Properties of Logarithms 1 Learning Objectives 1. Work with the properties of logarithms 2. Write a logarithmic expression as a sum or difference of logarithms 3. Write a logarithmic expression as a single logarithm 4. Evaluate logarithms whose base is neither 10 nor e 2 Properties Exponential Logarithmic ar as = ar+s logr ∙ s = logr + logs ar/as = ar-s logr/s = logr - logs = ars logrs = s∙logr (ar)s ar br = (ab)r log ar br = r∙loga + r∙logb 3 1 Example Expand log x x 1 logr ∙ s = logr + logs log x x 1 log x log x 1 Log of product sum of logs 4 Example x 1 log x Expand logr/s = logr - logs x 1 log log x 1 log x x Log of quotient difference of logs 5 Example logrs = s∙logr Expand x log x 1 x log x 1 x log x 1 Log of power power times log 6 2 Properties Exponential ay Logarithmic ax = a1 =a logbb = 1 a0 =1 logb1 = 0 a-r = 1/ar blogb x x x=y logx = logy x=y log a-r = -r ∙loga logb b x x 7 Example Solve log x 3 log 5 We use logx = logy x = y to solve log x 3 log 5 x3 5 x2 2 8 Example Solve log x 3 0 We use logb1 = 0 log x 3 0 log x 3 log1 x 3 1 x 2 2 9 3 Example log x 3 1 Solve We use logbb = 1 to solve log x 3 1 log10 log x 3 log10 x 3 10 x7 7 10 Example log x 3 2 Solve We use logbb = 1 to solve log x 3 2 2 log10 log100 log x 3 log100 x 3 100 x 97 97 11 Properties Base 10 Base e log10 1 ln e 1 log1 0 ln1 0 log10 x x ln e x x 10log x x eln x x 12 4 Remarks We must learn how to use these properties to • solve logarithmic and exponential equations • expand logarithmic expressions • collect logarithmic expressions 13 Example 3 Expand log 3x 1 5x4 Using logr/s = logr - logs log 3 3x 1 log 5x4 Using logr ∙ s = logr + logs log 3 3x 1 log 5 log x4 Using logrs = s∙logr 1 log 3x 1 log 5 4log x 3 14 Example Rewrite as a single logarithm 4log3 x 3log3 x 1 Using logrs = s∙logr Using logr ∙ s = logr + logs log3 x 4 log3 x 1 3 log3 x 4 x 1 3 15 5 Domain The domain of logb(x) is all x>0 When asked to find the domain of a log function, simply set the argument greater than zero and solve 16 Example Find domain f x log3 x 2 x2 0 x2 D f 2, x2 f x log 2 x 3 x 2 0 x 2 Example Find domain x2 0 x 3 x 3 0 x 3 3 0 2 3 2 1 0 3 3 6 02 2 0 0 3 3 4 3 42 6 0 43 1 (-∞ , 2) U (3, ∞) 6 Example f x log3 x 2 Find domain Clearly x 2 0 and x 2 0 when x 2 D f , 2 Example f x ln x 2 Find domain x 2 2 2, 2 0 Clearly (x - 2)2 = 0 when x = 2 and is positive for all other x D f , 2 2 2, Change of Base Formula If b 0, b 1, a 0, a 1, and x 0, then log a x logb x logb a Conversion to base 10 Conversion to base e log x log a ln x log a x ln a log a x 21 7 Example Evaluate log 3 8 to 3 decimal places 0.946 Example 22 Express as a single log: 1 3log5 3 2log5 2 log5 4 2 log5 3 log5 2 log5 4 3 2 log5 27 4 2 Example 12 1 log5 33 22 4 2 = log5216 2 x2 z Expand terms: ln 3 y ln 2 ln x2 ln z ln y3 1 ln 2 2ln x ln z 3ln y 2 8 2 Collect terms: 3ln x ln y 3 Example x3 x3 ln 23 3 y2 y = ln x3 ln y 2 3 ln Example Condense 1 3log a x log a 2 x 1 log a x 1 4 log a x3 log a 2 x 1 4 log a x 1 1 log a x3 log a 4 2 x 1 log a x 1 log a x3 4 2 x 1 log a x 1 log a x3 2x 1 x 1 4 Write as the sum and/or difference of logarithms. Express all powers as factors Example log a log a x2 x 3 x 1 2 x2 x3 x 1 2 2 log a x 2 x 3 log a x 1 log a x2 log a x 3 log a x 1 2 1 2log a x log a x 3 2log a x 1 2 9 Exponential Function Change of Base y a bx Changing base to exponential Take ln of each side ln y ln a b x Use properties of logs ln y ln a x ln b Take exponential of each side y eln a x ln b Use properties of exponentials y eln a e x ln b 28 Exponential Function Change of Base y eln a e x ln b Simplify y ae a b x ae ln b x ln b x 29 Example Change to base e y 150 1.04 Use x a b x ae lnb x y 150e ln1.04 x 10
© Copyright 2026 Paperzz