NAME ______________________________________________ DATE 5-1 ____________ PERIOD _____ Skills Practice Monomials Simplify. Assume that no variable equals 0. 2. c5 ? c2 ? c2 c 9 1 a 3. a24 ? a23 } 7 4. x5 ? x24 ? x x 2 5. (g4)2 g 8 6. (3u)3 27u 3 7. (2x)4 x 4 8. 25(2z)3 240z 3 9. 2(23d)4 281d 4 11. (2r7)3 2r 21 k9 k 1 k 10. (22t2)3 28t 6 s15 s 3 12. } 12 s 13. } 10 } 14. (23f 3g)3 227f 9g 3 15. (2x)2(4y)2 64x 2y 2 16. 22gh( g3h5) 22g 4h 6 17. 10x2y3(10xy8) 100x 3y11 18. } 3 5 } 2 26a4bc8 36a b c c7 6a b 19. }} 2} 3 7 2 Lesson 5-1 1. b4 ? b3 b 7 24wz7 8z 2 3w z w 2 210pq4r 2q 25p q r p 20. }} } 3 2 2 Express each number in scientific notation. 21. 53,000 5.3 3 104 22. 0.000248 2.48 3 1024 23. 410,100,000 4.101 3 108 24. 0.00000805 8.05 3 1026 Evaluate. Express the result in scientific notation. 25. (4 3 103)(1.6 3 1026) 6.4 3 1023 © Glencoe/McGraw-Hill 9.6 3 107 1.5 3 10 10 26. }} 23 6.4 3 10 241 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-1 Practice ____________ PERIOD _____ (Average) Monomials Simplify. Assume that no variable equals 0. 1. n5 ? n2 n7 2. y7 ? y3 ? y2 y12 3. t9 ? t28 t 4. x24 ? x24 ? x4 } 4 1 x 8c9 6. (22b22c3)3 2 } b6 5. (2f 4)6 64f 24 20d 3t 2 v 7. (4d 2t5v24)(25dt23v21) 2 } 5 4m 7y 2 3 3 7 227x (2x ) 27x 6 11. }} } 16x4 16 12m8 y6 29my 10. } 7 2} 4 1 3r 2s z 2 12. } 2 3 6 256 wz 1 21 4 4 3 2 2 } d 5f 3 2 4 } 9r 4s 6z 12 14. (m4n6)4(m3n2p5)6 m 34n 36p 30 13. 2(4w23z25)(8w)2 2 } 5 3 2 s4 3x 26s5x3 18sx 9. } 4 2} 15. } d 2f 4 8. 8u(2z)3 64uz 3 1 212d 23f 19 (3x22y3)(5xy28) 15x11 (x ) y y 6 2x3y2 22 y } 2x y 4x 2 16. } 2 5 2 220(m2v)(2v)3 5(2v) (2m ) 4v2 m 18. }} 2} 2 4 2 17. }} } 23 4 22 3 Express each number in scientific notation. 19. 896,000 8.96 3 105 21. 433.7 3 108 20. 0.000056 5.6 3 1025 4.337 3 1010 Evaluate. Express the result in scientific notation. 22. (4.8 3 102)(6.9 3 104) 3.312 3 107 23. (3.7 3 109)(8.7 3 102) 3.219 3 1012 2.7 3 106 9 3 10 3 3 1025 24. }} 10 25. COMPUTING The term bit, short for binary digit, was first used in 1946 by John Tukey. A single bit holds a zero or a one. Some computers use 32-bit numbers, or strings of 32 consecutive bits, to identify each address in their memories. Each 32-bit number corresponds to a number in our base-ten system. The largest 32-bit number is nearly 4,295,000,000. Write this number in scientific notation. 4.295 3 109 26. LIGHT When light passes through water, its velocity is reduced by 25%. If the speed of light in a vacuum is 1.86 3 105 miles per second, at what velocity does it travel through water? Write your answer in scientific notation. 1.395 3 105 mi/s 27. TREES Deciduous and coniferous trees are hard to distinguish in a black-and-white photo. But because deciduous trees reflect infrared energy better than coniferous trees, the two types of trees are more distinguishable in an infrared photo. If an infrared wavelength measures about 8 3 1027 meters and a blue wavelength measures about 4.5 3 1027 meters, about how many times longer is the infrared wavelength than the blue wavelength? about 1.8 times © Glencoe/McGraw-Hill 242 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-2 ____________ PERIOD _____ Skills Practice Polynomials Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial. 1. x2 1 2x 1 2 yes; 2 b2c d 1 2 2. } 4 no 3. 