Open Access UGB Journal of Plant Biology and Biotechnology Research Article An Insight into the Diversity and Phylogenetic Implications of NAC Transcription Factors across the Plant Groups Rakhi Chakraborty1 and Swarnendu Roy*2 1 Department of Botany, A. P. C. Roy Government College, Matigara, Siliguri - 734010,West Bengal, INDIA 2 Molecular & Analytical Biochemistry Laboratory, Department of Botany, University of Gour Banga, Mokdumpur, Malda - 732103, West Bengal, INDIA *Corresponding author: Swarnendu Roy, Molecular & Analytical Biochemistry Laboratory, Department of Botany, University of Gour Banga, Mokdumpur, Malda - 732103, West Bengal, INDIA Email: [email protected] Received: January 6, 2017; Accepted: January 7, 2017; Published: January 26, 2017 Abstract NAC transcription factors (TFs) are one of the largest and important TF family that are involved in the regulation of plant growth and development. Several NAC TFs are also discovered that play an important part in the regulation of other stress related genes under biotic and abiotic stresses. The NAC TFs are characterized by a highly conserved N-terminal domain and a variable C-terminal domain. In the present study, the amino acid sequences of NAC TFs from 4 plant species viz. Arabidopsis thaliana, Picea abies, Selaginella moellendorffii and Physcomitrella patens were collected from the Plant Transcription Factor Database and the phylogenetic relationships were evaluated. The phylogenetic tree revealed that the majority of the NAC members were interspersed in the major subgroups that indicated that the expansion of the NAC members predates the speciation events. 31, 5, 1 and 10 paralog pairs were determined respectively for Arabidopsis, Picea, Selaginella and Physcomitrella. The structure-function relationship of the paralog pairs were inferred from the phylogenetic tree of combined set of paralogous gene pairs by studying the prevalence of flanking regions and motif analysis of the NAC proteins. The motif analysis revealed the presence of an N-terminal conserved domain, a characteristic of the majority of NAC family proteins. Conserved motifs in the C-terminal region were absent in the majority of the protein sequences except few members in Arabidopsis and Physcomitrella. Also the time of gene duplication of the paralog pairs were calculated that revealed that in Arabidopsis, the duplication events occurred between 4.48 to 45.94 MYA; in Picea, 167.57 to 532.86 MYA; and in Physcomitrella, 29.12 to 53.53 MYA. Keywords: NAC transcription factors; Phylogenetic tree; Gene duplication; Motif analysis; Conserved domain INTRODUCTION NAC transcription factors (TFs) are one of the major plantspeci icTFsthatareinvolvedinregulationofplantgrowthand development (Nuruzzaman et al., 2013; Shao et al. 2015). TheseTFsderiveitsnamefromthreedifferentidenti iedgenes, viz. NAM (no apical meristems), ATAF 1/2 (Arabidopsis transcription activation factor) and CUC 2 (cup-shaped cotyledon)(Soueretal.,1996;Aidaetal.,1997;Olsenetal., 2005). Members of NAC superfamily share a conserved NterminaldomainandavariableC-terminaldomain(Xieetal., 2000). The DNA-binding N-terminal domain consists of approximately150-160aminoacidresidueswhichhasbeen againdividedinto5sub-domains,buttheC-terminaldomainis highlyvariablebothinlengthandaminoacidresidues(Ookaet al.,2003). DistributionofNACTFsinawiderangeofplantspecieshas lead to extensive investigation in the identi ication and UGB J Plant Biol Biotech - Volume 1 Issue 1 - 2017 ISSN: Applied for | www.ugbplantjournal.org © All rights are reserved. Department of Botany, UGB Citation: characterization of these genes. Complete set of NAC TFs in differentspecieshavebeenreported,viz.151inrice,117in Arabidopsis,152insoyabean,180inapple,204incabbageand