F F F F (Atomic Symbols)

""#
$!%&!
John Dalton: O C
!"#$" "
CO
CO
%"
- JJ Thompson: & # '()*" - - Ernest Rutherford: #
* ' +
#(') '* .
- ++
'%$/ &
-
2
(Atom and Structure of Atom)
!
2
'!"
!%($!
•
•
•
•
(
/'
:+<
!
"#$%&##'(& ( $)
$%&#'+, #'(&(&
- .'/ $
(%( 0.1')$%2#3( $ (atomic
mass) 891%#:2#3(%;
amu
g
!
-1
1.6 x 10-19
0.000549
9.110 x10-28
+1
1.6 x 10-19
1.007277
1.673x10-24
0
0
1.008665
1.675x10-24
amu = atomic mass unit
= (1/12) mass of one 12C atom
≈1.67377 x 10-24 g
3
)*% (Atomic Symbols)
A
4
'
)*%
X ±c
12
6
13
C
C
Z
X: '/$%"1;
Z: $ (Atomic number) (&
A: $ (Atomic Mass number) (&+
±c: (
• (& = Z
• (& = A-Z
• (& ! = Z-(±c)
Carbon
6p 6n 6e
Carbon
6p 7n 6e
N
Nitrogen
7p 6n 7e
Cl
Chlorine
17p 17e
Chloride ion
17p 18e
13
Cl
−
2+
Isotope: ;"# #.'-/ $/% (2/ W/)
Isotone: ;/%"#-/.(& W/
Isobar: ;/%"#-/. $ W/
Mg Magnesium ion 12p 10e
Fe 2+ Iron (II) ion
26p 30n 24e
56
26
5
6
1
.'
/%+ (Black Body Radiation)
#%+&!
,-$'
!(blackbody) "SS*$TTU
;<= classical mechanics $%
!'E
%ES (
) SV
$TTU (EM) %ES . "
• Blackbody radiation
• Photoelectric effect
• Line Spectrum
%^.W.1-b/W&
3c /%-^%*
($9d+c.1W.1
-b/)
%^.W.1^W3
W&3 % !c 1
.-^%W+
Energy
#:#-^W3
1-/ !2__`
#:#a%%*
--b/1-/ !2__`
7
.'
/%+
8
!+
,-
,-!
-b/%^.$%c#&$9d+e:
Max Planck ^c;+'-b/%^.$%c#&2#3 #'
j'^k/
c#&.^1 (oscillator) ' ^1-/"#(
#:#--b/1-/ !2__`W.1c.1 0a W/d
1^1 #^1 (-b/a%%:1
-/ !2__`891%.le m3 .'/ #'
a%%$9d+c.1 (ν)
• W.1e:1& c(-b/%^.
c.11& "/ IR • W.1e:^:% c(-b/%^.
Visible ( /%-^%) UV
Classical mechanic 2/
^c;+'ah
$%c#&2#3 #' 0aW.1
e:^:% ,
E = hν
hν
h = Planckns constant
= 6.626 x 10-34 Js
-1
ν = c.1 (s )
9
Photoelectric Effect
10
(Spectrum)
-^%W.1% !+#3'1-/ !2__`891%(.
'1/% , +< 2<^2< ^/-^% m3a%% (photon)
-^% 1 _ W.1.c.1 ν .a%% E = hν
ν (1 )
c3_W.1W++b.a%% a.'%a (ν
ν > threshold
frequency) (W&3 !#(b2#3 (photoelectron)
a%%(<$%_ !$9d +c.1$%-^%W.1W+
Sun light
^ / 1%: #S
"
^ ^3 (" ) $TTUSZ[
#\$
Light
e−
vacuum
A
H
He
Hg
U
11
12
2
""#
H-atom Bohr
Bohr (1
(1)
01+#!
12q# (2#3+a%%
( /%1-/ !2__`
W.1.c.1 0a
Energy
Niels Bohr ^-++(&%#'j'Whlu.$% Planck
1. e- 1W.1%(+ .'^ m%#'.