8xz 1 } y yes; 2 Simplify. 5. (5d 1 5) 2 (d 1 1) 3g 1 12 6. (x2 2 3x 2 3) 1 (2x2 1 7x 2 2) 4d 1 4 7. (22f 2 2 3f 2 5) 1 (22f 2 2 3f 1 8) 3x 2 1 4x 2 5 8. (4r2 2 6r 1 2) 2 (2r2 1 3r 1 5) 24f 2 2 6f 1 3 9. (2x2 2 3xy) 2 (3x2 2 6xy 2 4y2) 5r 2 2 9r 2 3 10. (5t 2 7) 1 (2t2 1 3t 1 12) 2x 2 1 3xy 1 4y 2 11. (u 2 4) 2 (6 1 3u2 2 4u) 2t 2 1 8t 1 5 12. 25(2c2 2 d 2) 23u 2 1 5u 2 10 13. x2(2x 1 9) 210c 2 1 5d 2 14. 2q(3pq 1 4q4) 2x 3 1 9x 2 15. 8w(hk2 1 10h3m4 2 6k5w3) 6pq 2 1 8q 5 16. m2n3(24m2n2 2 2mnp 2 7) 8hk 2w 1 80h 3m 4w 2 48k 5w 4 17. 23s2y(22s4y2 1 3sy3 1 4) 24m 4n 5 2 2m 3n 4p 2 7m 2n 3 18. (c 1 2)(c 1 8) c2 a2 19. (z 2 7)(z 1 4) z 2 2 3z 2 28 21. (2x 2 3)(3x 2 5) 6x 2 2 19x 1 15 2 10a 1 25 22. (r 2 2s)(r 1 2s) r2 6s 6y 3 2 9s3y 4 2 12s 2y 1 10c 1 16 20. (a 2 5)2 2 23. (3y 1 4)(2y 2 3) 4s 2 24. (3 2 2b)(3 1 2b) 6y 2 2 y 2 12 25. (3w 1 1)2 9 2 4b 2 © Glencoe/McGraw-Hill Lesson 5-2 4. (g 1 5) 1 (2g 1 7) 9w 2 1 6w 1 1 247 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-3 ____________ PERIOD _____ Study Guide and Intervention (continued) Dividing Polynomials Use Synthetic Division a procedure to divide a polynomial by a binomial using coefficients of the dividend and the value of r in the divisor x 2 r Synthetic division Use synthetic division to find (2x3 2 5x2 1 5x 2 2) 4 (x 2 1). Step 1 Write the terms of the dividend so that the degrees of the terms are in descending order. Then write just the coefficients. 2x 3 2 5x 2 1 5x 2 2 2 25 5 22 Step 2 Write the constant r of the divisor x 2 r to the left, In this case, r 5 1. Bring down the first coefficient, 2, as shown. 1 2 25 5 22 25 2 23 5 22 25 2 23 5 23 2 22 25 2 23 5 23 2 22 2 0 2 Step 3 Step 4 Multiply the first coefficient by r, 1 ? 2 5 2. Write their product under the second coefficient. Then add the product and the second coefficient: 25 1 2 5 2 3. 1 2 Multiply the sum, 23, by r: 23 ? 1 5 23. Write the product under the next coefficient and add: 5 1 (23) 5 2. 1 2 2 2 Step 5 Multiply the sum, 2, by r: 2 ? 1 5 2. Write the product under the next coefficient and add: 22 1 2 5 0. The remainder is 0. 1 2 2 Thus, (2x3 2 5x2 1 5x 2 2) 4 (x 2 1) 5 2x2 2 3x 1 2. Exercises Simplify. 1. (3x3 2 7x2 1 9x 2 14) 4 (x 2 2) 2. (5x3 1 7x2 2 x 2 3) 4 (x 1 1) 3x 2 2 x 1 7 5x 2 1 2x 2 3 3. (2x3 1 3x2 2 10x 2 3) 4 (x 1 3) 4. (x3 2 8x2 1 19x 2 9) 4 (x 2 4) 3 2x 2 2 3x 2 1 x 2 2 4x 1 3 1 } x24 5. (2x3 1 10x2 1 9x 1 38) 4 (x 1 5) 6. (3x3 2 8x2 1 16x 2 1) 4 (x 2 1) 7 10 2x 2 1 9 2 } x15 3x 2 2 5x 1 11 1 } x21 7. (x3 2 9x2 1 17x 2 1) 4 (x 2 2) 8. (4x3 2 25x2 1 4x 1 20) 4 (x 2 6) 5 8 x 2 2 7x 1 3 1 } x22 9. (6x3 1 28x2 2 7x 1 9) 4 (x 1 5) 4x 2 2 x 2 2 1 } x26 10. (x4 2 4x3 1 x2 1 7x 2 2) 4 (x 2 2) 6 6x 2 2 2x 1 3 2 } x15 x 3 2 2x 2 2 3x 1 1 265 11. (12x4 1 20x3 2 24x2 1 20x 1 35) 4 (3x 1 5) 4x 3 2 8x 1 20 1 } 3x 1 5 © Glencoe/McGraw-Hill 252 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-3 ____________ PERIOD _____ Skills Practice Dividing Polynomials Simplify. 