Package ‘satellite’ August 29, 2016 Type Package Title Various Functions for Handling and Manipulating Remote Sensing Data Version 0.2.0 Date 2015-09-10 Author Thomas Nauss, Hanna Meyer, Florian Detsch, Tim Appelhans Maintainer Tim Appelhans <[email protected]> Description This smorgasbord provides a variety of functions which are useful for handling, manipulating and visualizing remote sensing data. Depends R (>= 2.10), raster, Rcpp (>= 0.10.3), methods, utils, stats, grDevices, graphics Imports plyr, tools, stats4 License GPL-3 Suggests devtools, knitr, rgdal, testthat LazyData true VignetteBuilder knitr LinkingTo Rcpp NeedsCompilation yes Repository CRAN Date/Publication 2015-09-10 16:34:53 R topics documented: satellite-package alignGeometry . brick . . . . . . . calcAtmosCorr . calcDODN . . . calcEarthSunDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 4 5 7 8 2 satellite-package calcHistMatch . . . . . calcPathRadDOS . . . calcTOAIrradModel . . calcTOAIrradRadRef . calcTOAIrradTable . . calcTopoCorr . . . . . compFilePathLandsat . compMetaLandsat . . . convDN2RU . . . . . . convRad2BT . . . . . convRad2Ref . . . . . convRef2RadLinear . . convSC2Rad . . . . . convSC2Ref . . . . . . crop . . . . . . . . . . demTools . . . . . . . deprecated . . . . . . . l7 . . . . . . . . . . . l8 . . . . . . . . . . . lutInfo . . . . . . . . . maskInvarFeatures . . names . . . . . . . . . panSharp . . . . . . . pck_data . . . . . . . . pck_lut . . . . . . . . plot . . . . . . . . . . projectSatellite . . . . satellite . . . . . . . . Satellite-class . . . . . SatelliteInfo-class . . . SatelliteLayers-class . SatelliteLog-class . . . SatelliteMetaData-class satInfo . . . . . . . . . stack . . . . . . . . . . subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index satellite-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 11 14 15 17 18 19 20 21 23 24 25 26 27 28 30 31 32 32 33 35 36 37 39 39 39 40 41 42 42 43 43 43 44 49 50 51 Smorgasboard for remote sensing functions. Description Smorgasboard for remote sensing functions alignGeometry 3 Details The package provides a variety of functions which are useful for handling, manipulating and visualizing remote sensing data. Author(s) Thomas Nauss, Hanna Meyer, Florian Detsch, Tim Appelhans Maintainer: Environmental Informatics <[email protected]> References Some functions are taken and/or adopted from Sarah C. Goslee (2011). Analyzing Remote Sensing Data in R: The landsat Package. Journal of Statistical Software, 43(4), 1-25. Online available at http://www.jstatsoft.org/v43/i04/. alignGeometry Align raster geometry between two data sets Description Align raster data by bringing it in the same geometry and extent. If the data set is not in the same projection as the template, the alignment will be computed by reprojection. If the data has already the same projection, the data set will be cropped and aggregated prior to resampling in order to reduce computation time. Usage ## S4 method for signature 'Satellite' alignGeometry(x, template, band_codes, type, method = c("bilinear", "ngb")) ## S4 method for signature 'RasterStack' alignGeometry(x, template, method = c("bilinear", "ngb")) ## S4 method for signature 'RasterLayer' alignGeometry(x, template, method = c("bilinear", "ngb")) Arguments x Satellite or Raster* object to be resampled. template Raster* or spatial data set from which geometry can be extracted. band_codes Band ID(s) to be resampled. If not supplied and type is not given, too, all bands will be considered for resampling. 4 brick type Type of bands (e.g. VIS, NIR) which should be considered. If not supplied, all types will be processed depending and bands to be processed can be defined by band_codes. method Method for resampling; "bilinear" for bilinear interpolation (default) or "ngb" for nearest neighbor interpolation. See e.g. resample, projectRaster. Value Satellite object with alligned geometries. raster::RasterStack object with alligned layers raster::RasterLayer object with alligned layer Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) alignGeometry(sat, template = getSatDataLayer(sat, "B008n"), band_codes = "B001n") brick convert selected layers of a Satellite object to a RasterBrick Description Convert selected layers of a Satellite object to a RasterBrick Usage ## S4 method for signature 'Satellite' brick(x, layer = names(x), ...) Arguments x an object of class ’Satellite’ layer character vector (bcde codes) or integer vector (index) of the layers to be stacked ... additional arguments passed on to brick Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) brck <- brick(sat, c("B001n", "B002n", "B003n")) brck calcAtmosCorr calcAtmosCorr 5 Atmospheric correction of remote sensing data Description The function computes an atmospheric scattering correction and converts the sensors digital numbers to reflectances using • absolute radiance correction • DOS2: a dark object substraction model by Chavez (1996) • DOS4: a dark object substratcion model by Moran et al. (1992) Usage ## S4 method for signature 'Satellite' calcAtmosCorr(x, model = c("DOS2", "DOS4"), esun_method = "RadRef") ## S4 method for signature 'RasterStack' calcAtmosCorr(x, path_rad, esun, szen, model = c("DOS2", "DOS4")) ## S4 method for signature 'RasterLayer' calcAtmosCorr(x, path_rad, esun, szen, model = c("DOS2", "DOS4")) Arguments x Satellite or Raster* object providing the radiance at the sensor. model Model to be used to correct for 1% scattering (DOS2, DOS4). esun_method If x is a Satellite object, name of the method to be used to compute esun using one of calcTOAIrradRadRef ("RadRef"), calcTOAIrradTable ("Table") or calcTOAIrradModel ("Model"). path_rad Path radiance, e.g. returned from calcPathRadDOS. esun Actual (i.e. non-normalized) TOA solar irradiance, e.g. returned from calcTOAIrradRadRef, calcTOAIrradTable or calcTOAIrradModel. szen Sun zenith angle. Details If a Satellite object is passed to the function, and if the required pre-processing has not been performed already, the path radiance is computed based on a dark object’s scaled count value using calcPathRadDOS which will also take care of the TOA solar irradiance by calling calcTOAIrradModel, calcTOAIrradRadRef or calcTOAIrradTable (depending on esun_method) if necessary. The bands’ scaled counts are converted to radiance using convSC2Rad. 6 calcAtmosCorr The radiometric correction is based on a dark object approach using either the DOS2 (Chavez 1996) or DOS4 (Moran et al. 1992) model. The minimum reflectance values for the dark object are identified using the approximation of Chavez (1988, see calcPathRadDOS for details). The estimated values of the solar irradiance required for the path radiance can be computed by one of calcTOAIrradTable which is used to get readily published values of ESun, calcTOAIrradRadRef which computes ESun based on the actual radiance and reflectance in the scene, or calcTOAIrradModel which computes ESun based on look-up tables for the sensor’s relative spectral response and solar irradiation spectral data. The atmospheric transmittance towards the sensor (Tv) is approximated by 1.0 (DOS2, Chavez 1996) or Rayleigh scattering (DOS4, Moran et al. 1992). The atmospheric transmittance from the sun (Tz) is approximated by the cosine of the sun zenith angle (DOS2, Chavez 1996) or again using Rayleigh scattering (DOS4, Moran et al. 1992). The downwelling diffuse irradiance is approximated by 0.0 (DOS2, Chavez 1996) or the hemispherical integral of the path radiance (DOS4, Moran et al. 1992). Equations are taken from Song et al. (2001). Value Satellite object with added atmospheric corrected layers raster::RasterStack object with atmospheric corrected layers raster::RasterLayer object with atmospheric corrected layer References Chavez Jr PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24/3, doi:10.1016/0034-4257(88)900193, available online at http://www.sciencedirect.com/science/article/pii/0034425788900193 Chavez Jr PS (1996) Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering and Remote Sensing 62/9, available online at http://www.asprs.org/PE-RS-Journals-1996/ PE-RS-September-1996.html Goslee SC (2011) Analyzing Remote Sensing Data in R: The landsat Package. Journal of Statistical Software,43/4, 1-25. URL http://www.jstatsoft.org/v43/i04/. Moran MS, Jackson RD, Slater PN, Teillet PM (1992) Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output.Remote Sensing of Environment 41/2-3, 169-184, doi:10.1016/0034-4257(92)90076-V, URL http://www.sciencedirect. com/science/article/pii/003442579290076V. Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sensing of Environment 75/2, doi:10.1016/S0034-4257(00)00169-3, URL http://www.sciencedirect. com/science/article/pii/S0034425700001693 calcDODN 7 Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat_atmos <- calcAtmosCorr(sat, model = "DOS2", esun_method = "RadRef") bcde <- "B002n" sat <- calcTOAIrradRadRef(sat, normalize = FALSE) path_rad <- calcPathRadDOS(x = min(getValues(getSatDataLayer(sat, bcde))), bnbr = getSatLNBR(sat, bcde), band_wls = data.frame(LMIN = getSatLMIN(sat, getSatBCDESolar(sat)), LMAX = getSatLMAX(sat, getSatBCDESolar(sat))), radm = getSatRADM(sat, getSatBCDESolar(sat)), rada = getSatRADA(sat, getSatBCDESolar(sat)), szen = getSatSZEN(sat, getSatBCDESolar(sat)), esun = getSatESUN(sat, getSatBCDESolar(sat)), model = "DOS2") sensor_rad <- convSC2Rad(x = getSatDataLayer(sat, bcde), mult = getSatRADM(sat, bcde), add = getSatRADA(sat, bcde), getSatSZEN(sat, bcde)) ref_atmos <- calcAtmosCorr(x = sensor_rad, path_rad = path_rad[names(path_rad) == bcde], esun = getSatESUN(sat, bcde), szen = getSatSZEN(sat, bcde), model = "DOS2") calcDODN Compile dark object DN for given sensor band Description The function estimates the DN value of a "dark object" which is used for atmospheric correction using the DOS2 and DOS4 model. Therefore, the frequency distribution of the smallest 1% of the data values is analyzed and the value for which the first derivate has the absolute maximum is taken as the DN for a dark object. Usage calcDODN(band) 8 calcEarthSunDist Arguments band raster::RasterLayer with sensor band data, e.g. returned by getSatDataLayer. Details The DN for a dark object is extracted from a histogram similar to Chavez (1988). Value Numeric value of the DN for the dark object. References Chavez Jr PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24/3, doi:10.1016/0034-4257(88)900193, available online at http://www.sciencedirect.com/science/article/pii/0034425788900193 See Also The DN is used by calcPathRadDOS for computing the path radiance based on the dark object method. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) calcDODN(getSatDataLayer(sat, bcde = "B002n")) calcEarthSunDist Compute earth-sun distance based on day of the year Description The earth-sun distance for a particular day of the year is computed based on one of several empirical formulas. Usage calcEarthSunDist(date, formula = c("Spencer", "Mather", "ESA")) Arguments date Date of the sensor overpass; either a character string in a native date format (e.g. "YYYY-MM-DD", see as.Date) or a POSIX* object (see as.POSIXct). formula Formula to be applied, specified through the name of the author, i.e. one of "Spencer", "Mather" or "ESA". calcHistMatch 9 Details Computation of earth-sun distance using formulas provided by Spencer (1971), Mather (2005) or ESA. Value Numeric earth-sun distance (in AU). References The formulas are taken from the following sources: • Spencer: Spencer JW (1971) Fourier series representation of the position of the sun. Search 2/5. Taken from https://goo.gl/lhi9UI. • Mather: Paul M. Mather (2005) Computer Processing of Remotely-Sensed Images: An Introduction. Wiley, ISBN: 978-0-470-02101-9, http://eu.wiley.com/WileyCDA/WileyTitle/ productCd-0470021012.html. • ESA: ESA Earth Observation Quality Control: Landsat frequently asked questions. See also: Bird R, Riordan C (1984) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres. http://www.nrel. gov/docs/legosti/old/2436.pdf. Examples calcEarthSunDist(date = "2015-01-01", formula = "Spencer") calcHistMatch Illumination correction across scenes using histogram matching Description This function adjusts the illumination of individual bands across two scenes using a histogram match. Usage ## S4 method for signature 'Satellite' calcHistMatch(x, target, bcde = NULL, minv = 0L, maxv = 1023L, use_cpp = TRUE) ## S4 method for signature 'RasterStack' calcHistMatch(x, target, minv = 0L, maxv = 1023L, use_cpp = TRUE) ## S4 method for signature 'RasterLayer' calcHistMatch(x, target, minv = 0L, maxv = 1023L, use_cpp = TRUE) 10 calcHistMatch Arguments x Satellite or raster::Raster* object providing the source band(s) to be adjusted. target The target band as raster::RasterLayer. bcde Band code which should be alligned minv Lower limit of the possible range for transformation (if not provided, defaults to the minimum of both layers). maxv Upper limit of the possible range for transformation (if not provided, defaults to the maximum of both layers). use_cpp Logical. If TRUE, C++ functionality (via Rcpp) is enabled, which leads to a considerable reduction of both computation time and memory usage. Details The function is based on a histogram matching technique described by Morovic et al. (2002). Value Satellite object with added atmospheric corrected layers raster::RasterStack object with atmospheric corrected layers raster::RasterLayer object with atmospheric corrected layer References Morovic J, Shaw J, Sun P-L (2002) A fast, non-iterative and exact histogram matching algorithm. Pattern Recognition Letters 23/1-3: 127-135, doi:10.1016/S0167-8655(01)00107-6. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) target <- getSatDataLayer(sat, "B003n") ## Not run: ## histogram matching calcHistMatch(sat, target, bcde = "B002n") ## End(Not run) calcPathRadDOS calcPathRadDOS 11 Compute path radiance based on the dark object method Description Compute an estimated path radiance for all sensor bands, which can then be used to roughly correct the radiance values for atmospheric scattering. Path radiance estimation is based on a dark object method. Usage ## S4 method for signature 'Satellite' calcPathRadDOS(x, model = c("DOS2", "DOS4"), esun_method = "RadRef", use_cpp = TRUE) ## S4 method for signature 'numeric' calcPathRadDOS(x, bnbr, band_wls, radm, rada, szen, esun, model = c("DOS2", "DOS4"), scat_coef = c(-4, -2, -1, -0.7, -0.5), dos_adjust = 0.01, use_cpp = TRUE) Arguments x A Satellite object or the value (scaled count) of a dark object in bnbr (e.g. minimum raw count of selected raster bnbr). If x is a Satellite object, the value is computed using calcDODN. model Model to be used to correct for 1% scattering (DOS2, DOS4; must be the same as used by calcAtmosCorr). esun_method If x is a Satellite object, name of the method to be used to compute esun using one of calcTOAIrradRadRef ("RadRef"), calcTOAIrradTable ("Table") or calcTOAIrradModel ("Model") use_cpp Logical. If TRUE, C++ functionality (via Rcpp) is enabled, which leads to a considerable reduction of both computation time and memory usage. bnbr Band number for which DNmin is valid. band_wls Band wavelengths to be corrected; data.frame with min (max) in first (second) column, see details. radm Multiplicative coefficient for radiance transformation (i.e. slope). rada Additive coefficient for radiance transformation (i.e. offset). szen Sun zenith angle. esun Actual (i.e. non-normalized) TOA solar irradiance, e.g. returned by calcTOAIrradRadRef, calcTOAIrradTable or calcTOAIrradModel. scat_coef Scattering coefficient; defaults to -4.0. dos_adjust Assumed reflection for dark object adjustment; defaults to 0.01. 12 calcPathRadDOS Details If x is a Satellite object, the minimum raw count value (x) is computed using calcDODN. If the TOA solar irradiance is not part of the Satellite object’s metadata, it is computed using calcTOAIrradRadRef, calcTOAIrradTable or calcTOAIrradModel. The dark object subtraction approach is based on an approximation of the atmospheric path radiance (i.e. upwelling radiation which is scattered into the sensors field of view, aka haze) using the reflectance of a dark object (i.e. reflectance ~1%). Chavez (1988) proposed a method which uses the dark object reflectance in one band to predict the corresponding path radiances in all other band_wls. This is done using a relative radiance model which depends on the wavelength and overall atmospheric optical thickness (which is estimated based on the dark object’s DN value). This has the advantage that the path radiance is actually correlated across different sensor band_wls and not computed individually for each band using independent dark objects. He proposed a relative radiance model which follows a wavelength dependent scattering that ranges from a power of -4 over -2, -1, -0.7 to -0.5 for very clear over clear, moderate, hazy to very hazy conditions. The relative factors are computed individually for each 1/1000 wavelength within each band range and subsequently averaged over the band as proposed by Goslee (2011). The atmospheric transmittance towards the sensor (Tv) is approximated by 1.0 (DOS2, Chavez 1996) or Rayleigh scattering (DOS4, Moran et al. 1992) The atmospheric transmittance from the sun (Tz) is approximated by the cosine of the sun zenith angle (DOS2, Chavez 1996) or again using Rayleigh scattering (DOS4, Moran et al. 1992). The downwelling diffuse irradiance is approximated by 0.0 (DOS2, Chavez 1996) or the hemispherical integral of the path radiance (DOS4, Moran et al. 1992). Equations for the path radiance are taken from Song et al. (2001). For some sensors, the band wavelengths are already included. See lutInfo()[grepl("_BANDS", names(lutInfo()$META)) if your sensor is included. To retrieve a sensor, use lutInfo()$<Sensor ID>_BANDS. Value Satellite object with path radiance for each band in the metadata (W m-2 micrometer-1) Vector object with path radiance values for each band (W m-2 micrometer-1) References Chavez Jr PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24/3, doi:10.1016/0034-4257(88)900193, available online at http://www.sciencedirect.com/science/article/pii/0034425788900193. Chavez Jr PS (1996) Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering and Remote Sensing 62/9, available online at http://www.asprs.org/PE-RS-Journals-1996/ PE-RS-September-1996.html. Goslee SC (2011) Analyzing Remote Sensing Data in R: The landsat Package. Journal of Statistical Software,43/4, 1-25, available online at http://www.jstatsoft.org/v43/i04/. Moran MS, Jackson RD, Slater PN, Teillet PM (1992) Evlauation of simplified procedures for rretrieval of land surface reflectane factors from satellite sensor output.Remote Sensing of Environment 41/2-3, 169-184, doi:10.1016/0034-4257(92)90076-V, available online at http://www. sciencedirect.com/science/article/pii/003442579290076V. calcPathRadDOS 13 Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sensing of Environment 75/2, doi:10.1016/S0034-4257(00)00169-3, available online at http:// www.sciencedirect.com/science/article/pii/S0034425700001693 If you refer to Sawyer and Stephen 2014, please note that eq. 5 is wrong. See Also This function is used by calcAtmosCorr to compute the path radiance. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- calcTOAIrradModel(sat) bcde <- "B002n" sat <- calcTOAIrradRadRef(sat, normalize = FALSE) ## performance of base-R system.time( val1 <- calcPathRadDOS(x = min(getValues(getSatDataLayer(sat, bcde))), bnbr = getSatLNBR(sat, bcde), band_wls = data.frame(LMIN = getSatLMIN(sat, getSatBCDESolar(sat)), LMAX = getSatLMAX(sat, getSatBCDESolar(sat))), radm = getSatRADM(sat, getSatBCDESolar(sat)), rada = getSatRADA(sat, getSatBCDESolar(sat)), szen = getSatSZEN(sat, getSatBCDESolar(sat)), esun = getSatESUN(sat, getSatBCDESolar(sat)), model = "DOS2", scat_coef = -4, use_cpp = FALSE) ) ## and Rcpp version system.time( val2 <- calcPathRadDOS(x = min(getValues(getSatDataLayer(sat, bcde))), bnbr = getSatLNBR(sat, bcde), band_wls = data.frame(LMIN = getSatLMIN(sat, getSatBCDESolar(sat)), LMAX = getSatLMAX(sat, getSatBCDESolar(sat))), radm = getSatRADM(sat, getSatBCDESolar(sat)), rada = getSatRADA(sat, getSatBCDESolar(sat)), szen = getSatSZEN(sat, getSatBCDESolar(sat)), esun = getSatESUN(sat, getSatBCDESolar(sat)), model = "DOS2", scat_coef = -4, use_cpp = TRUE) ) 14 calcTOAIrradModel calcTOAIrradModel Compute top of atmosphere solar irradiance for sensor bands using LUTs Description Compute mean extraterrestrial solar irradiance (ESun) using tabulated mean solar spectral data and the band specific relative spectral response (rsr) functions. Usage ## S4 method for signature 'Satellite' calcTOAIrradModel(x, model = "MNewKur", normalize = TRUE, esd) ## S4 method for signature 'data.frame' calcTOAIrradModel(x, model = "MNewKur", normalize = TRUE, esd) Arguments x A Satellite object or the relative spectral response function for the respective band as data.frame (see details for structure). model Tabulated solar radiation model to be used (one of MCebKur_MChKur, MNewKur, MthKur, MoldKur, MODWherli_WMO, NN, see reference on tabulated solar irradiance below). normalize Logical; if TRUE, ESun is normalized to mean earth-sun distance. esd Earth-sun distance (AU, can be estimated using calcEarthSunDist). If x is a Satellite object and esd is not supplied and necessary for normalization, it is tried to take it from the metadata, otherwise it is estimated by the day of the year using calcEarthSunDist. Details Computation of ESun is taken from Updike and Comp (2011). Tabulated values for mean earth-sun distance are taken from the data sources mentioned in the references. If results should not be normalized to a mean earth-sun distance, the actual earth-sun distance is approximated by the day of the year using calcEarthSunDist. Relative spectral response values have to be supplied as a data.frame which has at least the following three columns: (i) a column "Band" for the sensor band number (i.e. 1, 2, etc.), (ii) a column "WAVELENGTH" for the WAVELENGTH data in full nm steps, and (iii) a column "RSR" for the response information [0...1]. calcTOAIrradRadRef 15 Value If x is a satellite object, a Satellite object with ESun information added to the metadata; if x is a data.frame, a vector containing ESun for the respective band(s). References Updike T, Comp C (2011) Radiometric use of WorldView-2 imagery. Technical Note, available online at https://goo.gl/np4Bwm. Tabulated relative spectral response functions (nm-1) are taken from taken from the spectral viewer of the USGS Landsat FAQ. Tabulated solar irradiance (W m-2 nm-1) is taken from the National Renewable Energy Laboratory. See Also calcTOAIrradTable for tabulated solar irradiance values from the literature or calcTOAIrradRadRef for the computation of the solar irradiance based on maximum radiation and reflection values of the dataset. See calcEarthSunDist for calculating the earth-sun distance based on the day of the year which is called by this function if ESun should be corrected for actual earth-sun distance. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- calcTOAIrradModel(sat) getSatESUN(sat) lut <- lutInfo() calcTOAIrradModel(lut$L8_RSR, model = "MNewKur", normalize = FALSE, esd = calcEarthSunDist("2015-01-01")) calcTOAIrradRadRef Compute top of atmosphere solar irradiance using radiation vs. reflection Description Compute extraterrestrial solar irradiance (ESun) using the actual maximum radiation and reflection values within each band. Usage ## S4 method for signature 'Satellite' calcTOAIrradRadRef(x, normalize = TRUE, esd) ## S4 method for signature 'numeric' calcTOAIrradRadRef(x, ref_max, normalize = TRUE, esd) 16 calcTOAIrradRadRef Arguments x A Satellite object or the maximum radiance of satellite band(s) as numeric object. normalize Logical; if TRUE, ESun is normalized to mean earth-sun distance. esd Earth-sun distance (AU, can be estimated using calcEarthSunDist). If x is a Satellite object and esd is not supplied and necessary for normalization, it is tried to take it from the metadata, otherwise it is estimated by the day of the year using calcEarthSunDist. ref_max Maximum reflextance of satellite band(s). Details The actual solar irradiance is computed using the following formula taken from the GRASS GIS i.landsat.toar module ESun = (pid2 )RADIAN CEM AXIM U M/REF LECT AN CEM AXIM U M where d is the earth-sun distance (in AU) and RADIANCE_MAXIMUM and REFLECTANCE_MAXIMUM are the maximum radiance and reflection values of the respective band. All these parameters are taken from the scene’s metadata file if a Satellite object is passed to the function. By default, the resulting actual ESun will be normalized to a mean earth-sun distance to be compatible with other default results from calcTOAIrradTable or calcTOAIrradModel. Value If x is a Satellite object, a Satellite object with ESun information added to the metadata; if x is numeric, a vector containing ESun for the respective band(s). See Also calcTOAIrradTable for tabulated solar irradiance values from the literature or calcTOAIrradModel for the computation of the solar irradiance based on look-up tables for the sensor’s relative spectral response and solar irradiation spectral data. See calcEarthSunDist for calculating the earth-sun distance based on the day of the year which is called by this function if ESun should be corrected for actual earth-sun distance. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- calcTOAIrradModel(sat) getSatESUN(sat) calcTOAIrradRadRef(x = getSatRadMax(sat, getSatBCDESolar(sat)), ref_max = getSatRefMax(sat, getSatBCDESolar(sat)), normalize = FALSE, esd = calcEarthSunDist("2015-01-01")) calcTOAIrradTable calcTOAIrradTable 17 Get top of atmosphere solar irradiance using readily tabulated values Description Get mean extraterrestrial solar irradiance (ESun) using published values. Usage ## S4 method for signature 'Satellite' calcTOAIrradTable(x, normalize = TRUE, esd) ## S4 method for signature 'factor' calcTOAIrradTable(x, normalize = TRUE, esd) ## S4 method for signature 'character' calcTOAIrradTable(x, normalize = TRUE, esd) Arguments x normalize esd A Satellite object or sensor id ("LC4/5/7") as character. Logical; if TRUE, ESun is normalized to mean earth-sun distance. Earth-sun distance (AU, can be estimated using calcEarthSunDist). If x is a Satellite object and esd is not supplied and necessary for normalization, it is tried to take it from the metadata, otherwise it is estimated by the day of the year using calcEarthSunDist. Details Currently implemented sensors are Landsat 4, 5 and 7. If results should not be normalized to a mean earth-sun distance, the actual earth-sun distance is approximated by the day of the year using calcEarthSunDist. Value Satellite object with ESun information added to the metadata Vector object containing ESun for the respective band(s) Vector object containing ESun for the respective band(s) References Tabulated values of the solar irradiance for Landsat 4 and 5 are taken from Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing 41/11, doi:10.1109/LGRS.2007.898285, online available at http://landsathandbook.gsfc.nasa.gov/pdfs/L5TMLUTIEEE2003.pdf. Tabulated values of the solar irradiance for Landsat 7 are taken from NASA’s Landsat7 handbook, tab 11.3 (Thuillier spectrum). 