Mass energy equivalence. By the Work-Energy Theorem: W = KE Where W is work done,KE is kinetic energy, In this case, we will consider PE = 0 Where PE is potential energy so: W = KE = E From the definition of work: W = F(Dx) E = F(Dx) x Therefore: E = ò F dx 0 From Newton’s original statement of F=ma: dm dv F= v+m dt dt d F = (mv) dt This, along with the previous equation yields: x E = ò F dx 0 We have dt and dx in the equation. Let’s write it all in terms of dt: Dx dx v= = Dt dt dx = vdt When the variable changes from dx to dt, we must also change the bounds of the integral x t d d E = ò (mv)dx = ò (mv)v dt dt dt 0 o We can eliminate the dt’s so: Notice that the dt changed to d(mv) so the bounds also changed For velocities approaching c, the mass increases m= The relativistic mass is: mv E= mv ò vd(mv) = ò vd( 0 0 m0 v2 1- 2 c m0 v v 1- 2 c 2 ) Since m0 is a constant, it can factored out of the integral: mv E= ò vd( 0 v m0 v v 1- 2 c 2 ) = m0 ò vd( 0 v v 1- 2 c 2 ) Applying the Quotient Rule: (keep in mind v is a variable and c is a constant) v2 1 v 2 - 12 1 (dv) 1 - 2 - v( )(1 - 2 ) (- 2 )(2vdv) v c 2 c c d( )= 2 2 v v (1 - 2 ) 1- 2 c c Combining these expressions for Energy yields: v E = m0 ò vd( 0 v v 1- 2 c 2 ) v2 1 v 2 - 12 1 (- 2 )(2vdv) v (dv) 1 - 2 - v( )(1 - 2 ) c 2 c c E = m0 ò v 2 v 0 (1 - 2 ) c v3 v 2 v c E = m0 ò ( + )dv 3 2 2 v 2 v 0 1 - 2 (1 - 2 ) c c To get a common denominator, we will multiply the numerator v and denominator of 1- v c2 2 by v2 (1 - 2 ) c v2 (1 - 2 ) c v3 v 2 v c E = m0 ò ( + )dv 2 3 2 v 2 v 0 1 - 2 (1 - 2 ) c c v2 v3 v (1 )v 2 2 c c E = m0 ò [ + ]dv 2 3 2 3 v 2 v 2 0 (1 - 2 ) (1 - 2 ) c c Simplifying: v2 v3 v (1 )v 2 2 c c E = m0 ò [ + ]dv 2 3 2 3 v 2 v 2 0 (1 - 2 ) (1 - 2 ) c c v3 v3 v v+ 2 2 c c dv E = m0 ò 2 3 v 0 (1 - 2 ) 2 c v v E = m0 ò dv 2 3 v 2 0 (1 - 2 ) c v v E = m0 ò dv 2 3 v 2 0 (1 - 2 ) c v v E = m0 ò 2 dv 2 3 c v 2 0 ( 2 - 2) c c v v E = m0 ò 2 dv 2 3 c -v 2 0 ( 2 ) c v E = m0 ò 0 v 3 2 2 (c 2 - v ) c3 dv v E = m0 ò 0 v 3 2 2 (c 2 - v ) 3 c v E = m0 ò 0 c 3v 3 2 2 E = m0 c dv (c 2 - v ) v 3 dv ò 0 v 3 2 2 (c - v ) 2 dv To evaluate the integral we make the substitution: u = c2 - v2 Therefore: du = -2vdv dv 1 - du = vdv 2 v vdv 3 E = m0 c ò 3 0 (c 2 - v 2 ) 2 u(v) E = m0 c 3 ò u(v= 0) 1 - du 2 u 3 2 1 - du 2 u(v) ò E = m0 c 3 u u(v= 0) m0 c E=2 2 2 3 c -v ò du u c2 - 3 2 3 2 1 2 m0 c u c2 - v2 E=( |c2 ) 1 2 2 3 E = mo c ( 1 3 c -v 2 2 - 1 c 2 ) 1 E = mo c ( 3 c2 - v2 1 - c2 ) 1 1 E = mo c ( - ) c2 - v2 c 3 E = mo c 3 ( c c c -v 2 E = mo c 3 ( - 2 c2 - v2 c c -v 2 c - c2 - v2 c c -v 2 2 ) 2 ) E = mo c 3 ( E = mo c 2 ( E = mo c 2 ( c - c2 - v2 c c2 - v2 c - c2 - v2 c2 - v2 c c2 - v2 E = mo c ( 2 c c2 - v2 ) ) c2 - v2 c2 - v2 - 1) ) E = mo c ( c 2 E = mo c ( 2 c -v 2 1 2 - 1) - 1) 1 2 c - v2 c 1 2 E = mo c ( - 1) 1 2 ( 2 )(c - v 2 ) c 1 2 E = mo c ( - 1) 2 v (1 - 2 ) c E = mo c ( 2 1 - 1) v (1 - 2 ) c m0 2 E=c ( - m0 ) 2 v (1 - 2 ) c Recall the relativistic mass: Substituting this yields: or 2 m= m0 v2 (1 - 2 ) c E = c2 (m - m0 ) E = (m - mo )c2
© Copyright 2026 Paperzz