"% m(& W/$%/%W.1:k/
91% /%W.1$% Planck (h)
H
J.R.Rydberg ^^^&+^ $%
H-atom W.1'1/%, W"#
mvr = n
h
= nh
2π
The Bohr model of
Hydrogen atom
proton
• ev 1W.1#'2/^:w ^.'a%%
 1 1 
ν = = 1.09678 ×105 ×  2 − 2  cm −1
λ
 n1 n2 
1
-':/^c%
n=1
n=2
n=3
• n +#+a%%
105
• 1.09678 x
= /%W.1$% Rydberg
• n1 , n2 m $(& ! - n2 > n1
electron
13
""#
H-atom Bohr
Bohr
14
""#
H-atom Bohr
Bohr (2
(2)
2. c3 ! .1'%( (.#:#'a%%
c3 .1'(#+ ni 2 nf
s
∆E = Enf − Eni = hνrad
Bohr ^^ En $% !$%
H
 2π 2 me Z 2 e 4   1 
–1
E = −
 2 
h2

 n 
2
2 4
1 Z=1 (H atom) 2π me Z e = 13.605 eV
h2
 1 
En = −13.605 2  eV
n 
…
• nf > ni → Enf > Eni , ∆E > 0 #:#a%%
• nf < ni → Enf < Eni , ∆E < 0 'a%%
n=4
n=3
3
electron
a%%
2
1
nucleus
Balmer Series
(UV/VIS)
n=2
'a%%
∆E= E4-E2
Lyman Series (UV)
n=1
15
""#
H-atom Bohr
Bohr
+" !
2!$!01+#!
'["&
'"]
*"
''["'
'% ($
$#' ^)
16
$"_]#"[" n
rn = n 2 a0
o
a0 = "_ Bohr = 0.529 × 10−10 m = 0.529 A
 1 
En = −13.605 2  eV
n 
\$"$" H-atom
ν =
17
1
λ
 1
1 
= 1.09737 × 105  2 − 2  cm −1
n

n
i 
 f
n f < ni
18
3
'
&!'&&
""#
H-atom Bohr
Bohr
Planckfs constant
#\" #\ Bohr
• %E
"$ e- " E H, He+ , Li2+
h = 6.626 × 10 −34 J ⋅ s = 4.136 × 10 −15 eV ⋅ s
'/% #\d$[" "Hatom e- # n = 3 " n = 2
Energy Units
eV = 1.6022 × 10 −19 J
Frequency
c(m/s)
1
ν (s ) =
ν (m ) =
λ (m )
λ (m )
ν (s ) = c(m/s)ν (m )
ν (s ) = c(cm/s)ν (cm ) = (2.998 ×10
1 1
ν = = 1.09737 × 10  2 − 2  = 15241.25 cm −1
λ
2 3 
1
1 cm
λ= =
= 6.5611× 10 −5 cm = 6.5611× 10 −7 m
ν 15241.25
 1 1
 1
1
∆E = Enf − Eni = −13.605 2 − 2  = −13.605 2 − 2  eV
n

2 3 
 f ni 


= −1.8896 eV ← 'a%%
1
5
−1
−1
−1
−1
−1
−1
10
)(
cm/s ν cm −1
)
19
0'!'!!
Heisenberg
3!
+"
Louis de Broglie "'&"^
%" (wave-particle duality)
"["!m$"'&
!'] m
E = cp =
hc
λ
⇒ λ=
h
p
⇒ λ=
20
Werner Heisenberg ['*#m S*
\$
]" "S
S*
%"
h
4π
∆x = \$
∆x ⋅ ∆p ≥
h
mv
∆p = ]"
• (E ') #"'
= Heisenberg S*$
]" "S . \$$]" '
_"
$" #& (])
&E"# ('S^ )
• m#\'&'
'%]#S
21
22
"
(Atomic Orbital)
""#
4&!
Erwin Schrödinger %E
T)mE" (Ψ) %!' E ' "'&
_";<=_m[\d$T)mE"S
#&#[ e- 'd.
]E'#m
m'"* '$'d][
'
[" ' ^""[" m'"
m'"
$ "
• *
• ĤΨ = EΨ
• "["
• '_
E' m'"\$] " (n, l, ml)
m'"S'
"
(#
)
'*%m'"" S]%E
"n (ms)
#\_m
• +#3' (+ ( .'^) W.13+#3'
!W.1.^+ m1
• 2/^c+&-/% W.1-/$% !2#3
• + eW.1.^a+ e- (≈
≈ 90-95 %) .'/ <+W (Orbital)
23
24
4
!
! (Quantum Numbers)
VZ ]E'#m " "
1. $ (n)
"#$% $ (n,l,ml,ms) .23 a1+
!
• n +/ !'://%( .'^ W/#
• l - ml +/+ eW.1(a+ !+,
• #\: 1,2,3o
• "["$" / m'" (rn-e)
2. $ "% (l)
• & #\ ^" n "^ 0,1,2o , n-1
• EZ[\$" l 0≡s 1≡p 2≡d 3≡f 4≡g 5≡h o
• "[" / * m'"
$-/ ! (ml)
• & #\ ^" l "^ -l, -l-1,…, 0,…, l-1, l
• '_" m'"/"["%$
$^ (ms)
• + ½ , - ½
• '_$" e- (/ s')
3.