18 calcTopoCorr See Also calcTOAIrradRadRef for the computation of the solar irradiance based on maximum radiation and reflection values of the dataset or calcTOAIrradModel for the computation of the solar irradiance based on look-up tables for the sensor’s relative spectral response and solar irradiation spectral data. See calcEarthSunDist for calculating the earth-sun distance based on the day of the year which is called by this function if ESun should be corrected for actual earth-sun distance. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LE7*.tif"), full.names = TRUE) sat <- satellite(files) calcTOAIrradTable(sat) calcTOAIrradTable(x = "LE7", normalize = FALSE, calcEarthSunDist("2015-01-01")) calcTopoCorr Correct for topographic effects. Description Correct for topographic effects. Usage ## S4 method for signature 'Satellite' calcTopoCorr(x, mask = TRUE) ## S4 method for signature 'RasterStack' calcTopoCorr(x, hillsh, cloudmask = NULL) ## S4 method for signature 'RasterLayer' calcTopoCorr(x, hillsh, cloudmask = NULL) Arguments x Satellite object. mask Logical. If TRUE, the cloudmask from the Satellite object (if available) will be considered in the regression model. hillsh A raster::RasterLayer created with raster::hillShade. cloudmask A raster::RasterLayer in which clouds are masked with NA values. compFilePathLandsat 19 Details The method of Civco (1989) is applied on atmospherically corrected bands (if not already available in the Satellite object, calcAtmosCorr is performed with its default settings.): First, an analytical hillshade image is created based on a DEM and sun elevation and sun zenith information from the metadata. A regression between the hillshade (independent variable) and each channel is then calculated with consideration of a cloudmask (if available). The regression coefficents are used to calibrate the hillshade raster (for each channel individually). Finally, the calibrated hillshade image is subtracted from the corresponding channel and the mean value of the channel is added. Value If x is a Satellite object, a Satellite object with added, topographic corrected layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). References CIVCO, D.L. (1989): Topographic normalization of Landsat Thematic Mapper digitalimagery. Photogrammetric Engineering & Remote Sensing, 55, 1303-1309. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) ## dem files_dem <- list.files(path, pattern = "DEM", full.names = TRUE) DEM <- raster(files_dem) sat <- addSatDataLayer(sat, data = DEM, info = NULL, bcde = "DEM", in_bcde="DEM") ## Not run: sat <- calcTopoCorr(sat) ## End(Not run) compFilePathLandsat Get filename, bands and metadata file for Landsat 7 and 8 standard 1B/T format Description The function compiles the sensor, band, filename and metadata filename information for standard level 1B/T Landsat files. Usage compFilePathLandsat(files) 20 compMetaLandsat Arguments files Path and filename(s) of one or more Landsat band files or, alternatively, one or more Landsat metadata files. Value data.frame containing filepaths, band numbers and metadata filepaths. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) compFilePathLandsat(files) compMetaLandsat Get calibration information from Landsat 8 standard level 1B/T filename Description The function scans a Lansat metadata file for various calibration and orbit coefficients as well as some sensor specific data. Usage compMetaLandsat(files) Arguments files Path and filename of the Landsat metadata file. Value data.frame containing the following information for each band/layer: • DATE date (e.g. 2013-07-07) • SID sensor id (e.g. LC8) • SENSOR sensor name (e.g. Landsat 8) • SGRP sensor group (e.g. Landast) • BID band id (e.g. 7) • BCDE band code (5 digit standard name, e.g B001n) • SRES spatial resolution of the sensor band (e.g. 30 for 30 m x 30m) • TYPE type of the sensor band regarding wavelength (e.g. VIS) • SPECTRUM spectral range regarding radiation source (e.g. solar) • CALIB type of applied calibration (e.g. SC for scaled counts) convDN2RU 21 • RADA addtition coefficient for radiance conversion • RADM multiplication coefficient for radiance conversion • REFA addtition coefficient for reflectance conversion • REFM multiplication coefficient for reflectance conversion • BTK1 brightness temperature correction parameter • BTK2 brightness temperature correction parameter • SZEN sun zenith angle • SAZM sun azimuth angle • SELV sun elevation angle • ESD earth-sun distance (AU) • LMIN Minimum wavelength of the band (micrometer) • LMAX Maximum wavelength of the band (micrometer) • RADMIN Minimum radiance recorded by the band • RADMAX Maximum radiance recorded by the band • REFMIN Minimum reflectance recorded by the band • REFMAX Maximum reflectance recorded by the band • LNBR Layer number from 1 to n layers • LAYER Layer name • FILE Filepath of the data file • METAFILE Filepath of the metadata file Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) compMetaLandsat(files) convDN2RU Convert a band’s scaled counts to radiance, reflectance and/or temperature Description Convert a band’s scaled counts to radiance, reflectance and/or brightness temperature using a simple linear conversion without any kind of atmospheric correction etc. 22 convDN2RU Usage ## S4 method for signature 'Satellite' convDN2RU(x, convert = "all", szen_correction = "TRUE") ## S4 method for signature 'RasterStack' convDN2RU(x, mult, add, szen, k1, k2) ## S4 method for signature 'RasterLayer' convDN2RU(x, mult, add, szen, k1, k2) Arguments x An object of class Satellite, raster::RasterStack or raster::RasterLayer. convert Type of physical output; one of "rad", "ref", "bt" or "all". szen_correction Logical; if TRUE, sun zenith correction is being applied. mult Multiplicative coefficient for value transformation (i.e. slope). add Additive coefficient for value transformation (i.e. offset). szen Cosine of solar zenith angle. k1,k2 Temperature correction parameters. Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. Value If x is a Satellite object, a Satellite object with added converted layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). See Also calcAtmosCorr for conversions of scaled counts to physical units including a scene-based atmospheric correction. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- convDN2RU(sat) # If you use a raster layer, supply required meta information bcde <- "B002n" convDN2RU(x = getSatDataLayer(sat, bcde), mult = getSatRADM(sat, bcde), add = getSatRADA(sat, bcde)) convRad2BT convRad2BT 23 Convert a band’s scaled counts to brightness temperature Description Convert a band’s radiance values to brightness temperature without any kind of atmospheric correction etc. Usage ## S4 method for signature 'Satellite' convRad2BT(x) ## S4 method for signature 'RasterStack' convRad2BT(x, k1, k2) ## S4 method for signature 'RasterLayer' convRad2BT(x, k1, k2) Arguments x An object of class Satellite, raster::RasterStack or raster::RasterLayer providing radiance values. k1,k2 Temperature correction parameters. Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. Value If x is a Satellite object, a Satellite object with added converted layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). See Also calcAtmosCorr for converions of scaled counts to physical units including a scene-based atmospheric correction. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- convRad2BT(sat) 24 convRad2Ref convRad2Ref Convert a band’s scaled counts or radiance values to reflectance Description Convert a band’s scaled counts to reflectance using a simple linear conversion without any kind of atmospheric correction etc. Usage ## S4 method for signature 'Satellite' convRad2Ref(x, szen_correction = "TRUE") ## S4 method for signature 'RasterStack' convRad2Ref(x, mult, add, szen) ## S4 method for signature 'RasterLayer' convRad2Ref(x, mult, add, szen) Arguments x szen_correction An object of class Satellite, raster::RasterStack or raster::RasterLayer providing radiance values. Logical; if TRUE, sun zenith correction is being applied. mult Multiplicative coefficient for value transformation (i.e. slope). add Additive coefficient for value transformation (i.e. offset) szen Cosine of solar zenith angle. Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. If the sensor does not provide linear conversion coefficients for reflectance computation, the reflectance is calculated using the solar irradiance following the functions taken from USGS’ Landsat 7 manual, chapter 11.3.2, which is available online at http://landsathandbook.gsfc.nasa.gov/ data_prod/prog_sect11_3.html. Value If x is a Satellite object, a Satellite object with added converted layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). See Also calcAtmosCorr for conversions of scaled counts to physical units including a scene-based atmospheric correction. convRef2RadLinear 25 Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- convRad2Ref(sat) # If you use a raster layer, supply required meta information bcde <- "B002n" convRad2Ref(x = getSatDataLayer(sat, bcde), mult = getSatRADM(sat, bcde), add = getSatRADA(sat, bcde)) convRef2RadLinear Convert reflectance to radiance using linear function coefficients Description The function converts the reflectance (ref) back to radiance (rad) given that linear conversion coefficients for both radiance and reflectance are available. Usage convRef2RadLinear(band, refm, refa, radm, rada, szen) Arguments band raster::RasterStack or raster::RasterLayer containing reflectance. refm Multiplication coefficient for reflectance conversion. refa Addtition coefficient for reflectance conversion. radm Multiplication coefficient for radiance conversion. rada Addition coefficient for radiance conversion. szen Sun zenith angle. Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. Value raster::Raster* object with converted values. 26 convSC2Rad convSC2Rad Convert a band’s scaled counts to radiance Description Convert a band’s scaled counts to radiance using a simple linear conversion without any kind of atmospheric correction etc. Usage ## S4 method for signature 'Satellite' convSC2Rad(x, szen_correction = "TRUE") ## S4 method for signature 'RasterStack' convSC2Rad(x, mult, add, szen) ## S4 method for signature 'RasterLayer' convSC2Rad(x, mult, add, szen) Arguments x An object of class Satellite, raster::RasterStack or raster::RasterLayer providing scaled counts (DNs). szen_correction Logical; if TRUE, sun zenith correction is being applied. mult Multiplicative coefficient for value transformation (i.e. slope). add Additive coefficient for value transformation (i.e. offset). szen Cosine of solar zenith angle. Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. Value If x is a Satellite object, a Satellite object with added converted layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). See Also calcAtmosCorr for conversions of scaled counts to physical units including a scene-based atmospheric correction. convSC2Ref 27 Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- convSC2Rad(sat) # If you use a raster layer, supply required meta information bcde <- "B002n" convSC2Rad(x = getSatDataLayer(sat, bcde), mult = getSatRADM(sat, bcde), add = getSatRADA(sat, bcde)) convSC2Ref Convert a band’s scaled counts or radiance values to reflectance Description Convert a band’s scaled counts to reflectance using a simple linear conversion without any kind of atmospheric correction etc. Usage ## S4 method for signature 'Satellite' convSC2Ref(x, szen_correction = "TRUE") ## S4 method for signature 'RasterStack' convSC2Ref(x, mult, add, szen) ## S4 method for signature 'RasterLayer' convSC2Ref(x, mult, add, szen) Arguments x An object of class Satellite, raster::RasterStack or raster::RasterLayer providing scaled counts (DNs). szen_correction Logical; if TRUE, sun zenith correction is being applied. mult Multiplicative coefficient for value transformation (i.e. slope). add Additive coefficient for value transformation (i.e. offset). szen Cosine of solar zenith angle. 28 crop Details The conversion functions are taken from USGS’ Landsat 8 manual which is available online at http://landsat.usgs.gov/Landsat8_Using_Product.php. If the sensor does not provide linear conversion coefficients for reflectance computation, the reflectance is calculated using the solar irradiance following the functions taken from USGS’ Landsat 7 manual, chapter 11.3.2, which is available online at http://landsathandbook.gsfc.nasa.gov/ data_prod/prog_sect11_3.html. Value If x is a Satellite object, a Satellite object with added converted layers; if x is a raster::Raster* object, a raster::Raster* object with converted layer(s). See Also calcAtmosCorr for conversions of scaled counts to physical units including a scene-based atmospheric correction. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- convSC2Ref(sat) # If you use a raster layer, supply required meta information bcde <- "B002n" convSC2Ref(x = getSatDataLayer(sat, bcde), mult = getSatRADM(sat, bcde), add = getSatRADA(sat, bcde)) crop Crop satellite object Description The function is a wrapper around the crop function to easily crop a Satellite object by an extent object. Usage ## S4 method for signature 'Satellite' crop(x, y, subset = TRUE) crop 29 Arguments x Satellite object. y extent object. subset Logical; if TRUE (default), all layers but the cropped ones are being dropped; if FALSE, cropped layers are appended to the Satellite object. Details Crop layers of a Satellite object to the size of a given raster::extent object. Value A Satellite object consisting of cropped layers only. If subset = FALSE, a Satellite object with the cropped layers appended. References Please refer to the respective functions for references. See Also This function is a wrapper for raster::crop. Examples ## Not run: ## sample data path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) ## geographic extent of georg-gassmann-stadium (utm 32-n) ext_ggs <- raster::extent(484015, 484143, 5627835, 5628020) ## crop satellite object by specified extent sat_ggs <- crop(sat, ext_ggs) plot(sat) plot(sat_ggs) ## End(Not run) 30 demTools demTools Compute terrain characteristics from digital elevation models Description Compute terrain characteristics from digital elevation models (DEM) using raster::terrain or raster::hillShade. Usage ## S4 method for signature 'Satellite' demTools(x, method = "hillShade", bcde = "DEM") ## S4 method for signature 'RasterLayer' demTools(x, sunElev, sunAzim, method = "hillShade") Arguments x method bcde sunElev sunAzim A DEM provided as an object of class Satellite or RasterLayer. Currently "slope", "aspect" and "hillshade" are implemented. The name of the DEM layer in the satellite object. If method = "hillShade", the elevation angle of the sun in degrees. See parameter angle in hillShade. If method = "hillShade", the sun azimuth angle in degree. See parameter direction in hillShade. Value If x is a Satellite object, a Satellite object with added layer containing calculated terrain information; if x is a raster::RasterLayer object, a raster::RasterLayer object with calculated terrain information. See Also raster::terrain, raster::hillShade. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) ## dem files_dem <- list.files(path, pattern = "DEM", full.names = TRUE) DEM <- raster(files_dem) sat <- addSatDataLayer(sat, data = DEM, info = NULL, bcde = "DEM", in_bcde="DEM") sat <- demTools(sat) deprecated 31 deprecated Deprecated functions Description The functions have been implemented in the very beginning of the package development, mainly to be used within the scope of a remote sensing course at Marburg University. To ensure that the scripts developed within this course will still work after the next major revision, they are still part of this package, but they will mainly just foreward the respective call to the more up-to-date function. Usage satCalib(x, convert = "all", szen_correction = "TRUE") calibLinear(band, mult, add, szen, k1, k2) satTOAIrrad(x, method = "Table", model = "MNewKur", normalize = TRUE, esd) satPathRadDOS(x, atmos_model = "DOS2", esun_mode = "RadRef") satAtmosCorr(x, atmos_model = "DOS2", esun_mode = "RadRef") calibLinearInverse(band, ref_mult, ref_add, rad_mult, rad_add, szen) satInvarFeatures(x) Arguments x Satellite object convert Convert dataset to radiance/reflectance/temperature szen_correction Compute sun zenith correction band Band of the sensor mult Multiplicative calibration coefficient add Additive multiplication coefficient szen Sun zenith angle k1 BTT calibration coefficient k2 BTT calibration coefficient method Method used for computation model Model used for computation normalize Normalize earth-sun distance esd Earth sun distance atmos_model Atmospheric model to be used 32 l8 esun_mode Earth sun distance computation method to be used ref_mult Multiplicative reflection calibration coefficient ref_add Additive reflection calibration coefficient rad_mult Multiplicative radiance calibration coefficient rad_add Additive radiance calibration coefficient l7 Landsat 7 sample data Description This dataset comes from the USGS. It contains part of the Landsat scene LE71950252001211EDC00 from 2001-07-30 over Maburg, Germany. Format raster::RasterStack with 8 bands of 41 by 41 pixels. Details Use of this data requires your agreement to the USGS regulations on using Landsat data. Source http://earthexplorer.usgs.gov/ l8 Landsat 8 sample data Description This dataset comes from the USGS. It contains part of the Landsat scene LC81950252013188LGN00 from 2013-07-07 over Maburg, Germany. Format raster::RasterStack with 10 bands of 41 by 41 pixels. Details Use of this data requires your agreement to the USGS regulations on using Landsat data. Source http://earthexplorer.usgs.gov/ lutInfo 33 lutInfo Get or access internal LUT values used by various functions Description Get internal look-up table (LUT) values from sysdata.rda which have been compiled using dataraw/lut_data.R. Metadata is stored in lut$meta. Usage