O restart; Homework 1 Question 5 Part a) 4 O Fdx ; F := x4 int x4$sin O a n d int an := K n 4 sin n$Pi $ x , x = 0 ..Pi Pi 2 n$Pi $ x , x = 0 ..Pi Pi 1 Kcos n π sin n π Cn π 4 4 (1) ; 2 2 K24 K12 n2 cos n π π C24 n sin n π π 3 3 C24 cos n π Cn cos n π π K4 n sin n π π n$ Pi $ x , n = 1 ..10 : Pi F, Fsin , x = 0 ..Pi ; O Fsin := sum a n $ sin O plot 90 80 70 60 50 40 30 20 10 0 1 2 x 3 (2) O restart; 4 O Fdx ; F := x4 n$Pi $ x , x = 0 ..Pi Pi O a n d ; 2 n$Pi $ x int cos , x = 0 ..Pi Pi 2 1 2 an := 4 2 K12 n sin n π π K24 n cos n π π C24 sin n π n cos n π sin n π Cn π (3) int x4$cos 4 4 (4) 3 3 Cn sin n π π C4 n cos n π π O Fcos d sum a n $cos O b 0 := n$ Pi $ x , n = 1 ..10 : Pi 1 4 int x , x = 0 ..Pi ; Pi K0 b0 := O Fcos1 d b 0 CFcos : O plot F, Fcos1 , x = 0 ..Pi ; 1 4 π 5 (5) 90 80 70 60 50 40 30 20 10 0 0 1 2 3 x O restart; Part b) 5 O Fdx ; 5 F := x int x5$sin O a n d int an := K sin n$Pi $ x , x = 0 ..Pi Pi 2 n$Pi $ x , x = 0 ..Pi Pi 1 n 5 Kcos n π sin n π Cn π 3 3 (6) ; 5 5 2 120 n cos n π π Cn cos n π π 2 2 4 4 K20 n cos n π π K120 sin n π C60 n sin n π π K5 n sin n π π n$ Pi $ x , n = 1 ..10 : Pi F, Fsin , x = 0 ..Pi ; O Fsin := sum a n $ sin O plot (7) 300 200 100 0 1 2 3 x O restart; 5 O Fdx ; F := x5 (8) n$Pi $ x , x = 0 ..Pi Pi ; O a n d 2 n$Pi $ x int cos , x = 0 ..Pi Pi 5 1 an := 5 2 K120 C120 sin n π n π Cn5 sin n π π n cos n π sin n π Cn π int x5$cos 3 2 (9) 4 K20 n3 sin n π π C120 cos n π K60 n2 cos n π π C5 n4 cos n π π O Fcos d sum a n $cos O b 0 := n$ Pi $ x , n = 1 ..10 : Pi 1 5 int x , x = 0 ..Pi ; Pi K0 b0 := O Fcos1 d b 0 CFcos : 1 5 π 6 (10) O plot F, Fcos1 , x = 0 ..Pi ; 300 200 100 0 0 1 2 3 x O restart; Part c) 4 O Fdx ; 4 F := x int x4$sin O a n d int sin O Fsin := sum a n $ sin n$Pi $ x , x =KPi ..Pi Pi 2 n$Pi $ x , x =KPi ..Pi Pi an := 0 n$ Pi $ x , n = 1 ..10 ; Pi Fsin := 0 (11) ; (12) (13) O restart; O F d x4; (14) F := x4 (14) n$Pi $ x , x =KPi ..Pi Pi O a n d ; 2 n$Pi $ x int cos , x =KPi ..Pi Pi 2 1 an := 4 2 K12 n2 sin n π π K24 n cos n π π C24 sin n π n cos n π sin n π Cn π int x4$cos 4 4 (15) 3 3 Cn sin n π π C4 n cos n π π O Fcos d sum a n $cos O b 0 := n$ Pi $ x , n = 1 ..10 : Pi 1 4 int x , x =KPi ..Pi ; Pi CPi b0 := 1 4 π 5 (16) O Fcos1 d b 0 CFcos : O Fsum d Fsin CFcos1 : O plot F, Fsum , x =KPi ..Pi ; 90 80 70 60 50 40 30 20 10 K3 K2 K1 0 1 2 x 3 O restart; 5 O F d x ; assume n,'integer' int F$sin O a n d int sin F := x5 n$Pi $ x , x =KPi ..Pi Pi 2 n$Pi $ x , x =KPi ..Pi Pi an~ := O Fsin := sum a n $ sin 2 K1 1 C n~ 4 (17) ; 2 4 2 π n~ K20 π n~ C120 n~5 (18) n$ Pi $ x , n = 1 ..10 : Pi O O F d x5; 5 F := x n$Pi $ x , x =KPi ..Pi Pi 2 n$Pi $ x cos , x =KPi ..Pi Pi bn~ := 0 (19) int x5$cos O b n d int O Fcos d sum b n $cos O b 0 := n$ Pi $ x , n = 1 ..10 ; Pi Fcos := 0 ; (20) (21) 1 int x5, x =KPi ..Pi ; Pi CPi b0 := 0 (22) Fcos1 := 0 (23) O Fcos1 d b 0 CFcos; O Fsum2 d Fsin CFcos1 : O plot F, Fsum2 , x =KPi ..Pi ; 300 200 100 K3 K2 0 K1 1 2 3 x K100 K200 K300 O It can be seen that increasing the number of terms allows the approximating functions to come closer to the actual functions. It can also be seen that the sum of the functions is very acurate in approximating the actual functions. The symmetry in x^4 (even function) allows the functions to give a better approximation than the x^5 (odd function) which is constantly alternating signs.
© Copyright 2025 Paperzz