12x 1 20 4 10c 1 6 2 2. }} 3x 1 5 3. }} 5y 2 1 2y 1 1 15y3 1 6y2 1 3y 3y 4. }} 3x 2 1 2 } 5. (15q6 1 5q2)(5q4)21 6. (4f 5 2 6f 4 1 12f 3 2 8f 2)(4f 2)21 1. } 5c 1 3 2 x 12x2 2 4x 2 8 4x 3f 2 2 1 q 3q 2 1 }2 f 3 2 } 1 3f 2 2 7. (6j 2k 2 9jk2) 4 3jk 8. (4a2h2 2 8a3h 1 3a4) 4 (2a2) 3a 2 2 2h 2 2 4ah 1 } 2j 2 3k 9. (n2 1 7n 1 10) 4 (n 1 5) 10. (d 2 1 4d 1 3) 4 (d 1 1) n12 d13 11. (2s2 1 13s 1 15) 4 (s 1 5) 12. (6y2 1 y 2 2)(2y 2 1)21 3y 1 2 13. (4g2 2 9) 4 (2g 1 3) Lesson 5-3 2s 1 3 14. (2x2 2 5x 2 4) 4 (x 2 3) 1 2g 2 3 2x 1 1 2 } x23 u2 1 5u 2 12 u23 2x2 2 5x 2 4 x23 15. }} 16. }} 1 12 u181} u23 2x 1 1 2 } x23 17. (3v2 2 7v 2 10)(v 2 4)21 18. (3t4 1 4t3 2 32t2 2 5t 2 20)(t 1 4)21 10 3t 3 2 8t 2 2 5 3v 1 5 1 } v24 y3 2 y2 2 6 y12 2x3 2 x2 2 19x 1 15 x23 19. }} 20. }}} 18 3 y 2 2 3y 1 6 2 } y12 2x 2 1 5x 2 4 1 } x23 21. (4p3 2 3p2 1 2p) 4 ( p 2 1) 22. (3c4 1 6c3 2 2c 1 4)(c 1 2)21 8 3 4p 2 1 p 1 3 1 } p21 3c 3 2 2 1 } c12 23. GEOMETRY The area of a rectangle is x3 1 8x2 1 13x 2 12 square units. The width of the rectangle is x 1 4 units. What is the length of the rectangle? x 2 1 4x 2 3 units © Glencoe/McGraw-Hill 253 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-3 Practice ____________ PERIOD _____ (Average) Dividing Polynomials Simplify. 8 15r10 2 5r8 1 40r2 1. }}} 3r 6 2 r 4 1 }2 4 2. }}} } 2 6k 2 1 } 2 3. (230x3y 1 12x2y2 2 18x2y) 4 (26x2y) 4. (26w3z4 2 3w2z5 1 4w 1 5z) 4 (2w2z) 5r 5. r 6k2m 2 12k3m2 1 9m3 3k 2km m 4 9m 2k 5 2w 5x 2 2y 1 3 2 3z 23wz 3 2 } 1 } 1 }2 (4a3 (28d 3k2 2 8a2 1 2 a2)(4a)21 6. a 4 a 2 2 2a 1 }} 1 d 4 d 2k2 wz 2 4dk2)(4dk2)21 7d 2 1 }} 2 1 f 2 1 7f 1 10 f12 2x2 1 3x 2 14 x22 7. }} f 1 5 8. }} 2x 1 7 9. (a3 2 64) 4 (a 2 4) a 2 1 4a 1 16 2x3 1 6x 1 152 x14 10. (b3 1 27) 4 (b 1 3) b 2 2 3b 1 9 72 x13 3 11. }} 2x 2 2 8x 1 38 2x 1 4x 2 6 12. }} 2x 2 2 6x 1 22 2 } 13. (3w3 1 7w2 2 4w 1 3) 4 (w 1 3) 14. (6y4 1 15y3 2 28y 2 6) 4 (y 1 2) x13 3 w13 26 y12 3w 2 2 2w 1 2 2 }} 6y 3 1 3y 2 2 6y 2 16 1 }} 15. (x4 2 3x3 2 11x2 1 3x 1 10) 4 (x 2 5) 16. (3m5 1 m 2 1) 4 (m 1 1) 5 m11 x3 1 2x 2 2 x 2 2 3m4 2 3m 3 1 3m 2 2 3m 1 4 2 } 17. (x4 2 3x3 1 5x 2 6)(x 1 2)21 18. (6y2 2 5y 2 15)(2y 1 3)21 24 x12 6 2y 1 3 x 3 2 5x 2 1 10x 2 15 1 }} 4x2 2 2x 1 6 2x 2 3 3y 2 7 1 }} 6x2 2 x 2 7 3x 1 1 19. }} 20. }} 12 2x 2 3 2x 1 2 1 }} 21. (2r3 1 5r2 2 2r 2 15) 4 (2r 2 3) 22. (6t3 1 5t2 2 2t 1 1) 4 (3t 1 1) 2 3t 1 1 r 2 1 4r 1 5 4p4 2 17p2 1 14p 2 3 2p 2 3 3 2p 1 3p 2 2 4p 1 6 3x 1 1 2x 2 1 2 }} 2t 2 1 t 2 1 1 }} 23. }}} 2h4 2 h3 1 h2 1 h 2 3 h 21 2 2h 2 h 1 3 24. }}} 2 1 25. GEOMETRY The area of a rectangle is 2x2 2 11x 1 15 square feet. The length of the rectangle is 2x 2 5 feet. What is the width of the rectangle? x 2 3 ft 26. GEOMETRY The area of a triangle is 15x4 1 3x3 1 4x2 2 x 2 3 square meters. The length of the base of the triangle is 6x2 2 2 meters. What is the height of the triangle? 