soon(Nuruzzamanetal.,2010;Nuruzzamanetal.,2013;Leet al.,2011;Suetal.,2013).Altogethermorethan80plantspecies with or without complete genome sequences have been characterisedforNACTFs(Jinetal.,2014).However,noNAC TFsfrombacteria,algaeandfungihavebeenreportedtilldate (Kikuchi,2014). NACTFsareinvolvedinalargenumberoffunctionsincluding root and shoot development, loral morphogenesis, leaf senescence, seed and embryo development and cell cycle regulationindifferentplantspecies(Uauyetal.,2006).Apart from these, NAC TFs also plays modulatory roles in plant responses to biotic and abiotic stresses (Nakashima et al., 2012,Puraniketal.,2012).Upregulationofdroughttolerance genesattranscriptionallevelwasconferredby3NACgenesin Arabidopsis thaliana, viz. ANAC019, ANAC055 and ANAC072 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS (Tran et al., 2004). According to Jensen et al., 2010, ABA hypersensitivity is conferred through positive regulation of ABA signalling, which may be due to ectopic expression of ANACO19.Similarly,mitochondrialretrogressiveregulationis mediated by ANAC013 in response to oxidative stress (De Clercqetal.,2013).SNAC1geneexpressioninricesigni icantly increasescropproductionwhensubjectedtoseveredrought andsalinitystress(Huetal.,2006).Recentstudiesincassava isolated96NACgenes(MeNAC)whichconferawidedegreeof tolerance to several stress factors like salinity, temperature, ABA,andH2O2(Huetal.,2016).Alsoinsoyabean,six(GmNAC1, GmNAC2, GmNAC3, GmNAC4, GmNAC5 and GmNAC6) are activelyinvolveduponexposuretovariousstressconditions (Pinheiroetal.,2009). The objective of this study was to evaluate the phylogenetic relationshipofthemembersofNACproteinfamilyacrossthe4 speciesofmajorplantgroups,viz.Arabidopsisthaliana,Picea abies, Selaginella moellendorf ii and Physcomitrella patens. Also,thestudyoftheexpansionoftheNACproteinfamilyand thepossibleimplicationsofthisexpansionwasundertakenby evaluating the paralogous gene pairs as inferred from the phylogenetic tree; for which an in silico approach has been takenwiththeaidofseveralbioinformaticstools. MATERIALSANDMETHODS Retrieval of NAC TF sequences and construction of phylogenetictree:AminoacidsequencesencodingNACTFs from4plants,viz.Arabidopsisthaliana,Piceaabies,Selaginella moellendorf iiandPhyscomitrellapatenswereretrievedfrom the Plant Transcription Factor Database v3.0 (PlantTFDB) (http://planttfdb.cbi.pku.edu.cn/) (Jin et al., 2014). The sequences were saved in FASTA format and renumbered for phylogenetic analyses. The combined unrooted phylogenetic treeofalltheNACTFswereconstructedwithMEGA7.0using the Neighbor-Joining (NJ) method with the bootstrap test carried out with 1000 iterations (Kumar et al., 2016). The resultingtreewascrticallyanalysed,remodelledanddisplayed using Fig Tree v1.4.2 (http://tree.bio.ed.ac.uk/software/ igtree/). Retrieval of genomic sequences and phylogenetic divergenceofcorrespondingparalogs:TheparalogsforNAC TFsinArabidopsis,Picea,SelaginellaandPhyscomitrellawere inferred from the phylogenetic tree. The corresponding genomicsequencesforthepolypeptideswereretrievedfrom different databases: The Arabidopsis Information Resource (TAIR, https://www.arabidopsis.org/) for Arabidopsis, Congenie(https://congenie.org/)forPicea,JGIPhytozome11 ( h t t p s : / / p hy t o z o m e . j g i . d o e . g o v / p z / # ! i n f o ? a l i a s = Org_Smoellendor f ii) for Selaginella and EnsemblPlants (http://plants.ensembl.org/Physcomitrella_ patens/Info/ Index)forPhyscomitrella.Aphylogenetictreewasconstructed usingthenucleotidesequencesoftheparalogswithMEGA7.0 andthecorrespondingintron-exonjunctionsweredisplayed with the aid of Gene Structure Display Software (GSDS 2.0, http://gsds.cbi.pku.edu.cn/)(Huetal.,2015). Estimation of synonymous and non-synonymous substitution rates: