0.6 Exponential and Logarithmic Functions 1. Review of Exponential Functions (Section 0.6) Review: Rules of Exponents i. a m/n n a m ii. a "p 1p iii. a p q a pq a iv. a p a q a pq p v. a q a p"q a Example Convert each exponential expression into fractional or root form: 2 2 3/4 3 4 "2/3 1 3 "4 1 3 "4 1 81 2 2 3/4 4 23 4 3 4 "2/3 8 3 1 42 3 1 16 Example Convert each expression into exponential form: 1 1 "2 3 x5 "2 " 2 x "5/2 3 3 x5 2 4 2 4 x7 2 x7 1 x 7/4 2 2 Example Express each value as b r form (try to make the value of b as small as possible): 1 27 2 3 1 3 4 e 5 4 64 81 32 1 27 3 3 3 3/2 2 3 1 32 3 1 2 "5/3 25 3 4 e 5 e 5/4 4 16 2 4 81 34 3 27 3 2 3 Example Find the exact value of the expression: 1 9 3/2 1 9 3/2 3 2 3/2 3 3 27 2 64 "1/3 2 64 "1/3 2 6 "1/3 3 2 "2 1 4 27 3 9 3 a. Definition: Let b 0 and b p 1. The function fx b x is called an exponential function, and b is called the base and x is the exponent. Note that gx x b is the generalized power function where b is the exponent and x is the base. Example For each function, determine if it is an exponential function, a power or generalized power function or neither. 1 4 a. fx x = b. gx = x c. hx = = d. kx x x fx x = is a generalized power function, gx = x is an exponential function. hx = = is a constant and kx x x is neither a power function nor an exponential function. b. A special exponential function: fx e x where e lim nv. 1 1n c. The graph of an exponential function: -3 -2 -1 15 15 10 10 5 5 0 1 x 2 3 -3 -2 y bx, b 1 x -1 x 0 n . 1 x 2 3 y bx, 0 b 1 1 are symmetric with respect to the y "axis. b "x . So, the graphs of b x and 1 b b Note if b 1, then 0 1 1. b d. Domain and range of an exponential function: D b x "., . ; R b x 0, . Observe that e. Properties: i. b 0 1 ii. For b 1, b x is an increasing function and lim xv " . b x 0 For 0 b 1, b x is a decreasing function and lim xv . b x 0 2. Review of Logarithmic Functions (Section 0.6) a. Definition: Let b 0 and b p 1. The logarithm function with base b, fx log b x, is defined by y log b x if and only if x b y . When b e, log e x ln x. The relation of log b x, log a x and ln x : log a x log b x , log b x ln x ln b log a b Observe that if x b r , then b r b y « y r. Example Let fx log 2 x, gx log 1/3 x, 1 f4 , f and hx log 1 16 Evaluate 2 g9 , g 1 3 h1 , h5 27 1 y f4 log 2 4 log 2 2 2 « y 2 log 2 1 log 2 2 "4 « y "4 yf 1 16 16 "2 « y "2 2 y g9 log 1/3 9 log 3 1 3 3 yg 1 «y3 log 1/3 1 27 3 2 5 x. 3 y h1 log y h5 log 51 55 log log 5 5 5 0 «y0 5 2 «y2 b. Relation of b x and log b x Recall: fx and gx are inverse functions they satisfy the following two conditions: i. f ( g x fgx x; ii. g ( f x gfx x. The exponential function fx b x and the logarithm function gx log b x are inverse functions: Let log b x y. Then we have b y x f ( g x fgx flog b x b log b x b y x g ( f x gfx log b b x x c. The graph of a logarithm function: the graph of y log b x is symmetric to the graph of y b x with respect to the line y x : 3 2 1 -3 -2 -1 1 x 2 3 -1 -2 -3 – y b x , -.-. y log b x, d. Domain and range of a logarithm function: Since x b y 0, D log b x 0, . . R log b x ... y x "., . e. Properties: i. log b b 1, log b 1 0 ii. lim xv0 log b x "., lim xv. x . iii. log b b fx fx iv. b log b fx fx v. log b xy log b x log b y vi. log b xy log b x " log b y vii. log b x y y log b x Observe that the property iv. says that any number x can be written as an exponential form with base b. Example Rewrite the exponential 2 x , 5 x , x 2 x e ln 2 e x ln 2 , 3 x 2 5 5 x e ln 5 e x ln 5 , x with base e. 2 5 x e xln 2"ln 5 Example Rewrite the expression as one logarithm: 5 2 ln x 3 2 ln y " 4 ln z 5 ln x 3 ln y " 4 ln z ln x 5/2 ln y 3/2 " ln z 4 2 2 x5y3 z4 ln 5 ln x 3 ln 4 ln x 5 y 3 " ln z 4 ln 2 2 3 Example Express ln x2 z2 y5 3 ln as a sum/difference and scalar multiplication. x2 z2 y5 ln x 2/3 ln z 2 " ln y 5/2 2 ln x 2 ln z " 5 ln y 2 3 Example Find a function of the form fx ae bx if we know f0 2 and f3 1. f0 ae 0 a 2 f3 2e 3b 1, e 3b 1 , 3b ln 1 2 2 " 13 ln 2 x fx 2e ln 1 " ln 2 " ln 2, b " 1 ln 2 3 Example Solve the equation for x. 1 1 e " 2 x 3 1 1 e " 2 x 3, " 2 1 1 3 1 2 2 1 1 2 4x1 5 3 3 4 ln2x 1 1 4 lnx " lnx 1 2 x ln 3, x "2 ln 3 2 4x1 5, 1 3 2 4x1 4, 2 4x1 12, 4x 1 ln 2 ln 12, 4x 1 ln 12 , 4x ln 12 " 1 ln 2 ln 2 x 1 ln 12 " 1 4 ln 2 3 4 ln2x 1 1, ln2x 1 1 , 2x 1 e 1/4 , 2x e 1/4 " 1, x 1 e 1/4 " 1 2 4 2 2 2 2 , x x e x " e 0 lnx " lnx 1 2, lnxx 1 2, x 4 x "1 o 1 " 41 "e 2 "1 o 1 4e 2 2 2 Example The population of a city can be described as Pt P 0 e k t where t 0 represents 1990. If we know the population of the city was 10,000 in 1990 and was doubled in 1999, find the population of the city in 2003. P0 P 0 e 0 P 0 10, 000, Pt 10000e k t P9 10000e 9k 20000, e 9k 2, 9k ln 2, k 1 ln 2, Pt 10, 000e 9 1 P13 10000e 9 ln 2 13 27215. 8 The population of the city is about 27215 in 2003. 4 1 9 ln 2 t Example Given a half-life of 3 hours, by what percentage will the amount of morphine in the bloodstream have decreased in 1 day? A half-life of 3 hours means that the amount of morphine in the bloodstream is 1/2 of the original amount in 3 hours. Let Mt M 0 e kt . Then 1 M 0 M 0 e 3k . e 3k 1 , 3k ln 1 ln 1 " ln 2 " ln 2, k " 1 ln 2 2 3 2 2 1 Mt M 0 e " 3 ln 2 t , M24 M 0 e "8 ln 2 pM 0 , p e "8 ln 2 0. 003 906 25 0. 39% There will be 0.39% of morphine in the bloodstream after 1 day. 5
© Copyright 2026 Paperzz