5x 2 1 x 1 3 m © Glencoe/McGraw-Hill 254 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-4 ____________ PERIOD _____ Study Guide and Intervention Factoring Polynomials Factor Polynomials For any number of terms, check for: greatest common factor For two terms, check for: Difference of two squares a 2 2 b 2 5 (a 1 b)(a 2 b) Sum of two cubes a 3 1 b 3 5 (a 1 b)(a 2 2 ab 1 b 2) Difference of two cubes a 3 2 b 3 5 (a 2 b)(a 2 1 ab 1 b 2) Techniques for Factoring Polynomials For three terms, check for: Perfect square trinomials a 2 1 2ab 1 b 2 5 (a 1 b)2 a 2 2 2ab 1 b 2 5 (a 2 b)2 General trinomials acx 2 1 (ad 1 bc)x 1 bd 5 (ax 1 b)(cx 1 d) For four terms, check for: Grouping ax 1 bx 1 ay 1 by 5 x(a 1 b) 1 y(a 1 b) 5 (a 1 b)(x 1 y) Example Factor 24x2 2 42x 2 45. First factor out the GCF to get 24x2 2 42x 2 45 5 3(8x2 2 14x 2 15). To find the coefficients of the x terms, you must find two numbers whose product is 8 ? (215) 5 2120 and whose sum is 214. The two coefficients must be 220 and 6. Rewrite the expression using 220x and 6x and factor by grouping. 8x2 2 14x 2 15 5 8x2 2 20x 1 6x 2 15 5 4x(2x 2 5) 1 3(2x 2 5) 5 (4x 1 3)(2x 2 5) Group to find a GCF. Factor the GCF of each binomial. Distributive Property Exercises Factor completely. If the polynomial is not factorable, write prime. 1. 14x2y2 1 42xy3 14xy 2(x 1 3y) 4. x4 2 1 (x 2 1 1)(x 1 1)(x 2 1) 7. 100m8 2 9 (10m 4 2 3)(10m 4 1 3) © Glencoe/McGraw-Hill 2. 6mn 1 18m 2 n 2 3 (6m 2 1)(n 1 3) 5. 35x3y4 2 60x4y 5x 3y(7y 3 2 12x) 8. x2 1 x 1 1 3. 2x2 1 18x 1 16 2(x 1 8)(x 1 1) 6. 2r3 1 250 2(r 1 5)(r 2 2 5r 1 25) 9. c4 1 c3 2 c2 2 c c(c 1 1)2 (c 2 1) prime 257 Glencoe Algebra 2 Lesson 5-4 Thus, 24x2 2 42x 2 45 5 3(4x 1 3)(2x 2 5). NAME ______________________________________________ DATE 5-4 ____________ PERIOD _____ Study Guide and Intervention (continued) Factoring Polynomials Simplify Quotients In the last lesson you learned how to simplify the quotient of two polynomials by using long division or synthetic division. Some quotients can be simplified by using factoring. Example 8x2 1 11x 1 12 2x 2 13x 2 24 Simplify }} . 2 8x2 1 11x 1 12 (2x 1 3)( x 1 4) }} 5 }} 2x2 2 13x 2 24 (x 2 8)(2x 1 3) x14 5} x28 Factor the numerator and denominator. 3 2 Divide. Assume x Þ 8, 2 } . Exercises Simplify. Assume that no denominator is equal to 0. x2 2 7x 1 12 x 2x26 1. }} 2 x24 } x12 x2 1 x 2 6 x 2 7x 1 10 4. }} 2 x13 } x25 4x2 1 4x 2 3 2x 2 x 2 6 7. }} 2 2x 2 1 } x22 4x2 1 16x 1 15 2x 1 x 2 3 10. }} 2 2x 1 5 } x21 x2 2 81 2x 2 23x 1 45 13. }} 2 x19 } 2x 2 5 4x2 2 4x 2 3 8x 1 1 16. }} 3 2x 2 3 }} 2 4x 2 2x 1 1 © Glencoe/McGraw-Hill x2 1 6x 1 5 2x 2 x 2 3 2. }} 2 x15 } 2x2 3 x2 2 11x 1 30 x 2 5x 2 6 3. }} 2 x25 } x11 2x2 1 5x 2 3 4x 1 11x 2 3 5. }} 2 2x 2 1 } 4x 2 1 5x2 1 9x 2 2 x 1 5x 1 6 6. }} 2 5x 2 1 } x13 6x2 1 25x 1 4 x 1 6x 1 8 8. }} 2 6x 1 1 } x12 x2 2 7x 1 10 3x 2 8x 2 35 9. }} 2 x22 } 3x 1 7 3x2 1 4x 2 15 2x 1 3x 2 9 11. }} 2 3x 2 5 } 2x 2 3 x2 2 14x 1 49 x 2 2x 2 35 12. }} 2 x27 } x15 7x2 1 11x 2 6 x 24 14. }} 2 7x 2 3 } x22 4x2 2 12x 1 9 2x 1 13x 2 24 15. }} 2 2x 2 3 } x18 y3 2 64 3y 2 17y 1 20 17. }} 2 y 2 1 4y 1 16 }} 3y 2 5 258 27x3 2 8 9x 2 4 18. }} 2 9x 2 1 6x 1 4 }} 3x 1 2 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-4 ____________ PERIOD _____ Skills Practice Factoring Polynomials Factor completely. If the polynomial is not factorable, write prime. 