Multiple sequence alignments of the www.ugbplantjournal.org Page 02 amino acid sequences of the inferred paralog gene pairs of Arabidopsis, Picea and Selaginella was performed with MUSCLE3.8(http://www.ebi.ac.uk/Tools/msa/muscle/).The alignedaminoacidsequencesandtheircorrespondingcDNA sequences were introduced in to the server of PAL2NAL (http://www.bork.embl.de/pal2nal/) and the estimation of thesynonymous(Ks)andnon-synonymous(Ka)substitution rates were performed using the CODEML program in PAML interface(Suyamaetal.,2006).Time(millionyearsago,MYA) ofduplicationanddivergenceofeachparaloggenepairswere calculatedusingtheformula,T=Ks/2λ,whereKsreferstothe rateofsynonymoussubstitutionsandλreferstotheclocklike ratesofsynonymoussubstitutionsthatvariesfromspeciesto species.ForArabidopsis,thevalueofλwastakentobe1.5X10-8 (Kochetal.2000);forPicea,thevalueofλwastakentobe0.68X 10-9(Buschiazzoetal.2012)andforPhyscomitrella,thevalueof λwastakentobe0.94X10-8(Rensingetal.2007,2016). Identi ication of conserved motifs and domains: The programMEMEversion4.11.2wasusedfortheelucidationof motifsintheNACproteinsequencesoftheparalogousgenes (Bailey et al., 2009). MEME was run with the following parameters: number of repetitions - zero or one, maximum number of motifs - 20, and the optimum motif widths were constrainedtobetween6and50residues.TheNCBIConserved Domain Database search (https://www.ncbi.nlm.nih.gov/ Structure/cdd/wrpsb.cgi)wasalsoperformedwiththesame setofsequencestoanalyzethepresenceofconserveddomains and the relative position of the conserved domains in the sequence(Marchler-Baueretal.,2015). RESULTS Collection of NAC TF sequences: The protein sequences of NACTFsof4plantgenomes,Arabidopsis,Picea,Selaginellaand Physcomitrella were downloaded from PlantTFDB v3.0 and compiled in to FASTA format for phylogenetic analysis. The number of sequences that were retrieved and used for phylogeneticanalysiswas137,91,22and35respectivelyfor Arabidopsis, Picea, Selaginella and Physcomitrella. NAC TF sequences in Arabidopsis ranged from 87 to 806 amino acid residues;inPicearangedfrom101to940aminoacidresidues; inSelaginellarangedfrom128to474aminoacidresidues;and inPhyscomitrellarangedfrom243to710aminoacidresidues. Phylogenetic relationships of NAC TF sequences in Arabidopsis, Picea, Selaginella and Physcomitrella: The phylogenetic relationship among the NAC TF proteins in Arabidopsis,Picea,SelaginellaandPhyscomitrellawasdoneby constructing an unrooted tree from alignments of the fulllength NAC protein sequences (Figure 1). The phylogenetic treewasconstructedusingMEGA7.0usingNeighbor-Joining (NJ)method.Acloseintrospectionofthephylogenetictreeled tothedistributionoftheNACTFsinto12distinctsubgroups that are depicted in different colours. The subgroups were designatedasA1,A2,B,C,D,E,F,G,H,I,JandKforsimplicityof analysis. Among the subgroups, B and D were the largest followedbyA1andA2.Amongthesesubgroups,theNACTFs from all the 4 species were found to be interspersed that indicatedthattheexpansioneventsofNACproteinspredates thedivergenceofthestudiedspecies.Thisrevelationalsoholds UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS correctforthesubgroupsGandJ.Incontrast,thesubgroupH andIcomprisedof15and5AtNACTFsrespectivelyonly,which suggestsexpansionofthememberofthissubgroupoccurred mostrecentlyafterthediversi icationoftheangiospermstock. Moreover,thesubgroupFrevealedtheoccurrenceof3AtNACs (AtNAC13,AtNAC94,AtNAC129)alongsidethePiceaNACTFs. This indicated the expansion of this subgroup following the divergenceofgymnosperm–angiospermstockfromthelower groupofplantsandthesubsequentdivergenceofthe3AtNAC TFsfromthegymnospermstock. Figure1.PhylogenetictreeofNACTFsfromArabidopsis,Picea, Selaginella and Physcomitrella. The deduced full-length amino