THE HIGH SCHOOL FINALS ⇒ The Finals will be conducted in rounds. One at a time, each remaining contestant will have two and a half minutes to compute an indefinite integral. If answered correctly, the contestant remains in the competition. Once every remaining contestant has a empted one problem, a round is completed. If during any round, all contestants are unable to complete a problem correctly, all contestants will remain in the competition for another round. The last person remaining wins an additional $75 and will be crowned the Integration Champion! 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #1 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #1 ∫ √ sin x cos x dx 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #1 ∫ √ sin x cos x dx ∫ =− √ [ u du u = cos x, ] du = − sin x dx 2u3/2 =− +C 3 2 cos3/2 x +C = − 3 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #2 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #2 ∫ 1 √ √ 5 dx x (2012 + x) 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #2 ∫ 1 √ √ 5 dx x (2012 + x) [ ∫ √ 1 =2 du u = 2012 + x, u5 ( ) 1 =2 − 4 +C 4u 1 du = √ dx 2 x ] 1 = − ( √ )4 + C 2 2012 + x 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #3 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #3 ∫ )2 x 2x + 1 dx ( 3 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #3 ∫ )2 x 2x + 1 dx ( 3 ∫ = 6 3 ) x 4x + 4x + 1 dx ∫ = ( ( ) 4x + 4x + x dx 7 4 x8 4x5 x2 = + + +C 2 5 2 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #4 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #4 ∫ x+1 (x2 + 2x + 2012)9 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #4 ∫ x+1 (x2 + 2x + 2012)9 1 = 2 ∫ du u9 [ u = x2 + 2x + 2012, ] dx = 2(x + 1) dx ( ) 1 1 = − 8 +C 2 8u 1 +C = − 16(x2 + 2x + 2012)8 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #5 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #5 ∫ x √ dx 7x2 + 7 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #5 ∫ x √ dx 7x2 + 7 1 = 14 ∫ [ du √ u 2 u = 7x + 7, ] du = 14x dx √ 1 ·2 u+C = 14 √ = 2 0 1 2 7x2 + 7 +C 7 U of S I N T E G R A T I O N B E E INTEGRAL #6 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #6 ∫ 1 x3 √ 3 1 1 + 2 dx x 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #6 ∫ 1 x3 √ 3 1 1 + 2 dx x [ 1 1 =− u1/3 du u = 1 + 2 , 2 x ∫ du = − 2 dx 3 x ] 1 3u4/3 =− · +C 2 4 ( )4/3 1 3 1+ 2 +C = − 8 x 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #7 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #7 ∫ √ sin x √ dx x 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #7 ∫ √ sin x √ dx x [ ∫ = 2 sin u du √ u = x, 1 du = √ dx 2 x ] = −2 cos u + C √ = −2 cos x + C 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #8 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #8 ∫ sin x − cos x √ dx sin x + cos x 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #8 ∫ sin x − cos x √ dx sin x + cos x ∫ du √ =− u [ u = sin x + cos x, ] du = (cos x − sin x) dx √ = −2 u + C √ = −2 sin x + cos x + C 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #9 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #9 ∫ x5 √ x3 + 1 dx 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #9 ∫ x5 √ x3 + 1 dx [ 3 one of many possible subs: u = x + 1, ∫ √ 1 1 = (u − 1) u du = 3 3 = 1 3 2 0 1 2 ( 3 2(x + 1) 5 U of S 5/2 ∫( u 3 − 3/2 2(x + 1) 3 −u 3/2 1/2 2 ] du = 3x dx ) du ) +C I N T E G R A T I O N B E E INTEGRAL #10 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #10 ∫ (sin x + cos x)2 dx 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #10 ∫ (sin x + cos x)2 dx ∫ = ∫ = ( ) sin x + 2 sin x cos x + cos x dx 2 2 [ ∫ ] (1 + 2 sin x cos x) dx = (1 + sin 2x) dx = x + sin2 x + C or x − cos2 x + C or x − 2 0 1 2 U of S cos 2x I N T E G R A T I O N 2 +C B E E INTEGRAL #11 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #11 ∫ 1 ( 1 √ 2+√ x x x )4 dx 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #11 ∫ 1 ( 1 √ 2+√ x x x )4 dx [ 1 4 √ = −2 u du u = 2 + , x ∫ 1 √ du = − x x ] −2u5 = +C 5 ( )5 2 1 = − 2+√ +C 5 x 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #12 READY, GET SET,… 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #12 ∫ sin 2x dx 3 cos x 2 : 30 2 0 1 2 U of S I N T E G R A T I O N B E E INTEGRAL #12 ∫ sin 2x dx 3 cos x ∫ ∫ sin x 1 2 sin x cos x dx = 2 · dx = cos3 x cos x cos x ∫ = 2 sec x tan x dx = 2 sec x + C 2 0 1 2 U of S I N T E G R A T I O N B E E
© Copyright 2026 Paperzz