1. 7x2 2 14x 2. 19x3 2 38x2 19x 2(x 2 2) 7x(x 2 2) 3. 21x3 2 18x2y 1 24xy2 4. 8j 3k 2 4jk3 2 7 3x(7x2 2 6xy 1 8y 2) 5. a2 1 7a 2 18 prime 6. 2ak 2 6a 1 k 2 3 (a 1 9)(a 2 2) 7. b2 1 8b 1 7 (2a 1 1)(k 2 3) 8. z2 2 8z 2 10 (b 1 7)(b 1 1) 9. m2 1 7m 2 18 prime 10. 2x2 2 3x 2 5 (m 2 2)(m 1 9) 11. 4z2 1 4z 2 15 (2x 2 5)(x 1 1) 12. 4p2 1 4p 2 24 (2z 1 5)(2z 2 3) 13. 3y2 1 21y 1 36 4(p 2 2)(p 1 3) 14. c2 2 100 3(y 1 4)(y 1 3) 15. 4f 2 2 64 (c 1 10)(c 2 10) 16. d 2 2 12d 1 36 (d 2 6)2 4(f 1 4)(f 2 4) 18. y2 1 18y 1 81 Lesson 5-4 17. 9x2 1 25 (y 1 9)2 prime 19. n3 2 125 20. m4 2 1 (n 2 5)(n 2 1 5n 1 25) (m 2 1 1)(m 2 1)(m 1 1) Simplify. Assume that no denominator is equal to 0. x2 1 7x 2 18 x 2 2 } 21. }} x2 1 4x 2 45 x 2 5 x25 2 x 2 10x 1 25 } 23. }} 2 x x 2 5x © Glencoe/McGraw-Hill x2 1 4x 1 3 x 1 1 } 22. }} x2 1 6x 1 9 x 1 3 x2 1 6x 2 7 x 2 1 } 24. }} x27 x2 2 49 259 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-4 Practice ____________ PERIOD _____ (Average) Factoring Polynomials Factor completely. If the polynomial is not factorable, write prime. 1. 15a2b 2 10ab2 5ab(3a 2 2b) 4. 2x3y 2 x2y 1 5xy2 1 xy3 xy(2x 2 2 x 1 5y 1 y 2) 7. y2 1 20y 1 96 (y 1 8)(y 1 12) 10. 6x2 1 7x 2 3 (3x 2 1)(2x 1 3) 13. r3 1 3r2 2 54r r(r 1 9)(r 2 6) 16. x3 1 8 2. 3st2 2 9s3t 1 6s2t2 3st(t 2 3s 2 1 2st) 19. 8m3 2 25 prime xy(3x 2y 2 2x 1 5) 5. 21 2 7t 1 3r 2 rt 6. x2 2 xy 1 2x 2 2y (7 1 r)(3 2 t) (x 1 2)(x 2 y) 9. 6n2 2 11n 2 2 8. 4ab 1 2a 1 6b 1 3 (2a 1 3)(2b 1 1) 11. x2 2 8x 2 8 (6n 1 1)(n 2 2) 12. 6p2 2 17p 2 45 prime (2p 2 9)(3p 1 5) 14. 8a2 1 2a 2 6 15. c2 2 49 2(4a 2 3)(a 1 1) 17. 16r2 2 169 (x 1 2)(x 2 2 2x 1 4) 3. 3x3y2 2 2x2y 1 5xy (c 2 7)(c 1 7) 18. b4 2 81 (4r 1 13)(4r 2 13) (b 2 1 9)(b 1 3)(b 2 3) 20. 2t3 1 32t2 1 128t 2t(t 1 8)2 21. 5y5 1 135y2 5y 2(y 1 3)(y 2 2 3y 1 9) 22. 81x4 2 16 (9x 2 1 4)(3x 1 2)(3x 2 2) Simplify. Assume that no denominator is equal to 0. x2 2 16 x14 } 23. }} x2 1 x 2 20 x 1 5 x2 2 16x 1 64 x 2 8 } 24. }} x2 1 x 2 72 x 1 9 3(x 1 3) x 2 27 x 1 3x 1 9 2 3x 2 27 }} 25. }} 2 3 26. DESIGN Bobbi Jo is using a software package to create a drawing of a cross section of a brace as shown at the right. Write a simplified, factored expression that represents the area of the cross section of the brace. x(20.2 2 x) cm2 cm 12 cm x x cm 8.2 cm 27. COMBUSTION ENGINES In an internal combustion engine, the up and down motion of the pistons is converted into the rotary motion of the crankshaft, which drives the flywheel. Let r1 represent the radius of the flywheel at the right and let r2 represent the radius of the crankshaft passing through it. If the formula for the area of a circle is A 5 pr2, write a simplified, factored expression for the area of the cross section of the flywheel outside the crankshaft. p (r1 2 r2)(r1 1 r2) © Glencoe/McGraw-Hill 260 r1 r2 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-5 ____________ PERIOD _____ Skills Practice Roots of Real Numbers Use a calculator to approximate each value to three decimal places. w 15.166 1. Ï230 2. Ï38 w 6.164 3. 