acidsequencesof137,91,22and35membersinArabidopsis, Picea,SelaginellaandPhyscomitrellaNACproteinsrespectively were aligned by MUSCLE 3.8 and the phylogenetic tree was constructedusingMEGA7.0bytheNeighbor-Joining(NJ)method with 1000 bootstrap replicates. Each NAC subfamily has been separatedandisdepictedusingdifferentcolours. Determinationofparalogsandevaluationofphylogenetic relationship of the paralog genes: The paralog pairs were inferredfromthephylogenetictreeofthefulllengthprotein sequencesoftheNACTFs(Figure1).31,5,1and10paralog pairs were determined respectively for Arabidopsis, Picea, Selaginella and Physcomitrella. Both tandem and segmental duplicationeventscontributedtotheexpansionofNACTFsin alltheplantgroups;butinArabidopsisandPhyscomitrella,the contributionoftheseduplicationeventsintheexpansionofthe gene family was more pronounced. A phylogenetic tree was reconstructed taking the genomic sequences of the paralog pairs using NJ method and the subsequent intron-exon junction was displayed using GSDS 2.0 (Figure 2). The phylogenetictreerevealedthattheparaloggenesinSelaginella shareacommonancestrywiththeparalogpairsinArabidopsis. Interestingly, the paralog pairs in Picea with large introns shared a common ancestry with the paralog genes in Arabidopsis.Theintrondistributionalsoprovidedimportant evidencetosupportphylogeneticrelationshipsoftheparalog pairsofthespeciesstudied.InArabidopsis,numberofintrons www.ugbplantjournal.org Page 03 rangedfrom2(viz.AtNAC109,AtNAC135)to6(viz.AtNAC17, AtNAC18).Thesizesoftheintronswerecomparativelysmaller ascomparedtothatinotherspecies,largestintronsupto1.5 Kb observed in AtNAC98 and AtNAC99. In Picea, number of introns ranged from 2 (viz. PaNAC37, PaNAC48) to 8 (viz. PaNAC14).ThelargestintronswereobservedinPiceawhich rangedfrom8-10KbasseeninPaNAC3,PaNAC7andPaNAC14. OnlyonepairofparaloggenewasdeterminedinSelaginella that showed 1-2 very small introns with a relatively large upstream non-coding region in SmNAC10. In contrast, in Physcomitrella,numberofintronsrangedfrom1(viz.PpNAC14, PpNAC15)to3(viz.PaNAC33,PpNAC35);withrelativelylarge upstreamregions(viz.PpNAC14,PpNAC15)anddownstream regions(viz.PpNAC6). Evolutionary pattern of paralog genes: The presence of highlyidenticalandconserved lankingregionsforthepairsof paralogous genes, suggest that the expansion of paralogous NACgenesinitiatedfromsegmentalduplicationevents,though tandemduplicationeventswerenotrare.WeusedKsasthe proxy for time to estimate the approximate dates of the duplicationevents.TheKsvaluesandtheestimateddatesfor all duplication events of the paralog pairs of NAC genes of Arabidopsis,PiceaandPhyscomitrellaarelistedinTable1,2and 3respectively.Ksvalues<1e-05forthepairofparalogswere notusedforthecalculationofthetimeofduplicationevents. Also,thetimeofduplicationeventfortheonlyparalogpairin Selaginella was not calculated, as no reliable records documenting the value of λ (clock like rates of synonymous substitution)forSelaginellamoellendorf iicouldbefound.In Arabidopsis,thevaluesofKsrangedfrom0.13to1.37andthe timeofduplicationeventwascalculatedtohavespannedfrom 4.48to45.94MYA(Table1).SimilarlyinPicea,thevaluesofKs rangedfrom0.22to0.72andthetimeofduplicationeventwas calculatedtohavespannedfrom167.57to532.86MYA(Table 2);andinPhyscomitrella,thevaluesofKsrangedfrom0.54to 1.01andthetimeofduplicationeventwascalculatedtohave spanned from 29.12 to 53.53 MYA (Table 3). Ka/Ks is an indicatorofpositiveornegativeselectionapplicableregarding thedivergenceofparalogpairs.Inalltheparalogouspairsof the3species,Ka/Ksvaluewas<1inallinstances. Analysis of conserved motifs and domains: The protein sequencesofalltheNACparalogsthatrangedbetween158to 940aminoacidresidueswereintroducedtoMEMEformotif analysiswithasettingof20motifstobediscovered.Theresults