O3 hν O(1D) H2O OH O3 HO2 HO2 H2 O 2 Air Pollution Control and Air Chemistry: The atmospheric oxidation capacity (6th lecture) Detlev Möller Chair for Atmospheric Chemistry and Air Pollution Control Faculty of Environmental Sciences and Process Engineering Brandenburg Technical University Cottbus, Germany Objectives: To describe the atmospheric chemical OxHy system being an redox cycle with the tendency to oxidize reduced trace substances such as sulphur, nitrogen and carbon. ¾ oxidants and OxHy redox cycle, ¾ ozone chemistry and radical formation, ¾ oxidative stress ¾ summer smog, ozone dynamic What does mean oxidation (or oxidising) capacity or potential? It is the ability of the atmosphere to oxidize trace substances. Most trace substances (emission) are entering the atmosphere in reduced from: Sulphur(-II) Sulphur (IV) Nitrogen(-III) Nitrogen(I) Nitrogen(II) Carbon(-IV) Carbon(II) H2S, DMS SO2 NH3 N2 O NO CH4, NMVOC (RCH3) CO → Sulphur(IV) → Sulphur(VI) → Nitrogen(II) → Nitrogen(II) → Nitrogen(V) → Carbon(II) → Carbon(IV) oxidation process SO2 SO42NO NO HNO3 CO CO2 Each oxidation step is combined with a reduction (redox process). In the atmosphere, most important oxidants are OxHx species establishing the redox cycles between water (H2O) and oxygen (O2) via active intermediates (radicals and peroxides). There is no general (mathematical) definition. Often it is idenfied with the OH radical concentration. We can not define it similar to the redox potential in aqueous solutions. From kinetic point of view, Xired + OXj → + Products, we can ox design it as the free reaction energy (Gibb´s potential): Ptherm = ∑ Δ R G j j ox and as the specific oxidation potential (rate): Pkin = ∑k j j ⎡⎣OX j ⎤⎦ All important HxOy components redox species formation/destruction name H2O- H2O + e- aquated electron H2O OH + H / OH- + H+ water level -3 -2 -1 -1/±0 ±0 H+(H3O+) - hydrogen ion (hydrogenium) OH- OH + e- hydroxyl ion [O2-] O2 + e- oxide H2O+ H2O – e- / OH + H+ water anion OH O + H / H2O - H hydroxyl radical HO2- HO2 + e- hydroperoxide anion H2O2 OH + OH hydrogenperoxide O2- O2 + e- hyperoxide anion HO2 O2 + H / O + OH hydroperoxoradical O3- O3 + e- ozonide anion HO3 OH + O2 ozonide HO4- O3 + OH- ozone acid anion (hypothetical) H2O4 HO2 + HO2 / 2 OH + O2 ozone acid (hypothetical) H - hydrogen O - oxygen, atomar O2 O+O oxygen, molecular O3 O + O2 ozone redox states of oxygen species eO3- O3 H+ eH2O H2O+ H+ HO3 OH- H+ e- OH- OH H+ O2- H+ H2O2- e- H2O2 H2O4 H+ HO2 hν H+ H+ e- -2/-1 O HO2 e- HO2- -2 O2 HO4- e- O22- O2- O2 -1/-1 -1/0 0 basic HxOy reactions in aqueous phase catalase Fenton reaction dismutase enzymatic reduction desactivation ozone decay 2 H2O2 → 2 H2O + O2 H2O2 (+ FeII) → OH + OH- (+FeIII) HO2 + O2- (+ H+) → H2O2 + O2 O2 (+ e-) → O2O2- (+ FeIII) → O2 (+ FeII) O3 + O2- (+ H+) → OH + 2 O2 Atmospheric chemistry Ozone formation within the troposphere O(3P) + O2 → O3 O3 + hν (λ<850 nm → O(3P) + O2 NO2 + hν (λ<420 nm → O(3P) + NO OH chemistry of the clean atmosphere hν O3 M O(3P) O2 hν O(1D) H2O OH O3 H2O2 HO2 O3 HO2 OH chemistry of the polluted atmosphere NO O3, HO2 (-OH) hν NO2 het hν (-NO) hν (-NO) O3 HNO2 NO hν OH CO, VOC, O3, SO2 RCHO hν NO2 HO2 