lutInfo() lutInfoBandsFromSID(sid) lutInfoSensorFromSID(sid) lutInfoBCDEFromBID(sid, bid) lutInfoBIDFromBCDE(bcde, sid) lutInfoRSRromSID(sid) lutInfoSIDfromFilename(files) lutInfoSGRPfromFilename(file) Arguments sid Sensor id as returned e.g. from lutInfoSensorFromSID. bid Band id as returned e.g. from lutInfoBIDFromBCDE. bcde Band code as returned e.g. from lutInfoBCDEFromBID. files Filename (or filepath) of one or more remote sensing data filenames file Filename of a remote sensing data file Details The functions above return the following information: • lutInfoBandsFromSID returns the band info block. • lutInfoBCDEFromBID returns the band code. • lutInfoBIDFromBCDE returns the band ids. • lutInfoRSRromSID returns the relative spectral response (rsr) for the sensor. • lutInfoSensorFromSID returns the sensor name. The LUT contains the following information: 34 lutInfo l4_band_wl Minimum/maximum wavelength for Landsat 4 bands taken from the band info of the USGS Landsat FAQ. l5_band_wl Minimum/maximum wavelength for Landsat 5 bands taken from the band info of the USGS Landsat FAQ. l7_band_wl Minimum/maximum wavelength for Landsat 7 bands taken from the band info of the USGS Landsat FAQ. l8_band_wl Minimum/maximum wavelength for Landsat 8 bands taken from the band info of the USGS Landsat FAQ. l7_rsr Landat 7 rsr (nm-1) taken from taken from the spectral viewer of the USGS Landsat FAQ. l8_rsr Landat 8 rsr (nm-1) taken from taken from the spectral viewer of the USGS Landsat FAQ. solar Solar irradiance (W m-2 nm-1) taken from the National Renewable Energy Laboratory. l7_esun Tabulated ESun values from tab 11.3 (Thuillier spectrum) of the Landsat7 handbook. l5_esun Tabulated ESun values from Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transaction on Geoscience and Remote Sensing 41/11, doi:10.1109/LGRS.2007.898285. l4_esun Tabulated ESun values from Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transaction on Geoscience and Remote Sensing 41/11, doi:10.1109/LGRS.2007.898285. Value List containing several data.frame objects with LUT values. Functions • lutInfoBandsFromSID: • lutInfoSensorFromSID: • lutInfoBCDEFromBID: • lutInfoBIDFromBCDE: • lutInfoRSRromSID: • lutInfoSIDfromFilename: • lutInfoSGRPfromFilename: Examples ls_li <- lutInfo() str(ls_li) maskInvarFeatures maskInvarFeatures 35 Identify pseudo-invariant features from a satellite scene Description Identify pseudo-invariant features from a satellite scene based on a vis, near infravis and short-wave infravis band. Usage ## S4 method for signature 'Satellite' maskInvarFeatures(x) ## S4 method for signature 'RasterStack' maskInvarFeatures(x, quant = 0.01, id_vis = 1L, id_nir = 2L, id_swir = 3L) ## S4 method for signature 'RasterLayer' maskInvarFeatures(x, nir, swir, quant = 0.01) Arguments x A Satellite object or a raster::RasterLayer providing the sensor’s vis band. quant A value v = [0...1] which is used to define the percentage threshold values (thv) for invariant features (nir/vis ratio < thv, swir band values > 1-thv). id_vis Index of the visible band. id_nir Index of the near infravis band. id_swir Index of the short-wave infravis band. nir A raster::RasterLayer containing the sensor’s nir band. swir A raster::RasterLayer containing the sensor’s swir band. Details Invariant features are identified as pixels which belong to the group of (i) the n lowest VIS/NIR ratios and of (ii) the highest n SWIR values. The value of n is given by the parameter quant = [0...1]. Value If x is a Satellite object, a Satellite object with added layer; if x is a raster::RasterLayer object, a a raster::RasterLayer object with added layers (1 indicates invariant pixels, 0 otherwise). 36 names References This function is taken and only slightly modified from the PIF function by Sarah C. Goslee (2011). Analyzing Remote Sensing Data in R: The landsat Package. Journal of Statistical Software,43(4), 1-25. URL http://www.jstatsoft.org/v43/i04/. The underlying theory has been published by Schott RJ, Salvaggio C and Volchok WJ (1988) Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment 26/1, doi:10.1016/0034-4257(88)90116-2, available online at http://www.sciencedirect.com/ science/article/pii/0034425788901162. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat <- maskInvarFeatures(sat) maskInvarFeatures(x = getSatDataLayer(sat, "B004n"), nir = getSatDataLayer(sat, "B005n"), swir = getSatDataLayer(sat, "B007n")) ## when dealing with a 'RasterStack' rst <- stack(files[c(6, 7, 9)]) maskInvarFeatures(rst) names Get/set Satellite data layer names Description Get/set Satellite data layer names, i.e. the BCDE id. Usage ## S4 method for signature 'Satellite' names(x) ## S4 replacement method for signature 'Satellite' names(x) <- value Arguments x A Satellite object. value Band codes of the individual data layers. Value Satellite data layer names as character vector. panSharp 37 Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) names(sat) new_names <- paste0(names(sat), "_test") names(sat) <- new_names panSharp Pan sharpen low resolution satellite channels by using the high resolution panchromatic channel. Description The function PAN sharpens the low resolution channels with the panchromatic channel. This is done by multiplying the normlized XS channel with the PAN channel (see Details). Usage ## S4 method for signature 'Satellite' panSharp(x, filter = c("mean", "Gauss", "median"), winsize = 1, subset = FALSE) ## S4 method for signature 'RasterStack' panSharp(x, pan, filter = c("mean", "Gauss", "median"), winsize = 1) ## S4 method for signature 'RasterLayer' panSharp(x, pan, pan_lp, filter = c("mean", "Gauss", "median"), winsize = 1) Arguments x Satellite or raster::Raster* object. filter Type of filter to be used for smoothing the PAN raster; one of mean (default), Gauss, median. winsize Size of the filter window in x and y direction; defaults to 3. subset Logical; if TRUE, all layers except for the cropped ones are being dropped; if FALSE, the cropped layers are being appended to the Satellite object. pan A raster::RasterLayer object of the panchromatic channel pan_lp A raster::RasterLayer object containing a lowpass filtering of pan 38 panSharp Details Pan sharpen low resolution satellite channels by using the high resolution panchromatic channel. This function uses the same algorithm as the OTB Toolbox where "The idea is to apply a low pass filter to the panchromatic band to give it a spectral content (in the Fourier domain) equivalent to the XS data. Then we normalize the XS data with this low-pass panchromatic and multiplythe result with the original panchromatic band." (see https://www.orfeo-toolbox.org/SoftwareGuide/ SoftwareGuidech13.html#x41-2140011). Value If x is a Satellite object, a Satellite object (with added pansharpened layers); if x is a raster::Raster* object, a raster::Raster* with pansharpened layer(s). References Al-amri, Salem Saleh, Namdeo V. Kalyankar, and Santosh D. Khamitkar. "A comparative study of removal noise from remote sensing image." http://ijcsi.org/articles/A-Comparative-Study-of-Removal-Noise-f php Bhattacharya, Amit K., P. K. Srivastava, and Anil Bhagat. "A modified texture filtering technique for satellite images." Paper presented at the 22nd Asian Conference on Remote Sensing. Vol. 5. 2001. http://a-a-r-s.org/aars/proceeding/ACRS2001/Papers/DPA3-08.pdf Randen, Trygve, and John Hakon Husoy. "Filtering for texture classification: A comparative study." Pattern Analysis and Machine Intelligence, IEEE Transactions on 21.4 (1999): 291-310. http: //dx.doi.org/10.1109/34.761261. PAN sharpening articles - http://remotesensing.spiedigitallibrary.org/article.aspx?articleid=1726558 - http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1368950&url=http%3A%2F%2Fieeexplore. ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1368950 Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) ## Not run: ## using 'satellite' object sat_ps <- panSharp(sat) par(mfrow = c(1, 2)) plot(getSatDataLayer(sat_ps, "B002n"), main = "raw", legend = TRUE) plot(getSatDataLayer(sat_ps, "B002n_PAN_sharpend"), main = "pan-sharpened", legend = TRUE) dev.off() ## End(Not run) ## using 'RasterLayer' object rst_b001n <- getSatDataLayer(sat, "B001n") pck_data 39 rst_panch <- getSatDataLayer(sat, getSatBCDEFromType(sat, type = "PCM")) rst_b001n_ps <- panSharp(rst_b001n, rst_panch) par(mfrow = c(1, 2)) plot(rst_b001n, main = "raw", legend = FALSE) plot(rst_b001n_ps, main = "pan-sharpened", legend = FALSE) dev.off() pck_data Package methods used to build datasets Description Functions which have been used to create dataset of this package. pck_lut Function used to create sysdata.rda (i.e. LUT) Description Function which has been used to create the LUT data of this package. plot Plot a ’Satellite’ object Description This is the standard plotting routine for the ’Satellite’ class. Layers are drawn either from the start (default; limited to a maximum of 16 sub-plots) or according to the speficied band codes. Usage ## S4 method for signature 'Satellite,ANY' plot(x, bcde = NULL, col = grDevices::grey.colors(100), ...) Arguments x A ’Satellite’ object, usually returned by satellite. bcde Band codes to be visualized, e.g. returned by getSatBCDE. If not supplied, the initial (up to) 16 layers are being visualized. col Color scheme. ... Further arguments passed on to plot.default. 