analyses and evaluation of sustainability (including value of environmental and ecological impacts, value of saving energy, etc.) for tribological parts, tribosystems, and tribo-techniques. (2) Research on the theories and methods of integration of different green tribological techniques, and of the effects of coupling and coordinating among various areas of green tribology. 5 Concluding remarks Green tribology plays a unique role in developing a low-carbon economy, dealing with environmental pollution, the energy crisis, and climate change on a global scale. Therefore, it is one of the important ways forward to a sustainable society. Just as Jost pointed out, “…the cause of Green Tribology is indeed a worthy cause for all tribologists and their organizations to pursue, as it will help tribology to play its rightful part, not only for the benefit of science and technology, but much more importantly, for the benefit of mankind…” [6]. Consequently, tribologists ought to dedicate their best efforts to the development and application of green tribology, thus adding valuable contributions to the existence and development of humanity. In this paper, the definition, disciplinary features, objectives, mission, technological connotations, and the future developing directions of green tribology have been expounded comprehensively. These findings may contribute to laying the foundations for further advancement in green tribology. Acknowledgments The author wishes to express his sincere thanks to Prof. Jost for his energetic support, fruitful discussions, and valuable suggestions while green tribology was advanced. Also, the author would like to acknowledge Prof. Jian Li from Wuhan Research Institute of Materials Protection and Prof. Chengqing Yuan from Wuhan University of Technology for generously affording their unpublished achievements in scientific research to be quoted in this article. Assistance provided by Dr. Huiqing Lan of Beijing Jiaotong University during manuscript preparation is appreciated. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References [1] Zhang S W. Investigation concerning the developing directions of tribology in China (in Chinese). Tribology 21: 321–323 (2001) [2] Zhang S W. Current industrial activities of tribology in China. Plenary Lecture to the 5th China International Symposium on Tribology (CIST) 2008, Beijing, 2008. [3] 30th Anniversary and “Green Tribology”—Report of a successful Chinese Mission to the United Kingdom (7th to 14th June 2009), Tribology Network of Institution of Engineering and Technology, 2009. [4] Zhang S W. Tribological application in China and green tribology. Institution of Engineering and Technology. London UK, 2009. [5] Jost H P. Green tribology—A footprint where economies Friction 1(2): 186–194 (2013) [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] and environment meet. Address to the 4th World Tribology Congress, Kyoto, 2009. Jost H P. Development of green tribology—An overview. Seminar—New Direction in Tribotechnology, Moscow, 2010. Nasonovsky M, Bhushan B. Green Tribology. Phil Trans R Soc A 368: 4675–4676 (2010) Nasonovsky M, Bhushan B. Towards the “Green Tribology”: Biomimetic surfaces, biodegradable lubrication, and renewable energy. In Proceedings of STLE/ASME International Joint Tribology Conference, San Francisco, 2010. Zhang S W. Green tribology—The way forward to a sustainable society. In Proceedings of the International Tribology Congress—ASIATRIB 2010, Perth, Australia, 2010: 6. Tzanakis I, Hadfield M, Thomas B, Noya S M, Henshaw I, Austen S. Future perspectives on sustainable tribology. Renewable and Sustainable Energy Reviews 16: 4126–4140 (2012) Nasonovsky M, Bhushan B (Eds). Green Tribology: Biomimetics, Energy Conservation and Sustainability. Berlin: Spring, 2012. Assenova E, Majstovovic V, Vencl A, Kandeva M. Green tribology and quality of life. International Journal of Advanced Quality 40: 1–6 (2012) Deitz T G. Advanced PAO based industrial lubricants for improved energy efficiency. In Proceedings of the 4th World Tribology Congress, Kyoto, 2009: 39. Hirao K, Yamada M, Kijki T, Maekawa N. Environment and energy saving by use of synthetic esters. In Proceedings of the 4th World Tribology Congress. Kyoto, 2009: 38. Koyamaishi N, Murakami M, Komiya K, Moritani H. Study of future oil. In Proceedings of the 4th World Tribology Congress. Kyoto, 2009: 577. Matsuyama H, Kawaguchi K, Uemura A, Masuda N. Development of super-low friction torque tapered roller bearing for high efficiency axle differential. In Proceedings of the 4th World Tribology Congress, Kyoto, 2009: 591. Friedrich K, Almajid A A. Polymer composites in triboapplications with elongated maintenance intervals and reduced energy consumption. In Proc International Tribology Congress—ASIATRIB 2010, Perth, Australia, 2010, K3. Ji L, Li H, Zhou F, Quan W, Chen J, Zhou H. Fullerene-like hydrogenated carbon films with super-low friction and wear, and low sensitivity to environment. J Physics D: Applied Physics 43: 015404 (2010) Higdon C, cook B, Harrings J, Russell A, Gddsmith J, Qu J, Blan P. Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings. Wear 273: 2111–2115 (2011) Puértolas J A, Martínez-Nogués V, Martínez-Morlanes M J, 193 [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Mariscal M D, Medel F J, López-Santos C, Yubero F. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon. Wear 269: 458–465 (2010) Numazaki R, Nakayama S, Inayama T, Nakayama S, Inayama T, Isogai Y, Minami I, Mori S. Contribution for energy saving by novel environmental lubricants containing derivatives from natural resource. In Proceedings of the 4th World Tribology Congress, Kyoto, 2009: 41. Sanchez R, Stringari G B, Franco J M, Valencia C, Gallegos C. Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydrate Polym 85: 705–714 (2011) Souza J C M, Henriques M, Oliveira R, Teughels W, Celis J-P Rocha L A. Biofilms inducing ultra-low friction on Titanium. J Dent Res 89: 1470 (2010) Klein J. Hydration lubrication: Exploring a new paradigm. In Proceedings of the China 6th International Symposium on Tribology, Lanzhou, China, 2011: 1–2. Shashidhara Y M, Jayaram S R. Vegetable oil as a potential cutting fluid—An evolution. Tribol Int 43: 1073–1081 (2010) Winter M, Herfellner T, Malberg A, Eisner P, Dwuletzki H, Zein A, Bock R, Hermann C. Mineral oil free machine tool-the usage of ecologically benign lubricants as coolant and fluid. In Proceeding of the 18th International Colloquium Tribology, Stuttgart/Ostfildern, Germany, 2012: 143. Hirani H, Verma M. Tribological study of elastomeric bearings for marine propeller shaft system. Tribology International 42: 378−390 (2009) Han Z, Zhang J, Ge C, Wen L, Lu R. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir 28: 2914–2921 (2012) Akay A, Giannini O, Massi F, Sestieri A. Disc brakes squeal characterization through simplified test rigs. Mechanical Systems and Signal Processing 23: 2590–2607 (2009) Bartz W J. The green automobile–definition and realization. In Proceedings of the China 6th International Symposium on Tribology, Lanzhou, China, 2011: 73. Wani M F, Anand A. Life-cycle assessment modelling and life-cycle assessment evaluation of a triboelement. Proc IMechE Part J: J Engineering Tribology 224: 1209–1220 (2010) Muller-Zermini B, Goule G. Environmental approach to hydraulic fluids. In Proceeding of the 18th International Colloquium Tribology, Stuttgart/Ostfildern, Germany, 2012. Kato N, Lei X, Wen X. A synthetic seismicity model for the Xianshuihe fault, southwestern China: simulation using a rate-dependent friction law. Geophys J Int 169: 286–300 (2007) 194 Friction 1(2): 186–194 (2013) [34] de Lorenzo S, Lodds M. Effect of frictional heating and thermal and advection on pre-seismic sliding: a numerical simulation using a rate-, state- and temperature-dependent friction law. J Geodynamics 49: 1−13 (2010) [35] Han R, Shimamoto T, Hiroset Ree J H, Ando J. Ultralow friction of carbonate faults caused by thermal decomposition. Science 316: 878−881 (2007) [36] Bill S. BEWITEC surface technology-Reconditioning and durable wear protection for high loaded gearboxes and bearings in wind turbines. In Proceedings of the 18th International Colloquium Tribology, Stuttgart/Ostfildern, Germany, 2012. [37] Kang Y S, Evans R D, Doll G L. Roller-raceway slip simulations of wind turbine gearbox bearings using dynamic bearing model. In Proceedings of STLE/ASME International Joint Tribology Conference, San Francisco, USA, 2010: 407–409. [38] Heemskerk R S. Tribology for wind turbines: R&D needs to increase sustainability of the technology. In Proceedings of the 37th Leeds—Lyon Symposium on Tribology, Leeds, UK, 2010. [39] Harris T A, Kotzalas M N. Predicting micro-pitting occurrence in wind turbine gearbox roller bearings. In Proceedings of STLE/ASME International Joint Tribology Conference, San Francisco, 2010. [40] Wood B J K, Bahaj A S, Turnock S R, Wang L, Evans M. Tribological design constraints of marine renewable energy systems. Philosophical Transactions of the Royal Society A 368: 4807–4827 (1929) Si-wei ZHANG is the professor of Tribology and Mechanical Engineering of the China University of Petroleum in Beijing. From 1982 to 1984, as a visiting professor, he studied in tribology of polymers at the Institute of Polymer Science, University of Akron, and then at the Tribology Laboratory, Department of Mechanical Engineering and Applied Mechanics, University of Michigan in USA. In 1987, he conducted researches in the field of elastomer tribology at the Department of Chemical Engineering, Imperial College in UK. His professional interests include tribology and oilfield equipment. He mostly conducted and supervised in tribology of polymers, friction materials, nanotribology and tribological components. And more recently, he is interested in green tribology and interface engineering. He is the Chairman of the Advisory Board of Chinese Tribology Institution, the Associate Editor-in-Chief for both journals Advances in Tribology (USA) and Tribology (China). Also, he is the member of Advisory Editorial Board of journal Petroleum Science (English edition, China) and the member of International Advisory Editorial Board of journal Tribology International (UK).
© Copyright 2026 Paperzz