4.
.'^.:/%'/%2
• ms +/ !.WjW%'/%2
• a%%$% !$9d+a%%$%<+W
(n,l,ml) W.1j'':/
25
#!!"2!
'
!&5!00+/ n=
n=22
$
2
n
l
n=1 1s
2,0,0,-½
p (l=1)
s (l=0)
26
atomic orbital
2e–
2,0,0, ½
l 2,1,-1,-½
= 0 → n–1
n=2 2s 2p(3)
n l ((& ml)
2,1,-1, ½
0
ml
–1
0
+1
m2,1,0,-½
l = –l → l
n=3 3s 3p(3) 3d(5)
2,1,0, ½
ms -½, ½ -½, ½
-½, ½ -½, ½
m2,1,1,-½
s = –½,+½
2,1,1, ½
#\m'" (*# ml "^$) = 4
#\'"^$&
= 8
8e–
18e–
n=4 4s 4p(3) 4d(5)
4f(7)
n=5 5s 5p(3) 5d(5)
5f(7) 5g(9) 50e–
32e–
(*##\E "" 2 #\m'")
27
6'
" -- s orbitals
28
6'
" -- p orbitals
1. s-orbital (l = 0; ml = 0)
* m'"&
2. p-orbital (l = 1; ml = +1, 0, -1)
"<d&*"$ lobe 2 lobe
• n [' m'"['
• 1s < 2s < 3s < 4s <o
• p-orbital 3 m'" → px py pz
• n [' m'"['
ml = -1 (px)
1s
2s
1s
2s
z
ml = +1 (pz)
ml = 0 (py)
x
29
30
5
6'
" -- d orbitals
6'
" -- d orbitals
* d-orbital
3. d- orbital (l = 2; ml = +2,+1, 0,-1,-2)
"<d&*"* $ lobe 4 lobe
•d-orbital . 5 <+W
•lobe *$ xy, xz, yz dxy, dxz, dyz orbitals
•lobe * xy dx2 -y2 orbital
•lobe * z dz2 orbital
dz2
dxy, dxz, dyz, dx2-y2
31
32
+" !
Atomic Orbital
+" !
atomic orbital
++' ! $ e" ^ "[" m'"# ^" n,l
a%%$% !$9d+#+a%%$%<
+W$% !d
++ 1 ! E H- $ .
"[" m'" ^" "$" (n)
"^
• "[" l E 3s < 3p < 3d
• "["^ ^" ml *%$
• S
n l "#"["" E px= py= pz
• m'"["" degeneracy
1s
2s 2p
1s 2s 2p(3) 3s 3p(3) 4s 3d(5) 4p(3) …
3s 3p 3d
4s 4p 4d 4f
a%% a1$9d
5s 5p 5d 5f 5g
• atomic orbital n "#[""
E 2s = 2px = 2py = 2pz <3s = 3pz=3dxy o
• "[" w]#$
#
^$%+<
 1 
En = −13.605 2  eV
n 
33
34
+" !
atomic orbital
"#%2!$!"
"[" atomic orbital \$"'
"(w]#)$'"
#"["
Na = 1s2 2s2 2p6 3s1
S = 1s2 2s2 2p6 3s2 3p4
4f 4d
3d
2p
3p
4p 4s
3s
2s
1s
35
36
6
"
""
"2!
#+
"
""
"2!
%-++ ! (Electron Configuration)
1.$% a. (Pauli exclusion principle)
ev #.'2/^c. $Wd%^.1
W2#3
(# .'% ! m+/ !-/':/W.12.^+
'/%2 (&# n,l,ml,ms $% !-/)
%-++ !.b/^+W%'a-
.$% S
" 3 "$"*% m'""
orbital e- 2 " '"^
ms
" ($%'_" ")
2.$% _+ (Aufbau principle)
+( e- <+WW.1.a%%1&^#( !/-3(9%
+( e- <+WW.1.a%%^:%$9d
3.u$%q#< (Hundns law)
+( e- <+WW.1.a%% W/ (3%+(3
. e- #.1'W.1^# (n ^)
"/ C . ! 6 -/. $'/%2?
y !':/W.12
y -/.a%%-/%'/%2
37
"#% e- $!"
+""#% e +( !(#+a%%1&/
+( e- <+WW.1.a%% W/
3+(3. e- #.1'W.1^#
&#++((#:2#3(b% !
-++W.1 1 "3 − -W<+W
= e- ^$9d
↓ = e ^%
↑↓ = e :/
↑ = e #.1'
• ↑
•
•
•
38
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2…
-++W.1 2 $.' m $-l -^#%"#$%
<+W (12, 2s, 2p etc.) -(& <+W "/
↑
10
↑
18
↑
36
↑
54
(+ +( !3+-3/'
#9% !(%^# (n ^#) (&(+
(+ a1 !(&( -3
+( !