40 projectSatellite See Also plot.default, par. Examples ## sample data path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) ## Not run: ## pan-sharpening sat_ps <- panSharp(sat) ## draw initial 16 layers (raw and pan-sharpened) library(RColorBrewer) plot(sat_ps, col = brewer.pal(9, "Reds")) ## draw first and second band incl. pan-sharpened versions only plot(sat_ps, bcde = c("B001n", "B001_PAN_sharpend", "B002n", "B002_PAN_sharpend")) ## End(Not run) projectSatellite Reproject a ’Satellite’ object Description Reproject a satellite object. Either a template or crs must be supplied. If crs is not supplied, alignGeometry is called. Usage ## S4 method for signature 'Satellite' projectSatellite(x, template, band_codes, type, crs, method = c("bilinear", "ngb")) Arguments x Satellite or Raster* object to be resampled. template Raster* or spatial data set from which geometry can be extracted. band_codes Band ID(s) to be resampled. If not supplied and type is not given, too, all bands will be considered for resampling. type Type of bands (e.g. VIS, NIR) which should be considered. If not supplied, all types will be processed depending and bands to be processed can be defined by band_codes. satellite 41 crs character or object of class ’CRS’. PROJ.4 description of the coordinate reference system. See projectRaster for details. method Method for resampling; "bilinear" for bilinear interpolation (default) or "ngb" for nearest neighbor interpolation. See e.g. resample, projectRaster. Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) projectSatellite(sat, crs = "+init=epsg:4326", band_codes = "B001n") satellite Create a Satellite object Description Method to create a Satellite object. Usage ## S4 method for signature 'character' satellite(x, meta, log) ## S4 method for signature 'RasterStack' satellite(x, meta, log) ## S4 method for signature 'list' satellite(x, meta, log) Arguments x A vector of filenames (see raster::raster) or a raster::RasterStack. meta Optional metadata object (e.g. returned from compMetaLandsat). If x is a satellite dataset and recognised as "Landsat", then the metadata is automatically extracted from the respective meta information file if both the satellite data and the metadata file follow the USGS Earth Explorer’s naming convention. log Optionally supply a log entry. Details A satellite object consists of three data sections: (i) a raster data section which holds the actual data values of the respective sensor bands, (ii) a metadata grid which holds meta information for each sensor band (e.g. calibration coefficients, type of sensor band etc.) and (iii) a list of log information which records the processing history of the entire dataset. 42 SatelliteInfo-class Value Satellite object See Also compMetaLandsat to get more information about the structure of the metadata component. Examples ## 'character' input (i.e. filenames) path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) satellite(files) ## raster::RasterStack input satellite(l8) Satellite-class An S4 class to represent a complete satellite dataset Description An S4 class to represent a complete satellite dataset SatelliteInfo-class An S4 class to represent a satellite data file Description An S4 class to represent a satellite data file Slots name name of the data file without extension filepath full path and file of the data file path path to the data file file filename incl. extension of the data file extension extension of the data file SatelliteLayers-class 43 SatelliteLayers-class An S4 class to represent satellite data Description An S4 class to represent satellite data Slots layers a list object containing individual RasterLayer objects SatelliteLog-class An S4 class to represent satellite log data Description An S4 class to represent satellite log data Slots log a list object containing information on individual processing steps SatelliteMetaData-class An S4 class to represent satellite metadata Description An S4 class to represent satellite metadata Slots meta a data frame object containing the data 44 satInfo satInfo Get or access Satellite object information used by various functions Description Get information from class Satellite. Usage getSatDataLayers(sat, bcde = NULL) getSatDataLayer(sat, bcde) getSatMeta(sat, bcde) getSatMetaBCDETemplate(sat, bcde) getSatLog(sat) setSatBCDE(sat, bcde) createSatBCDE(sat, width = 3, flag = 0, prefix = "B", postfix = "n") addSatMetaParam(sat, meta_param) addSatMetaEntry(sat, meta_param) addSatLog(sat, info = NA_character_, in_bcde = NA_character_, out_bcde = NA_character_) addSatDataLayer(sat, bcde, data, meta_param, info, in_bcde) addRasterMeta2Sat(sat) createRasterMetaData(rst) updateRasterMetaData(sat, bcde) countSatDataLayers(sat) getSatParam(sat, param, bcde, return_bcde = TRUE) getSatBCDE(sat, lnbr) getSatBID(sat, bcde) getSatSID(sat) satInfo getSatSensor(sat) getSatSensorGroup(sat) getSatSensorInfo(sat) getSatSpectrum(sat, bcde) getSatBCDESolar(sat) getSatBCDEThermal(sat) getSatXRes(sat, bcde) getSatYRes(sat, bcde) getSatRes(sat, bcde) getSatType(sat, bcde) getSatCalib(sat, bcde) getSatBCDEType(sat, bcde, type) getSatBCDEFromType(sat, type = "VIS") getSatBCDEFromSpectrum(sat, spectrum = "solar") getSatBCDESres(sat, bcde, type) getSatBCDECalib(sat, bcde, calib) getSatBCDESolarCalib(sat, bcde, calib) getSatBCDEThermalCalib(sat, bcde, calib) getSatBandInfo(sat, bcde, return_calib = TRUE) getSatRadMax(sat, bcde) getSatRadMin(sat, bcde) getSatRefMax(sat, bcde) getSatRefMin(sat, bcde) getSatESD(sat) 45 46 satInfo getSatESUN(sat, bcde) getSatSZEN(sat, bcde) getSatSAZM(sat, bcde) getSatSELV(sat, bcde) getSatMetaLayer(sat, bcde) getSatLayerfromData(sat, bcde, nbr) getSatLNBR(sat, bcde) getSatLMIN(sat, bcde) getSatLMAX(sat, bcde) getSatRADA(sat, bcde) getSatRADM(sat, bcde) getSatREFA(sat, bcde) getSatREFM(sat, bcde) getSatBTK1(sat, bcde) getSatBTK2(sat, bcde) getSatPRAD(sat, bcde) getSatDATE(sat, bcde) getSatProjection(sat, bcde) Arguments sat Satellite object (see satellite). bcde Band code. width,flag Field width and format modifier for automated creation of BCDE information, defaults to ’3’ and ’0’, respectively. See formatC for further details. prefix,postfix Prefix and postfix to be added to the created BCDE information. meta_param Metadata parameters used to document new data layer info Log information added to metadata in_bcde BCDE of layer used as input dataset satInfo 47 out_bcde BCDE of layer used as output dataset data Data layer of a satellite object rst Input raster::Raster* object from which to extract metadata. param Parameter of the metadata set (i.e. colname) return_bcde Return bcde as attribute (TRUE/FALSE) lnbr Layer number type Type of the sensor band spectrum Spectral region, e.g. "solar" or "thermal". calib Calibration information. return_calib Return calibration information (TRUE/FALSE) nbr Return specific data layer selected by number Details The functions are generally self-explaining in that sence that get* returns the respective information and set* sets the respective information from/in the Satellite object. addSatLog adds a log entry to the Satellite object. Value Objects of respective type (see satellite). Functions • getSatDataLayers: Return Satellite data layers • getSatDataLayer: Return Satellite data layer i • getSatMeta: Return Satellite object metadata • getSatMetaBCDETemplate: Return template for Satellite object metadata which is based on existing band • getSatLog: Return Satellite object log info • setSatBCDE: Set BCDE/data layer names of a Satellite object • createSatBCDE: If not supplied, automatically create BCDE names of a Satellite object • addSatMetaParam: Add additional or overwrite metainformation parameter to Satellite object • addSatMetaEntry: Add metainformation for an additional layer to Satellite object • addSatLog: Add new log entry to Satellite object • addSatDataLayer: Add new Satellite data layer • addRasterMeta2Sat: Add raster meta data to Satellite object meta data • createRasterMetaData: Create raster meta data • updateRasterMetaData: Create raster meta data • countSatDataLayers: Return number of Satellite data layers 48 satInfo • getSatParam: Return parameter (general method implemented by the specific functions below) • getSatBCDE: Return Band code • getSatBID: Return Band IDs • getSatSID: Return sensor ID • getSatSensor: Return sensor • getSatSensorGroup: Return sensor group • getSatSensorInfo: Return sensor information • getSatSpectrum: Return spectrum • getSatBCDESolar: Return solar band codes • getSatBCDEThermal: Return thermal band codes • getSatXRes: Return sensor x resolution • getSatYRes: Return sensor y resolution • getSatRes: Return mean sensor resolution (mean of x and y res) • getSatType: Return sensor type • getSatCalib: Return calibration level • getSatBCDEType: Return TYPE band codes • getSatBCDEFromType: Return BCDE matching TYPE • getSatBCDEFromSpectrum: Return BCDE matching