ofthemotifanalysisalongwiththeconservedsequenceofthe motifs are shown in Figure 3. Among the discovered motifs, motifs14and8werethesmallestwithawidthof6and8amino acidsrespectively;whereasthemotifs13,15and19werethe largest with a width of 50 amino acids (Figure 3). Also, the motifs1-8and14registeredmorethan80hitsamongthetotal sequenceof94,whichindicatedtheconservednatureofthe sequences across the paralogous sequences and species (Figure3).ThemotifanalysisrevealedthepresenceofanNterminalconserveddomain,acharacteristicofthemajorityof NACfamilyproteins.These indingswerealsovalidatedbythe CDD search which also revealed the presence of an NAM conserveddomainintheN-terminalofthemajorityofproteins (Figure 4). Interestingly, in few proteins, the NAC conserved domain could not be located in CDD search viz. PpNAC23, UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS PpNAC25, AtNAC26, AtNAC57, PaNAC3, AtNAC30 and AtNAC31. Conserved motifs in the C-terminal region were absentinthemajorityoftheproteinsequencesowingtotheir enormous variability (Figure 4). Though some conserved motifs could be located viz. AtNAC17, AtNAC18, AtNAC102, AtNAC103, AtNAC83, AtNAC124, 20, AtNAC21, AtNAC15, Page 04 AtNAC16, AtNAC98, AtNAC99 in Arabidopsis; PpNAC33, PpNAC35, PpNAC27, PpNAC28, PpNAC4, PpNAC30, PpNAC9, PpNAC3,PpNAC20inPhyscomitrella(Figure4).Noconserved motifsintheC-terminalcouldbeidenti iedinthemembersof SelaginellaandPicea. Figure2.PhylogenetictreeofthecombinedparaloggenepairsfromArabidopsis,Picea,SelaginellaandPhyscomitrella,constructed usingMEGA7.0bytheNeighbor-Joining(NJ)methodwith1000bootstrapreplicates.Thecorrespondingintron-exonjunctionswere displayedwithGSDS2.0. www.ugbplantjournal.org UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS Page 05 Figure3.SequencelogosforthediscoveredmotifsintheproteinsequencesoftheparalogousgenesinMEME4.11.2alongwiththe widthandnumberofoccurrence. www.ugbplantjournal.org UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS Page 06 Figure4.Sequence-wisedistributionoftheindividualmotifsandthecorrespondingresultsoftheconserveddomaindatabase searchfordomainanalysis. www.ugbplantjournal.org UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS Page 07 Table1.InfererenceofduplicationtimeofNACparalogouspairsinArabidopsis Table2.InfererenceofduplicationtimeofNACparalogouspairsinPicea Table3.InfererenceofduplicationtimeofNACparalogouspairsinPhyscomitrella www.ugbplantjournal.org UGB J Plant Biol Biotech 1 (1) 2017 - 7 Page 08 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS DISCUSSION The number of NAC protein members in angiosperms and gymnospermsoutnumberthemembersinmossesandferns (Soltis and Soltis, 2013). This is due to the more frequent relativeexpansionofthegenefamilyinhigherplantsbythe duplication events either tandem or segmental. The major differencesbetweentheNACproteinfamilynumberswithin theangiospermsandgymnospermscouldbeduetocommon selectivepressuressuchasenvironmentalstresses,whichmay haveguidedtheregulationofplantgrowthanddevelopment (HughesandFriedman,2003).Duplicationeventsfacilitatethe TFs to accrue different functions from their ancestors and couldbenaturallyselectedfortheirnovelfunctions(Forceet al., 1999). Interestingly, the number of paralogous pairs in PiceawascomparativelylesserconsideringthenumberofNAC memberspresentinthisspecies. NACproteinfamilyisoneofthelargestproteinfamiliesandthe membersofthisfamilyarebothstructurallyandfunctionally diverse. Therefore, it has been a dif icult task to assign or designatestructure-functionrelationshiptotheindividualNAC genes (Puranik et al., 2012). However, several stress related NACshavebeenreportedtoplayregulatoryfunctioninbiotic andabioticstresses(Tranetal.,2004;Jeongetal.,2010;Jensen etal.2007).5conservedsubdomainshavebeenidenti iedin