• 1s2 (. e- 2 1s-orbital)
• 2p6 (. e- 6 2p-orbitals v px, py, pz)
39
+""#% e-
'
""2!
^&+<+WW.1.#+a%%W.1 W/ (degeneracy)
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 ƒ
• c3W,<+W . e- ! → +( !
px
py
dxy
pz
• c3W,<+W .
s
dxy
e-
dyz
dyz
dzx
10
18
36
54
• 26Fe = 1s2 2s2 2p6 3s2 3p6 4s2 3d6 = [Ar] 4s2 3d6
'# (4s2) "#
dx2-y2 dz2
2+
26Fe =
a.'%91% #.' → +(91%
dzx
40
1s2 2s2 2p6 3s2 3p6 4s0 3d6
• 22Ti = 1s2 2s2 2p6 3s2 3p6 4s2 3d2 '#
(4s2 3d2) $"#
dx2-y2 dz2
3+
22Ti
^c.'
= 1s2 2s2 2p6 3s2 3p6 4s0 3d1
• 24Cr = 1s2 2s2 2p6 3s2 3p6 4s2 3d4 #"[" 4s
3d %
" #"'[%$
S ^= wm (4s2 3d4 → 4s1 3d5) #
1s2 2s2 2p6 3s2 3p6 4s1 3d5
• 16S2- = 1s2 2s2 2p6 3s2 3p6
• +( ! > +(91% > -++1,
• 2p3 ^c.'/ 2p4
• 3d10 ^c.'/ 3d5 ^c.'/ 3d7
41
42
7
*% (Periodic Table)
'
"#%2!
#e-
1s
H
1
He
2
Li
3
C
6
O
8
Ne
10
Na
11
2s
2px
2py
2pz
%;*#"!. \"
(#\]) !%)##"
z#! Dmitri Mendeleev
!#"%!#&
3s
1s1
1s2
1s2 2s1
• $* (group, colume) "^$ 18 $*
• (period, row) "^$ 7 1s2 2s2 2p2
1s2 2s2 2p4
*S 8 9 S*# 6 7 [ inner transition elements $ rare earth elements
1s2 2s2 2p6
1s2 2s2 2p6 3s1 !*%$*"#"'
"
[Ne] 3s1
43
44
6'*%$!
*%
*%
$* ! & 2 A "^ IA € VIIIA ( $* O )
•
•
•
•
•
$* IA € VIIIA ![T
$* IA (Alkali metal) &]$
$* IIA (Alkali earth)
$* VIIA (Halogen) &]$
$* VIIIA (Noble gas) &ƒZ
B "^ IIIB S IIB ($$* IIA IIIA ' 4 )
!%^&]$"^$ Transition Metal
! 58-71 (Lantanides) % 6 ! 90-103
(Actinides) % 7 S*
innertransition "'
" $*
45
46
!72! (Valence Electron)
*%
""
""2!
8< ! !%^# (n 3s2
Maximum n
3s2
4d7
3d7
^#)$% m !W.1.^/^&w
#ˆ' .
(& 8< !$9d+:/$%
("32#3+:/ A1−
−A8)
'$% 8< !"32#3#.+ s
- p block W/d
4p3
4p3
• 11Na = 1s22s22p63s1
• 15P = 1s22s22p63s23p3
• 26
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2
2
10
18
36
54
86
47
Fe
= [Ne] 3s1
= [Ne] 3s23p3
2
2
6
2
6
2
6
= 1s 2s 2p 3s 3p 4s 3d = [Ar] 4s23d6
48
8
!+
""2!" #"]' VS"'. ( n !"# )
• • ["
89:7
y Ionization energy (IE)
y Electron affinity (EA)
y Electron negativity (EN)
n 7
49
!+
0!(+/
!+
0!
(+/--)
50
Ionization Energy (IE)
["
%E
['#[%$
'
1st Ionization Energy
A(g) → A+(g) + e¯
2nd Ionization Energy
A+(g) → A2+(g) + e¯
51
Electron Affinity (EA)
52
Electronegativity (EN)
["'%ƒ"'
& -1
S $]%*'%E
%
["!
A(g) + e¯ → A¯ (g)
53
54
9
""89+
#!'$#\_m
#\ m$
#'d^
•
•
•
•
Mg Cl
() Ar K+
1st ionization Na Cs
Electronegativity F N
##\m'" "&
#\'
"^$ •
•
•
•
n=2
n = 4 l = 3, 0
n = 3 ml = +2
n = 2 ms= +1/2
55
10