HNO3 H2O2 HO2 RO2 ROOH RONO2 NO2 RH OH O2 R HO2 RO2 ROOH NO (-NO2) RO (-CO2) hν O2 (-HO2) RCHO OH RCR hν (-HO2) hν O RCO O2 RC(O)O NO (-NO2) RC(O)OO NO2 organic radical chemistry RC(O)OONO2 [PAN] The chemical cycle of „reactive“ oxygen O2 O2O (ozone) O(1D) O(3P) RC H O+ O +H 2 OH SO 3 CO 2 NO 2 NOO NO + O2 SO 2 O 2 NO CO + + 2 O 2 + RC H 3 HOO OH [ NO] [ HO2 ] k7 ( 10 ppt) k6 deposition Catalytic ozone destruction in remote areas NO2 hν formation on wetted surfaces OH HNO3 NO3 HNO2 nocturnal chemistry O3 het (precursors) CO, VOC, SO2 OH NO2 hν O3 CO2, VOC´, SO3 (products) O3 HO2 O3 urban ozone „titration“ NO HO2 H2O2 O3 net: CO + 2 O2 + hν → CO2 + O3 SO2 + 2 O2 + hν → SO3 + O3 RCH3 + 3 O2 + hν → RCHO + H2O + 2 O3 Dependence of ozone formation potential from NO and VOC concentration (Sillman diagramme) O3 formation potential (in ppb h-1) VOC = 100 ppb C VOC = 50 ppb C VOC = 20 ppb C 10 9 8 7 6 5 4 3 2 1 0 0 5 10 NO concentration (in ppb) 15 20 gas phase ozone formation cycle NO NO2 NO3 hv H2O2 SO2 O3 HO2 H2O2 S(IV) O3 HO2 S(VI) + products aqueous phase O2- ORG ORG OH OH NO HNO2 N(III) N(V) N2O5 NO3 ozone stoichiometry in sink products 1.5 O3 3.0 O3 2.0 O3 1.0 O3 0.5 O3 O3 PAN NO OH HNO3 N2O5 NO2 NO3 hν O3 0.5 O3 1.0 O3 VOC, CO hν hν NO2 OH HO2 HO2 H2O2 O3, HO2 NO hν hν gas phase OH HNO2 liquid phase NO3− NO2− OH O3 VOC S(IV) H2O2 O2−/HO2 products S(IV) Oxidative stress The scheme of atmospheric impact factors climate forcing: positive / negative toxicity: nutrient / pollutant physico-chemical properties of the atmosphere oxidation capacity: oxidation / reduction acidity: acid / alkaline Oxidative Stress Oxidative stress is imposed on cells as a result of one of three factors: 1) 2) 3) an increase in oxidant generation, a decrease in antioxidant protection, or a failure to repair oxidative damage. Cell damage is induced by reactive oxygen species (ROS). ROS are either free radicals, reactive anions containing oxygen atoms, or molecules containing oxygen atoms that can either produce free radicals or are chemically activated by them. Examples are hydroxyl radical, superoxide, hydrogen peroxide, and peroxynitrite. The main source of ROS in vivo is aerobic respiration, although ROS are also produced by peroxisomal β-oxidation of fatty acids, microsomal cytochrome P450 metabolism of xenobiotic compounds, stimulation of phagocytosis by pathogens or lipopolysaccharides, arginine metabolism, and tissue specific enzymes. Under normal conditions, ROS are cleared from the cell by the action of superoxide dismutase (SOD), catalase, or glutathione (GSH) peroxidase. The main damage to cells results from the ROS-induced alteration of macromolecules such as polyunsaturated fatty acids in membrane lipids, essential proteins, and DNA. Additionally, oxidative stress and ROS have been implicated in disease states, such as Alzheimer's disease, Parkinson's disease, cancer, and aging. Atmospheric oxidative stress precursers atmosphere cell H2 O2 HO2 / O2-, OH NO + O3 NO3 NO2 + O3 NO3 O3 OH Ozone trend European ozone trend 60 60 Pic m) m) Picdu duMidi Midi(3000 (3000 trend (without Arosa and Zugspitze) Jungfraujoch m) m) Jungfraujoch(3500 (3500 O3 concentration (in ppb) 50 