theN-terminalregionoftheNACTFs(designatedasA-E);outof whichthesubdomainsBandEaresomewhatdivergentthat mayberelatedwiththediversefunctionoftheNACmembers (Ooka et al., 2003). Also, the transcription regulatory region (TRR)lyingattheC-terminalregionishighlydivergedandis associated with the activation or repression of transcription (Puraniketal.,2012).Althoughdiverse,theTRRmayormay notpossesssomespeci icmotifsthataresometimesconserved acrosstheproteinsub-families,ifpresentthesemotifsimpart variable dimensions to the functionality of the individual members, viz. the TRR of rice NAC proteins were found to contain ten C-terminal motifs (Fang et al., 2008; Shen et al., 2009). In our indings, the presence of variable C-terminal motifs in Arabidopsis and Physcomitrella in few protein members indicates the possibility of these members to play regulatoryfunctioninstressedenvironments(Figure4).This inferenceisinaccordancewiththe indingsofTranetal.(2004) wheretheconservedmotifsinC-terminalhalfofrelatedNACs in Arabidopsis viz. ANAC019, ANAC055 and ANAC072 were attributedtotheregulationofthetranscriptionofotherstress related genes. Also, considering the time of divergence of paralogsinArabidopsisandPhyscomitrella,aclearindication towards the accrual of stress induced regulatory function during the expansion of NAC family can be obtained, as the expansion of paralogs in these two species took place very recentlyascomparedtothatinPicea. Geneduplicationeventsareimportantfortheevolutionofgene family,becauseitisassociatedwiththestructuraldivergenceof new genes and facilitate the generation of novel functions (Kongetal.,2007).Fromourresults,wecouldassumethatthe duplication events were more in Arabidopsis followed by Physcomitrella.PositiveDarwinianselectionhasbeenreported to be associated with gene duplication and functional divergence (Zhang, 2003). To explore whether positive www.ugbplantjournal.org selection drove the divergence of the paralog pairs, we estimatedtheKa/Ksratio.TheKa/Ksratioprovidesasensitive measureofselectivepressureontheproteinanditisaccounted as one of the major forces contributing to the variation of structuralpatternsinafunctionalproteinthatultimatelyleads totheemergenceofnewmotifs/functionsinproteinaftergene duplication (Yang et al., 2006). Ka/Ks values =1 indicates neutral evolution or no selection; whereas Ka/Ks values <1 indicatespurifyingselection.RarelytheKa/Ksvaluesof>1are observed,inthatcasepositiveDarwinianselectionisinvolved (Li and Gojobori, 1983). The results obtained indicated a purifyingselectionamongalltheparalogousgenepairsinall thespeciesstudied. CONCLUSION Inthepresentstudy,acomprehensiveanalysisofNACproteins in 4 species of the major plant groups in terms of their phylogeny, gene structure, conserved domains and motifs, divergencetimeofparalogousgenepairswasperformed.The phylogenetictreeofalltheNACproteinsrevealedthepresence of12distinctsubgroupsandrevealedthattheexpansionofthe majority of NAC TFs in all the species occurred prior to the speciation event. However, the functional attribution to the subgroupscouldnotbeperformedowingtothelargenumber ofmembersintheNACproteinfamily.Theparalogouspairs wereinferredfromthephylogenetictreeandthedivergence time of the duplication events were calculated. The time of duplicationeventrevealedthattheexpansionoftheNACTFsin Picea occurred much prior to that in Arabidopsis and Physcomitrella.ThisrecentexpansionoftheNACmembersin the2speciescouldberelatedtotheaccrualofnovelfunctions with the changing environmental conditions on the basis of motifanalysis.Also,theexpansionoftheNACproteinfamilyis drivenbypurifyingselectionasevidentfromtheKa/Ksratioof theparalogouspairs. ACKNOWLEDGEMENT TheauthorsaregratefultoDr.VinaySingh,InformationOf icer, Centre for Bioinformatics, School