2Ï152 w 212.329 4. Ï5.6 w 2.366 3 5. Ï88 w 4.448 4 7. 2Ï0.34 w 20.764 3 6. Ï2222 w 26.055 5 8. Ï500 w 3.466 Simplify. 9. 6Ï81 w 69 10. Ï144 w 12 11. Ïw (25)2 5 12. Ïw 252 not a real number 13. Ï0.36 w 0.6 14. 2 Îã 2}23 4 } 9 3 16. 2Ï27 w 23 3 18. Ï32 w 2 19. Ï81 w 3 4 20. Ïw y2 | y | 21. Ïw 125s3 5s 22. Ïw 64x6 8| x 3| 23. Ï227a w6w 23a 2 24. Ïw m8n4 m 4n 2 25. 2Ïw 100p4w q2 210p 2| q | 26. Ïw 16w4v8w 2| w | v 2 27. Ïw (23c)4 9c 2 28. Ïw (a 1 bw )2 | a 1 b | 17. Ï0.064 w 0.4 3 3 © Glencoe/McGraw-Hill 3 5 Lesson 5-5 15. Ï28 w 22 4 265 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-6 ____________ PERIOD _____ Skills Practice Radical Expressions w 2Ï6 w 1. Ï24 Lesson 5-6 Simplify. 2. Ï75 w 5Ï3 w 3 4 3. Ï16 w 2Ï2 w 4. 2Ï48 w 22 Ï3 w 5. 4Ïw 50x5 20x 2Ï2x w 6. Ïw 64a4b4w 2| ab | Ï4 w 3 7. 3 1 8 2 } d 2f 5 3 Îã 3 } 7 4 4 d f Îã 2}12 f Ïw 9. 2 11. 4 2 2 Ï21 w 2} 8. 10. 7 g Ï10gz w Îã }} 5z 2g3 }} 5z Îã }56 |s |Ïtw 25 } s2t 36 Îã 3 3 w 2 Ï6 } } 9 3 12. (3Ï3 w )(5Ï3 w ) 45 13. (4Ï12 w )(3Ï20 w ) 48Ï15 w 14. Ï2 w 1 Ï8 w 1 Ï50 w 8Ï2 w 15. Ï12 w 2 2Ï3 w 1 Ï108 w 6Ï3 w 16. 8Ï5 w 2 Ï45 w 2 Ï80 w 18. (2 1 Ï3 w )(6 2 Ï2 w ) 12 2 2Ï2 w 1 6Ï3 w2 Ï6 w 19. (1 2 Ï5 w )(1 1 Ï5 w ) 24 20. (3 2 Ï7 w )(5 1 Ï2 w ) 15 1 3Ï2 w 2 5Ï7 w2 Ï14 w 21. (Ï2 w 2 Ï6 w ) 8 2 4Ï3 w 22. } }} 12 2 4Ï2 w 4 7 3 1 Ï2 w 24. } }} 17. 2Ï48 w 2 Ï75 w 2 Ï12 w 2 23. } }} © Glencoe/McGraw-Hill Ï3 w Ï5 w 21 1 3Ï2 w 3 47 7 2 Ï2 w 40 1 5Ï6 w 5 58 8 2 Ï6 w 271 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-7 ____________ PERIOD _____ Skills Practice Rational Exponents Write each expression in radical form. 1 }} 1 }} 6 Ï3 w 1. 3 6 2 Ïw 122 or (Ï12 w) 2 }} 3 3. 12 3 5 Ï8 w 2. 8 5 3 3 }} 5 4. (s3) 5 sÏw s4 5. Ï51 w 51 1 }} 2 3 }} 7. Ïw 153 15 4 4 Lesson 5-7 Write each radical using rational exponents. 1 }} 3 3 6. Ï37 w 37 1 }} 1 }} 2 }} 8. Ïw 6xy2 6 3 x 3 y 3 3 Evaluate each expression. 1 }} 1 }} 9. 32 5 2 1 2}3} 11. 27 10. 81 4 3 1 } 3 3 }} 4 }} 13. 16 2 64 1 }} 1 2 1 12. 42}2} } 14. (2243) 5 81 5 }} 15. 27 3 ? 27 3 729 8 } 27 3 }} 2 1 49 2 16. } Simplify each expression. 12 }} 3 }} 17. c 5 ? c 5 c 3 1 2 1 }} 2 3 19. q 6 2 }11} 21. x 1 2} } q 3 }} 2 5 }} 11 x } x 12 © Ï2 w Glencoe/McGraw-Hill 16 }} 4 }} p5 } p 1 2}5} 20. p 2 }} x3 22. } 1 }} x4 1 }} y 2 y4 23. } } 1 }} y y4 25. Ï64 w 2 }} 18. m 9 ? m 9 m 2 x 1 }} 5 }} 12 2 }} n3 n3 24. } } 1 1 }} }} n6 ? n2 n 4 26. Ïw 49a8b2w | a | Ï7b w 8 277 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-7 Practice ____________ PERIOD _____ (Average) Rational Exponents Write each expression in radical form. 1 }} 2 }} 4 }} 2. 6 5 1. 5 3 2 Ïw 62 or (Ï6 w) 3 5 Ï5 w 2 }} 4. (n3) 5 3. m 7 4 Ïw m4 or (Ïm w) 5 7 7 5 n Ïn w Write each radical using rational exponents. 7. Ïw 27m6n4w 4 5. Ï79 w 1 }} 4 }} 1 }} 79 2 8. 5Ïw 2a10b 3 6. Ï153 w 1 }} 3m 2n 3 153 4 1 }} 5 ? 2 2 |a 5 | b 2 Evaluate each expression. 1 }} 10. 1024 1 64 3 12. 2256 1 125 216 15. } 1 } 4 1 2}5} 9. 81 4 3 2}4} 13. (264) 2 1 }} 343 4 }} 1 21 }} 64 3 16 16. } } 2 1 }} 1 17. 25 2 264 49 }} 3 1 } 32 14. 27 3 ? 27 3 243 2 25 } 36 2 }} 3 1 } 16 2 2}3} 2} 5 2}3} 11. 