TYPE • getSatBCDESres: Return the mean of x and y resolution for band codes matching type • getSatBCDECalib: Return calibration level for band codes matching type • getSatBCDESolarCalib: Return calibration level for band codes machting type and are solar bands • getSatBCDEThermalCalib: Return calibration level for band codes machting type and are thermal bands • getSatBandInfo: Return band information • getSatRadMax: Return maximum radiance for bcde • getSatRadMin: Return minimum radiance for bcde • getSatRefMax: Return maximum reflectance for bcde • getSatRefMin: Return minimum reflectance for bcde • getSatESD: Return earth-sun distance • getSatESUN: Return actual solar TOA irradiance • getSatSZEN: Return sun zenith angle • getSatSAZM: Return sun azimuth angle • getSatSELV: Return Sun elevation • getSatMetaLayer: Return Layer name from metadata • getSatLayerfromData: Return Layer name from data layer • getSatLNBR: Return Layer number stack 49 • • • • • • • • • • getSatLMIN: Return minimum wavelength of the sensor band getSatLMAX: Return maximum wavelength of the sensor band getSatRADA: Return addition coefficient for SC to radiance conversion getSatRADM: Return multiplicative coefficient for SC to radiance conversion getSatREFA: Return addition coefficient for SC to reflectance getSatREFM: Return multiplicative coefficient for SC to reflectance getSatBTK1: Return calibration coefficent to convert SC to brightness temperature getSatBTK2: Return calibration coefficent to convert SC to brightness temperature getSatDATE: Return DATE getSatProjection: Return projection Examples # List of input files path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) # Raster stack l8 sat <- satellite(l8) stack convert selected layers of a Satellite object to a RasterStack Description Convert selected layers of a Satellite object to a RasterStack Usage ## S4 method for signature 'Satellite' stack(x, layer = names(x), ...) Arguments x layer ... an object of class ’Satellite’ character vector (bcde codes) or integer vector (index) of the layers to be stacked additional arguments passed on to stack Examples path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) stck <- stack(sat, c("B001n", "B002n", "B003n")) stck 50 subset subset Subset Satellite object data layers Description This function subsets a Satellite object and returns the extracted dataset as Satellite object. Usage ## S4 method for signature 'Satellite' subset(x, sid, cid) ## S4 method for signature 'Satellite,ANY,ANY' x[[i]] Arguments x Satellite or raster::Raster* object providing the source band(s) to be adjusted. sid Band numbers or bcde which should be extracted cid Calibration information used for subsetting (only works if sid is not supplied to the function) i Layer index(es) for subsetting. Value A Satellite object A Satellite object A Satellite object Examples ## sample data path <- system.file("extdata", package = "satellite") files <- list.files(path, pattern = glob2rx("LC8*.tif"), full.names = TRUE) sat <- satellite(files) sat[[2:5]] subset(sat, cid = "SC") Index calcPathRadDOS,numeric-method (calcPathRadDOS), 11 calcPathRadDOS,Satellite-method (calcPathRadDOS), 11 calcTOAIrradModel, 5, 6, 11, 12, 14, 16, 18 calcTOAIrradModel,data.frame-method (calcTOAIrradModel), 14 calcTOAIrradModel,Satellite-method (calcTOAIrradModel), 14 calcTOAIrradRadRef, 5, 6, 11, 12, 15, 15, 18 calcTOAIrradRadRef,numeric-method (calcTOAIrradRadRef), 15 calcTOAIrradRadRef,Satellite-method (calcTOAIrradRadRef), 15 calcTOAIrradTable, 5, 6, 11, 12, 15, 16, 17 calcTOAIrradTable,character-method (calcTOAIrradTable), 17 calcTOAIrradTable,factor-method (calcTOAIrradTable), 17 calcTOAIrradTable,Satellite-method (calcTOAIrradTable), 17 calcTopoCorr, 18 calcTopoCorr,RasterLayer-method (calcTopoCorr), 18 calcTopoCorr,RasterStack-method (calcTopoCorr), 18 calcTopoCorr,Satellite-method (calcTopoCorr), 18 calibLinear (deprecated), 31 calibLinearInverse (deprecated), 31 compFilePathLandsat, 19 compMetaLandsat, 20, 41, 42 convDN2RU, 21 convDN2RU,RasterLayer-method (convDN2RU), 21 convDN2RU,RasterStack-method (convDN2RU), 21 convDN2RU,Satellite-method (convDN2RU), 21 ∗Topic package satellite-package, 2 [[,Satellite,ANY,ANY-method (subset), 50 addRasterMeta2Sat (satInfo), 44 addSatDataLayer (satInfo), 44 addSatLog (satInfo), 44 addSatMetaEntry (satInfo), 44 addSatMetaParam (satInfo), 44 alignGeometry, 3, 40 alignGeometry,RasterLayer-method (alignGeometry), 3 alignGeometry,RasterStack-method (alignGeometry), 3 alignGeometry,Satellite-method (alignGeometry), 3 as.Date, 8 as.POSIXct, 8 brick, 4, 4 brick,Satellite-method (brick), 4 calcAtmosCorr, 5, 11, 13, 19, 22–24, 26, 28 calcAtmosCorr,RasterLayer-method (calcAtmosCorr), 5 calcAtmosCorr,RasterStack-method (calcAtmosCorr), 5 calcAtmosCorr,Satellite-method (calcAtmosCorr), 5 calcDODN, 7, 11, 12 calcEarthSunDist, 8, 14–18 calcHistMatch, 9 calcHistMatch,RasterLayer-method (calcHistMatch), 9 calcHistMatch,RasterStack-method (calcHistMatch), 9 calcHistMatch,Satellite-method (calcHistMatch), 9 calcPathRadDOS, 5, 6, 8, 11 51 52 convRad2BT, 23 convRad2BT,RasterLayer-method (convRad2BT), 23 convRad2BT,RasterStack-method (convRad2BT), 23 convRad2BT,Satellite-method (convRad2BT), 23 convRad2Ref, 24 convRad2Ref,RasterLayer-method (convRad2Ref), 24 convRad2Ref,RasterStack-method (convRad2Ref), 24 convRad2Ref,Satellite-method (convRad2Ref), 24 convRef2RadLinear, 25 convSC2Rad, 5, 26 convSC2Rad,RasterLayer-method (convSC2Rad), 26 convSC2Rad,RasterStack-method (convSC2Rad), 26 convSC2Rad,Satellite-method (convSC2Rad), 26 convSC2Ref, 27 convSC2Ref,RasterLayer-method (convSC2Ref), 27 convSC2Ref,RasterStack-method (convSC2Ref), 27 convSC2Ref,Satellite-method (convSC2Ref), 27 countSatDataLayers (satInfo), 44 createRasterMetaData (satInfo), 44 createSatBCDE (satInfo), 44 crop, 28, 28 crop,Satellite-method (crop), 28 demTools, 30 demTools,RasterLayer-method (demTools), 30 demTools,Satellite-method (demTools), 30 deprecated, 31 extent, 28, 29 formatC, 46 getSatBandInfo (satInfo), 44 getSatBCDE, 39 getSatBCDE (satInfo), 44 getSatBCDECalib (satInfo), 44 INDEX getSatBCDEFromSpectrum (satInfo), 44 getSatBCDEFromType (satInfo), 44 getSatBCDESolar (satInfo), 44 getSatBCDESolarCalib (satInfo), 44 getSatBCDESres (satInfo), 44 getSatBCDEThermal (satInfo), 44 getSatBCDEThermalCalib (satInfo), 44 getSatBCDEType (satInfo), 44 getSatBID (satInfo), 44 getSatBTK1 (satInfo), 44 getSatBTK2 (satInfo), 44 getSatCalib (satInfo), 44 getSatDataLayer, 8 getSatDataLayer (satInfo), 44 getSatDataLayers (satInfo), 44 getSatDATE (satInfo), 44 getSatESD (satInfo), 44 getSatESUN (satInfo), 44 getSatLayerfromData (satInfo), 44 getSatLMAX (satInfo), 44 getSatLMIN (satInfo), 44 getSatLNBR (satInfo), 44 getSatLog (satInfo), 44 getSatMeta (satInfo), 44 getSatMetaBCDETemplate (satInfo), 44 getSatMetaLayer (satInfo), 44 getSatParam (satInfo), 44 getSatPRAD (satInfo), 44 getSatProjection (satInfo), 44 getSatRADA (satInfo), 44 getSatRADM (satInfo), 44 getSatRadMax (satInfo), 44 getSatRadMin (satInfo), 44 getSatREFA (satInfo), 44 getSatREFM (satInfo), 44 getSatRefMax (satInfo), 44 getSatRefMin (satInfo), 44 getSatRes (satInfo), 44 getSatSAZM (satInfo), 44 getSatSELV (satInfo), 44 getSatSensor (satInfo), 44 getSatSensorGroup (satInfo), 44 getSatSensorInfo (satInfo), 44 getSatSID (satInfo), 44 getSatSpectrum (satInfo), 44 getSatSZEN (satInfo), 44 getSatType (satInfo), 44 getSatXRes (satInfo), 44 INDEX getSatYRes (satInfo), 44 hillShade, 30 l7, 32 l8, 32 lutInfo, 33 lutInfoBandsFromSID (lutInfo), 33 lutInfoBCDEFromBID, 33 lutInfoBCDEFromBID (lutInfo), 33 lutInfoBIDFromBCDE, 33 lutInfoBIDFromBCDE (lutInfo), 33 lutInfoRSRromSID (lutInfo), 33 lutInfoSensorFromSID, 33 lutInfoSensorFromSID (lutInfo), 33 lutInfoSGRPfromFilename (lutInfo), 33 lutInfoSIDfromFilename (lutInfo), 33 maskInvarFeatures, 35 maskInvarFeatures,RasterLayer-method (maskInvarFeatures), 35 maskInvarFeatures,RasterStack-method (maskInvarFeatures), 35 maskInvarFeatures,Satellite-method (maskInvarFeatures), 35 names, 36 names,Satellite-method (names), 36 names<-,Satellite-method (names), 36 panSharp, 37 panSharp,RasterLayer-method (panSharp), 37 panSharp,RasterStack-method (panSharp), 37 panSharp,Satellite-method (panSharp), 37 par, 40 pck_data, 39 pck_lut, 39 plot, 39 plot,Satellite,ANY-method (plot), 39 plot.default, 39, 40 projectRaster, 4, 41 projectSatellite, 40 projectSatellite,Satellite-method (projectSatellite), 40 resample, 4, 41 satAtmosCorr (deprecated), 31 53 satCalib (deprecated), 31 satellite, 39, 41, 46, 47 satellite,character-method (satellite), 41 satellite,list-method (satellite), 41 satellite,RasterStack-method (satellite), 41 Satellite-class, 42 satellite-package, 2 SatelliteInfo-class, 42 SatelliteLayers-class, 43 SatelliteLog-class, 43 SatelliteMetaData-class, 43 satellitepackage (satellite-package), 2 satInfo, 44 satInvarFeatures (deprecated), 31 satPathRadDOS (deprecated), 31 satTOAIrrad (deprecated), 31 setSatBCDE (satInfo), 44 stack, 49, 49 stack,Satellite-method (stack), 49 subset, 50 subset,Satellite-method (subset), 50 updateRasterMetaData (satInfo), 44
© Copyright 2026 Paperzz