of Biotechnology, BHU, Varanasi for guidance regarding the application and use of bioinformaticstoolsusedinthisstudy. CONFLICTOFINTEREST Nonedeclared. REFERENCES AidaM,IshidaT,FukakiH,FujisawaH,TasakaM(1997)Genesinvolvedinorganseparation inArabidopsis:ananalysisofthecup-shapedcotyledonmutant.PlantCell9(6):841857. BaileyTL,BodenM,BuskeFA,FrithM,GrantCE,ClementiL,RenJ,LiWW,NobleWS(2009) "MEMESUITE:toolsformotifdiscoveryandsearching".NucleicAcidsRes37:W202W208. Buschiazzo E, Ritland C, Bohlmann J, Ritland K (2012) Slow but not low: genomic comparisonsrevealslowerevolutionaryrateandhigherdN/dSinconiferscompared toangiosperms.BMCEvolBiol12:8. DeClercqI,VermeirssenV,VanAkenO,VandepoeleK,MurchaMW,LawSR,InzeA,NgS, IvanovaA,RombautD,VandeCotteB,JaspersP,VandePeerY,KangasjarviJ,WhelanJ, VanBreusegemF(2013)ThemembraneboundNACtranscriptionfactorANAC013is aregulatorofmitochondrialretrograderegulationoftheoxidativestressresponsein Arabidopsis.PlantCell25(9):3472-3490. HuB,JinJ,GuoA-Y,ZhangH,LuoJ,GaoG(2015).GSDS2.0:anupgradedgenefeature UGB J Plant Biol Biotech 1 (1) 2017 - 7 AN INSIGHT INTO THE DIVERSITY AND PHYLOGENETIC IMPLICATIONS OF NAC TRANSCRIPTION FACTORS visualizationserver.Bioinformatics31(8):1296-1297. HuH,DaiM,YaoJ,XiaoB,LiX,ZhangQ,XiongL(2006)OverexpressingaNAM,ATAF,and CUC (NAC) transcription factor enhances droughtresistance and salt tolerance in rice.Proc.NatlAcadSci103:12987-12992. HuW,YangH,YanY,WeiY,TieW,DingZ,ZuoJ,PengM,KaimianL(2016)Genome-wide characterization and analysis of bZIP transcription factor gene family related to abioticstressincassava.Scienti icRep6:22783. Jensen MK, Kjaersgaard T, Petersen K and Skriver K (2010) NAC genes: Time-speci ic regulatorsofhormonalsignalinginArabidopsis.PlantSignalingBehav5(7):907910. JinJP,ZhangH,KongL,GaoGandLuoJC(2014)PlantTFDB3.0:aportalforthefunctional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1): D1182-D1187. KikuchiS(2014)Genome-wideviewoftheexpressionpro ilesofNAC-domaingenesin responsetoinfectionbyriceviruses.In:BenkebliaN(Ed.)OmicsTechnologiesand CropImprovement.CRCPress,pp127-152. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalconesynthaseandalcoholdehydrogenaselociinArabidopsis,Arabis,andrelated genera(Brassicaceae).MolBiolEvol17:1483-1498. KumarS,StecherG,TamuraK(2016)MEGA7:MolecularEvolutionaryGeneticsAnalysis version7.0forbiggerdatasets.MolBiolEvol33:1870-1874. LeDT,NishiyamaR,WatanabeY,MochidaK,Yamaguchi-ShinozakiK,ShinozakiK,TranLS (2011). Genome-wide survey and expression analysis of the plant-speci ic NAC transcriptionfactorfamilyinsoybeanduringdevelopmentanddehydrationstress. DNARes18:263-276. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcriptionfactorsinplantabioticstressresponses.BiochimBiophysActa1819: 97-103. NuruzzamanM,ManimekalaiR,SharoniAM,SatohK,KondohH,OokaH,KikuchiS(2010) Genome-wideanalysisofNACtranscriptionfactorfamilyinrice.Gene465(1-2):3044. NuruzzamanM,SharoniAM,KikuchiS(2013)RolesofNACtranscriptionfactorsinthe regulationofbioticandabioticstressresponsesinplants.FrontMicrobiol4:248. OlsenAN,ErnstHA,LeggioLL,SkriverK(2005)NACtranscriptionfactors:structurally distinct,functionallydiverse.TrendsPlantSci10(2):79-87. OokaH,SatohK,DoiK,NagataT,OtomoY,MurakamiK,MatsubaraK,OsatoN,KawaiJ, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003)ComprehensiveanalysisofNACfamilygenesinOryzasativaandArabidopsis thaliana.DNARes10:239-247. PinheiroGL,MarquesCS,CostaMDBL,ReisPAB,AlvesMS,CarvalhoCM,FiettoLG,Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: Sequence conservationandexpressionanalysisuncovertheirdistinctrolesinstressresponse. Gene444(1-2):10-23. PuranikS,SahuPP,SrivastavaPS,PrasadM(2012)NACproteins:regulationandrolein stresstolerance.TrendsPlantSci17(6):369-381. ShaoH,WangH,TangX(2015)NACtranscriptionfactorsinplantmultipleabioticstress