50 Mont (1900 m) m) MontVentoux Ventoux (1900 Deutsche m) m) DeutscheAlpen Alpen(1046 (1046 40 40 Hoher Peißenberg(1000 (1000 Hohenpeissenberg m) m) Zugspitze(3000 (3000 Zugspitze m) m) 30 30 Arosa(1860 (1860 Arosa m)m) 20 20 10 10 00 1885 1885 1905 1905 1925 1925 1945 1945 year 1965 1965 1985 1985 2005 Ozone dependence from altitude (after historic Soviet and Swiss data from the 1920s and 1930s) 16000 16 14000 14 y = 0,1083x 3,0499 R2 = 0,9965 altitude (in km) 12000 12 10000 10 8000 8 6 6000 4 4000 2 2000 00 00 10 10 20 30 30 40 40 50 O3 concentration (in ppb) (note: in 2000-3000 m altitude about 15-20 ppb O3 must be added to the ground level) Ozone trend at the station Wahnsdorf (near Dresden) 70 70 60 60 50 50 40 40 1995 year [O3] = 35 + 1.4 x (1974-2000), r2 = 0.82 2000 1990 1997 1985 1994 1985 1980 1982 1975 1979 1976 1970 1973 1970 1965 1967 1955 1960 1964 1961 1958 00 1955 10 10 1991 20 20 1988 1974-2001 1974 – 2001 1971 – 1977 1972-1977 1960 – 1971 1960-1971 1955 - 1959 1955-1959 30 30 1952 O3 concentration (in µg m-3) 80 80 2000 European ozone trend (Marenco curve) 6060 Pic (3000 m) m) PicduduMidi Midi (3000 trend (without Arosa and Zugspitze) Jungfraujoch (3500 m) m) Jungfraujoch (3500 5050 Mont (1900 m) m) MontVentoux Ventoux (1900 O3 concentration (in ppb) Deutsche Alpen (1046 m) m) Deutsche Alpen (1046 4040 Hohenpeissenberg (1000 m) m) Hoher Peißenberg (1000 Zugspitze (3000 m) m) Zugspitze (3000 3030 Arosa m) m) Arosa(1860 (1860 altitude corrected Wahnsdorf data (3000 m) altitude corrected Arosa data (3000 m) 2020 1010 00 1885 1885 1905 1905 1925 1925 1945 1945 year 1965 1965 1985 1985 Number of days with exceedance found at least at one station and annual means from all stations in Germany (number of stations: 1990: 201 und 1999: 368); after Beilke 2000 90 >180 µg/m3 >240 µg/m3 annual mean number of days and 80 [O3], resp. in µg/m3 70 60 50 40 30 20 10 19 99 19 98 19 97 19 96 19 95 19 94 19 93 19 92 19 91 19 90 0 24 28 16 24 ozone at 21 km (- 15%) 8 20 0 16 -8 12 -16 8 -24 4 -32 0 ozone at 5,5 km (+ 30%) -40 -4 -48 -8 1967 1972 1977 1982 year 1987 1992 1997 2002 tropospheric ozone: deviation from mean in nbar Stratospheric ozone: deviation from mean in nbar Ozone trend at station Hohenpeißenberg seasonal maximum (summer) and minimum ozone (winter) 140 ozone concentration (in µg m-3) Schwarzwald-max Wank-max 120 Brotjackriegel-max 100 Schauinsland-max Wurmberg-max 80 Brocken-max Schwarzwald-min 60 Wank-min Brotjackriegel-min 40 Schauinsland-min Wurmberg-min 20 Brocken-min 0 1992 1993 1994 year 1995 1996 Trend ozone saisonal mean (winter) [O3] in µg/m3 80 Schwarzwald 60 Wank Brotjackriegel Schauinsland Wurmberg 40 Brocken 20 1992 1993 1994 year 1995 1996 Ozone variation Ozone profil measurements by BTU mobile lidar Elight M510 downtown Berlin (Alexanderplatz) during an intercomparison campaign with aircraft measurements In 1998 (BERLIOZ experiment) summer-winter ratio of ozone concnetration Altitude and saisonal variation 6 Spessart 1992 Königstein 5 1993 1994 4 1995 Brocken 3 1996 Mittelwerte Schauinsland Fichtelberg 2 Potenziell (Mittelwerte) Wank Zugspitze 1 Schwarzwald Hoher Peißenberg 0 0 500 1000 1500 Altitude a.s.l. (in m) 2000 