8 2}3} Simplify each expression. 4 }} 7 3 }} 7 18. g ? g 3 2}5} 22. b g 2 }} 5 b } b 10 26. Ïw 85 2Ï2 w 3 }} 4 13 }} 4 19. s ? s 3 }} 5 q 23. }2 q 1 s4 1 20. u 1 }} 5 2 4 2}3} 2}5} u 4 }} 15 11 }} 12 2 }} 3 t t 24. } } 1 3 }} 5 }} q 2}4} 5t 2 ? t 27. Ï12 w ? Ïw 123 28. Ï6 w ? 3Ï6 w 12Ï12 w 3Ï6 w 5 4 10 4 5 2 5 4 2} 1 }} y2 } y 1 2}2} 21. y 1 }} 1 }} 2 2z 1 2z 2 2z }} 25. } 1 z21 }} z2 2 1 a aÏ3b w 29. } } Ï3b w 3b 30. ELECTRICITY The amount of current in amperes I that an appliance uses can be 1 }} 1 2 P R calculated using the formula I 5 } 2 , where P is the power in watts and R is the resistance in ohms. How much current does an appliance use if P 5 500 watts and R 5 10 ohms? Round your answer to the nearest tenth. 7.1 amps 1 }} 31. BUSINESS A company that produces DVDs uses the formula C 5 88n 3 1 330 to calculate the cost C in dollars of producing n DVDs per day. What is the company’s cost to produce 150 DVDs per day? Round your answer to the nearest dollar. $798 © Glencoe/McGraw-Hill 278 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-8 ____________ PERIOD _____ Study Guide and Intervention Radical Equations and Inequalities Solve Radical Equations The following steps are used in solving equations that have variables in the radicand. Some algebraic procedures may be needed before you use these steps. 1 2 3 4 Isolate the radical on one side of the equation. To eliminate the radical, raise each side of the equation to a power equal to the index of the radical. Solve the resulting equation. Check your solution in the original equation to make sure that you have not obtained any extraneous roots. Example 1 Example 2 Solve 2Ïw 4x 1 8 w 2 4 5 8. 2Ïw 4x 1 8 2 4 5 8 2Ïw 4x 1 8 5 12 Ïw 4x 1 8 5 6 4x 1 8 5 36 4x 5 28 x57 Check Solve Ïw 3x 1 1 w 5 Ï5x w 2 1. Ïw 3x 1 1 5 Ï5x w21 Original equation 3x 1 1 5 5x 2 2Ïw 5x 1 1 Square each side. 2Ï5x w 5 2x Simplify. Ï5x w5x Isolate the radical. 5x 5 x2 Square each side. 2 x 2 5x 5 0 Subtract 5x from each side. x(x 2 5) 5 0 Factor. x 5 0 or x 5 5 Check Ïw 3(0) 1w 1 5 1, but Ï5(0) w 2 1 5 21, so 0 is not a solution. Ïw 3(5) 1w 1 5 4, and Ï5(5) w 2 1 5 4, so the solution is x 5 5. Original equation Add 4 to each side. Isolate the radical. Square each side. Subtract 8 from each side. Divide each side by 4. 2Ïw 4(7) 1w 82408 2Ï36 w2408 2(6) 2 4 0 8 858 The solution x 5 7 checks. Exercises Solve each equation. 1. 3 1 2xÏ3 w55 Ï3 w } 3 4. Ïw 52x2456 295 7. Ï21 w 2 Ïw 5x 2 4 5 0 5 15 3 8 Glencoe/McGraw-Hill 3. 8 1 Ïw x1152 no solution 5. 12 1 Ïw 2x 2 1 5 4 no solution 6. Ïw 12 2 x w50 12 8. 10 2 Ï2x w55 12.5 10. 4Ïw 2x 1 11 w 2 2 5 10 © 2. 2Ïw 3x 1 4 1 1 5 15 9. Ïw x2 1 7x w 5 Ïw 7x 2 9 no solution 11. 2Ïw x 1 11 5 Ïw x 1 2 1 Ïw 3x 2 6 14 12. Ïw 9x 2 11 w5x11 3, 4 281 Glencoe Algebra 2 Lesson 5-8 Step Step Step Step NAME ______________________________________________ DATE 5-8 ____________ PERIOD _____ Skills Practice Radical Equations and Inequalities Solve each equation or inequality. 1 25 3. 5Ïjw 5 1 } 1 }} 2. Ïx w 1 3 5 7 16 1 }} 4. v 2 1 1 5 0 no solution 3 5. 