responses:progressandprospects.FrontPlantSci6:902. SouerE,vanHouwelingenA,KloosD,MolJNM,KoesR(1996).Thenoapicalmeristem gene of petunia is required for pattern formation in embryos and lowers and is expressedatmeristemandprimordiaboundaries.Cell85:159-170. Su H, Zhang S, Yuan X, Chen C, Wang XF, Hao YJ (2013) Genome-wide analysis and identi icationofstress-responsivegenesoftheNAM-ATAF1,2-CUC2transcription factorfamilyinapple.PlantPhysiolBiochem71:11-21. UGB J Plant Biol Biotech - Volume 1 Issue 1 - 2017 ISSN: Applied for | www.ugbplantjournal.org © All rights are reserved. Department of Botany, UGB Page 09 SuyamaM,TorrentsD,BorkP(2006)PAL2NAL:robustconversionofproteinsequence alignments into the corresponding codon alignments. Nucleic Acids Res 34: W609–W612. Tran LS, NakashimaK, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a droughtresponsive cis-element in the early responsive to dehydration stress 1 promoter. PlantCell16:2481-2498. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298-1301. Xie Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstreamofTIR1topromotelateralrootdevelopment.GenesDev14:3024-3036. Marchler-BauerA,DerbyshireMK,GonzalesNR,LuS,ChitsazF,GeerLY,GeerRC,HeJ, GwadzM,HurwitzDI,LanczyckiCJ,LuF,MarchlerGH,SongJS,ThankiN,WangZ, YamashitaRA,ZhangD,ZhengC,BryantSH(2015)CDD:NCBI'sconserveddomain database.NucleicAcidsRes43:D222-D226. SoltisPS,SoltisDE(2013)Aconifergenomesprucesupplantphylogenomics.GenomeBiol 14(6):122. HughesAL,FriedmanR(2003)Parallelevolutionbygeneduplicationinthegenomesof twounicellularfungi.GenomeRes13(5):794-799. ForceA,LynchM,Pickett FB,AmoresA,Yan YL,Postlethwait J(1999)Preservation of duplicategenesbycomplementary,degenerativemutations.Genetics151(4):15311545. JeongJS,KimYS,BaekKH,JungH,HaS-H,ChoiYD,KimM,ReuzeauC,KimJ-K(2010)Rootspeci icexpressionofOsNAC10improvesdroughttoleranceandgrainyieldinrice under ielddroughtconditions.PlantPhysiol153(1):185-197. JensenMK,RungJH,GregersenPL,GjettingT,FuglsangAT,HansenM,JoehnkN,Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetrationresistanceinbarleyandArabidopsis.PlantMolBiol65(1-2):137-150. TranLS,NishiyamaR,Yamaguchi-ShinozakiK,ShinozakiK(2010)Potentialutilizationof NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnologicalapproach.GMCrops1:32-39. FangY,YouJ,XieK,XieW,XiongL(2008)Systematicsequenceanalysisandidentification oftissue-specificorstress-responsivegenesofNACtranscriptionfactorfamilyinrice. MolGenetGenomics280:535-546. ShenH,YinY,ChenF,XuY,DixonRA(2009)AbioinformaticanalysisofNACgenesforplant cellwalldevelopmentinrelationtolignocellulosicbioenergyproduction.Bioenerg Res2:217-232. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) PatternsofgeneduplicationintheplantSKP1genefamilyinangiosperms:evidence formultiplemechanismsofrapidgenebirth.PlantJ50:873-885. RensingSA,IckJ,FawcettJA,LangD,ZimmerA,VandePeerY,ReskiR(2007)Anancient genomeduplicationcontributedtotheabundanceofmetabolicgenesinthemoss Physcomitrellapatens.BMCEvolBiol7:130. RensingSA,IckJ,FawcettJA,LangD,ZimmerA,VandePeerY,ReskiR(2016)Erratumto: Anancientgenomeduplicationcontributedtotheabundanceofmetabolicgenesin themossPhyscomitrellapatens.BMCEvolBiol16:184. ZhangJ(2003)Evolutionbygeneduplication:anupdate.TrendsEcolEvol18(6):292-298. Yang X, Tuskan GA, Cheng MZ (2006) Divergence of the Dof gene families in poplar, Arabidopsis,andricesuggestsmultiplemodesofgeneevolutionafterduplication, PlantPhysiol142:820-830. LiWH,GojoboriT(1983)Rapidevolutionofgoatandsheepglobingenesfollowinggene duplication.MolBiolEvol1(1):94-108. Submit your next manuscript to UGB J Plant Biol Biotech with a 1. Convenient online submission, 2. Rapid editorial review followed by peer review, 3. Immediate publication on acceptance.
© Copyright 2025 Paperzz