2500 3000 Summer smog smog = smoke + fog It is a meteorological situation when the formation of ozone is being an optimum: high pressure system in summer (sun shine and increased temperatures), low wind, no change of air masses over a few days Note: the conditions are quite different from those for the winter smog Summer smog measurement campaign 1994 concentration (in ppb) concentration (in ppb) Summer smog measurement campaign at Mt. Brocken date (June 28 – July 8, 1993) concentration (in ppb) Summer smog measurement campaign at Harzgerode date (June 28 – July 8, 1993) date (June 30 – July 8, 1994) Mt. Brocken station Harzgerode Görendorf 0 data / time [UTC] 07/23/98 00:00 20:00 16:00 12:00 08:00 04:00 07/22/98 00:00 20:00 16:00 12:00 08:00 04:00 07/21/99 00:00 20:00 16:00 12:00 08:00 04:00 07/20/98 00:00 100 20:00 110 16:00 12:00 08:00 04:00 07/19/98 00:00 O3 cncentration (in ppb) BERLIOZ measurement campaign 1998 120 Station Eichstädt near Berlin Station Brocken/Harz 90 80 70 60 50 40 30 20 10 The ozone problem natural sources formation potential pollutants destruction potential stratosphere O3 deposition anthropogenic sources abatement yes ? impact precursers intermediates org. N compounds NO O3 RH harmful products OH HO2 hydrogen peroxide org. peroxides & carbonyl compounds „photosmog“ – amplifying of toxicicity Mean European Ozone Winter ≈ 26 ppb Summer ≈ 38 ppb Stratospheric Ozone 10±3 ppb Background Ozone 32±2 ppb Biogenic Ozone 6±2 ppb (seasonal variability 0-12 ppb) Man-made non-NMHC Ozone 16±2 ppb Hot Ozone (man-made NMHC) 5 ppb (seasonal variability 0-15 ppb daily variability 0-70 ppb) 10-15% of mean ozone 40-50% of mean ozone Contributions to the mean ozone concentration: u • 10 ppb natural background (photochem. and stratospheric) • 20-25 photochemical from anthropogenic CH4 and CO (regional man-made background) • 30-35 ppb “basic contribution” • the excess concentration > 30-35 ppb is given from NMVOC (“hot ozone”) v • concentrations > 60 ppb may be observed only during “summersmog“ situations • since 1998 at no German station have been measured ocone with > 90 ppb • the “basic concentration” of 30-35 ppb is globaly increasing ozone abatement • Global models are showing that the ozone concentration will be reduced by only 15% when [NMVOC] = 0 • NMVOC are caused by 50-60% from traffic. 1/3 of the emission is originated during cold start, i.e., a catalytic converter with 100% efficiency may reduce only 2/3 of total NMVOC • Introduction of catalytical converters among the car fleet did reduce significant the number of episodes with ozone exceedance (summersmog periodes) • Essential is the reduction of NMHC with τOH < 3 d (high ozone formation potential). • The reduction of CO by using catalytic converters did not show any effect on the mean ozone concentration. • “Key” for a reduction of the mean O3 concentration seems the limitation of CH4 emisisons • Hence, the „mean ozone problem“ is linked with the “greenhouse problem” and the problem “food for an increasing world population”. [ The problem of further increasing mean ozone concentrations can be solved only on global scale and not in a short-term approach.
© Copyright 2026 Paperzz