18 2 3y 2 5 25 no solution 6. Ï2w w 5 4 32 7. Ïw b 2 5 5 4 21 8. Ïw 3n 1 1 w55 8 3 9. Ïw 3r 2 6 5 3 11 11. Ïw k 2 4 2 1 5 5 40 1 }} Lesson 5-8 w 5 5 25 1. Ïx 10. 2 1 Ïw 3p 1 7 w56 3 5 2 1 }} 12. (2d 1 3) 3 5 2 } 1 }} 13. (t 2 3) 3 5 2 11 14. 4 2 (1 2 7u) 3 5 0 29 15. Ïw 3z 2 2 5 Ïw z 2 4 no solution 16. Ïw g 1 1 5 Ïw 2g 2 7 w 8 17. Ïw x 2 1 5 4Ïw x 1 1 no solution 18. 5 1 Ïw s23#6 3#s#4 19. 22 1 Ïw 3x 1 3 , 7 21 , x , 26 20. 2Ïw 2a 1 4 w $ 26 22 # a # 16 21. 2Ïw 4r 2 3 . 10 r . 7 22. 4 2 Ïw 3x 1 1 . 3 2 } , x , 0 23. Ïw y 1 4 2 3 $ 3 y $ 32 24. 23Ïw 11r 1w 3 $ 215 2 } # r # 2 © Glencoe/McGraw-Hill 1 3 3 11 283 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-9 ____________ PERIOD _____ Skills Practice Complex Numbers Simplify. w 6i 1. Ï236 2. Ï2196 w 14i 3. Ïw 281x6 9 | x 3 | i 4. Ï223 w ? Ï246 w 223Ï2 w 5. (3i)(22i)(5i) 30i 6. i 11 2i 7. i 65 i 8. (7 2 8i) 1 (212 2 4i) 25 2 12i 10. (10 2 4i) 2 (7 1 3i) 3 2 7i 11. (2 1 i)(2 1 3i) 1 1 8i 12. (2 1 i)(3 2 5i) 11 2 7i 13. (7 2 6i)(2 2 3i) 24 2 33i 14. (3 1 4i)(3 2 4i) 25 26 2 8i 8 2 6i 15. } } 3 3i 3 1 6i 3i 16. } } 10 Lesson 5-9 9. (23 1 5i) 1 (18 2 7i) 15 2 2i 4 1 2i Solve each equation. 17. 3x2 1 3 5 0 6i 18. 5x2 1 125 5 0 65i 19. 4x2 1 20 5 0 6i Ï5 w 20. 2x2 2 16 5 0 64i 21. x2 1 18 5 0 63i Ï2 w 22. 8x2 1 96 5 0 62i Ï3 w Find the values of m and n that make each equation true. 23. 20 2 12i 5 5m 1 4ni 4, 23 24. m 2 16i 5 3 2 2ni 3, 8 25. (4 1 m) 1 2ni 5 9 1 14i 5, 7 26. (3 2 n) 1 (7m 2 14)i 5 1 1 7i 3, 2 © Glencoe/McGraw-Hill 289 Glencoe Algebra 2 NAME ______________________________________________ DATE 5-9 Practice ____________ PERIOD _____ (Average) Complex Numbers Simplify. w 7i 1. Ï249 2. 6Ï212 w 12i Ï3 w 3. Ï2121 ww s8 11s 4i 4. Ï236a w3w b4 5. Ï28 w ? Ï232 w 6. Ï215 w ? Ï225 w 6| a| b2i Ïa w 25Ï15 w 216 8. (7i)2(6i) 7. (23i)(4i)(25i) 260i 9. i 42 2294i 10. i 55 21 11. i 89 12. (5 2 2i) 1 (213 2 8i) 28 2 10i i 2i 13. (7 2 6i) 1 (9 1 11i) 14. (212 1 48i) 1 (15 1 21i) 16 1 5i 16. (28 2 4i) 2 (10 2 30i) 3 1 69i 14 1 16i 7 2 8i 18. (8 2 11i)(8 2 11i) 52 257 2 176i 20. (7 1 2i)(9 2 6i) 23 2 14i 2 22. } }} 113 238 1 45i 17. (6 2 4i)(6 1 4i) 18 1 26i 19. (4 1 3i)(2 2 5i) 15. (10 1 15i) 2 (48 2 30i) 25 1 6i 6 1 5i 21. } } 2 22i 75 2 24i 71i 32i 23. } } 5 2 2 4i 1 1 3i 24. } 21 2 i 22i Solve each equation. 25. 5n2 1 35 5 0 6i Ï7 w 26. 2m2 1 10 5 0 6i Ï5 w 27. 4m2 1 76 5 0 6i Ï19 w 28. 22m2 2 6 5 0 6i Ï3 w 29. 25m2 2 65 5 0 6i Ï13 w 30. } x2 1 12 5 0 64i 3 4 Find the values of m and n that make each equation true. 31. 15 2 28i 5 3m 1 4ni 5, 27 32. (6 2 m) 1 3ni 5 212 1 27i 18, 9 33. (3m 1 4) 1 (3 2 n)i 5 16 2 3i 4, 6 34. (7 1 n) 1 (4m 2 10)i 5 3 2 6i 1, 24 35. ELECTRICITY The impedance in one part of a series circuit is 1 1 3j ohms and the impedance in another part of the circuit is 7 2 5j ohms. Add these complex numbers to find the total impedance in the circuit. 8 2 2j ohms 36. ELECTRICITY Using the formula E 5 IZ, find the voltage E in a circuit when the current I is 3 2 j amps and the impedance Z is 3 1 2j ohms. 11 1 3j volts © Glencoe/McGraw-Hill 290 Glencoe Algebra 2
© Copyright 2026 Paperzz