Chapter 12 Answers to Questions 1. (a) nitrogen dioxide (b) hydrogen sulfide (c) hydrogen chloride 2. (a) hydrogen cyanide 3. X = sulfur, Y = oxygen, Z = sulfur dioxide 4. X = carbon monoxide, Y = oxygen, Z = carbon dioxide (b) dinitrogen oxide (c) ammonia 5. Strategy Press/mol/temp of gas → vol gas V= Relationship V = nRT/P nRT 1.00 mol (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(743 K) = = 0.66 L P (9.3 × 103 kPa) 6. Strategy Press/mol/temp of gas → vol gas V= Relationship V = nRT/P nRT 1.00 mol (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(263 K) = = 3.6 × 103 L P (0.60 kPa) 7. Strategy Press/vol/temp of O2 → mol O2 Mol O2 → mass O2 n= Relationship n = PV/RT 1 mol O2 ≡ 32.0 g PV 100 kPa (25.0 L) = = 1.01 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(298 K) 32.0 g = 32.3 g O2 1 mol Mass O2 = 1.01 mol O2 × 8. Strategy Mass CO2 → mol CO2 Mol/press/temp CO2 → vol CO2 Mol CO2 = 30.0 g CO2 × V= Relationship 1 mol CO2 ≡ 44.0 g V = nRT/P 1 mol = 0.682 mol CO2 44.0 g nRT 0.682 mol (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(298 K) = = 16.9 L P (100 kPa) 9. Strategy Press/vol/temp of C2H2 → mol C2H2 Mol C2H2 → mass C2H2 n= Relationship n = PV/RT 1 mol C2H2 ≡ 26.0 g PV 1.72 × 103 kPa (87.0 L) = = 59.8 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(301 K) 26.0 g = 1.56 × 103 g C2 H2 = 1.56 kg C2 H2 1 mol Mass C2 H2 = 59.8 mol C2 H2 × 10. Strategy Press/vol/temp of He → mol He Mol He → mass He n= Relationship n = PV/RT 1 mol He ≡ 4.00 g PV 102 kPa (5.74 × 106 L) = = 2.43 × 105 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(290 K) Mass He = 2.43 × 105 mol He × = 0.972 tonne He 4.00 g = 9.72 × 105 g He 1 mol 11. Strategy Press/vol/temp of X2H6 → mol X2H6 Mol/mass X2H6 → molar mass X2H6 n= Relationship n = PV/RT mm X2H6 = m/n PV 196 kPa (1.26 L) = = 8.35 × 10−2 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(356 K) molar mass = 5.20 g = 62.3 g ∙ mol−1 8.35 × 10−2 mol 2 X = [62.3 6(1.01)] gmol1 = 56.2 gmol1 X = 28.1 gmol1 According to the Periodic Table, this molar mass corresponds to the element silicon 12. Strategy Press/vol/temp of XH3 → mol XH3 Mol/mass XH3 → molar mass XH3 n= Relationship n = PV/RT mm XH3 = m/n PV 115 kPa (0.775 L) = = 3.44 × 10−2 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(312 K) molar mass = 2.68 g = 77.9 g ∙ mol−1 3.44 × 10−2 mol X = [77.9 3(1.01)] gmol1 = 74.9 gmol1 According to the Periodic Table, this molar mass corresponds to the element arsenic 13. Strategy Press/mol/temp of gas → vol gas Vol/mass of gas → density of gas Relationship V = nRT/P d = m/V nRT 1.00 mol (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(298 K) Molar V = = = 24.8 L P (100 kPa) Molar mass, H2 = 2.02 g Density = 2.02 g = 8.15 × 10−2 g ∙ L−1 24.8 L 14. Strategy Press/mol/temp of gas → vol gas Vol/mass of gas → density of gas Relationship V = nRT/P d = m/V nRT 1.00 mol (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(298 K) = = 24.8 L P (100 kPa) Molar mass, UF6 = 352.0 g Molar V = Density = 15. 352.0 g = 14.2 g ∙ L−1 24.8 L Part 1: Find Empirical Formula Assume 100.0 g of compound. This will contain 92.3 g of carbon and 7.7 g of hydrogen. Mol of C = 92.3 g C × 1 mol = 7.69 mol C 12.0 g Mol of H = 7.7 g H × 1 mol = 7.7 mol H 1.01 g Ratio = 7.69 mol C 7.7 mol H ∶ = 1 C ∶ 1.0 H 7.69 mol 7.69 mol Rounding to the nearest whole number of 1:1, gives the empirical formula of CH. Part 2: Find molar mass of Compound Strategy Relationship Press/vol/temp → mol Mol/mass → molar mass n= n = PV/RT mm = m/n PV 101 kPa (0.226 L) = = 7.36 × 10−3 mol RT (8.31 kPa ∙ L ∙ mol−1 ∙ K −1 )(373 K) molar mass = 0.573 g = 77.8 g ∙ mol−1 7.36 × 10−3 mol Part 3: Find Molar Mass and Molecular Formula The molecular formula will be some multiple of the empirical formula: (CH)n. To find n, the ratio of the molar mass (77.8 g) and the empirical formula mass (1 × 12.0 g + 1 × 1.01 g = 13.0 g) is found. The value n is always an integer. Mass ratio, 𝑛 = 77.8 g =6 13.0 g The molecular formula is (CH)6 or more correctly, C6H6 16. Part 1: Find Empirical Formula Assume 100.0 g of compound. This will contain 64.56 g of carbon, 10.86 g of hydrogen, and 24.58 g of oxygen. Mol of C = 64.56 g C × 1 mol = 5.376 mol C 12.01 g Mol of H = 10.86 g H × 1 mol = 10.77 mol H 1.008 g Mol of O = 24.58 g H × 1 mol = 1.536 mol O 16.00 g Ratio = 5.376 mol C 10.86 mol H 1.536 mol O ∶ ∶ = 3.500 C ∶ 7.070 H ∶ 1 O 1.536 mol 1.536 mol 1.536 mol Rounding off, it is: 3.5 C : 7 H : 1 O Multiplying through by 2 gives: 7 C : 14 H : 2 O giving the empirical formula of C7H14O2. Part 2: Find molar mass of Compound Strategy Press/vol/temp → mol Mol/mass → molar mass n= Relationship n = PV/RT mm = m/n PV 156.5 kPa (1.880 L) = = 7.897 × 10−2 mol −1 −1 RT (8.314 kPa ∙ L ∙ mol ∙ K )(448.1 K) molar mass = 10.29 g = 130.3 g ∙ mol−1 7.897 × 10−2 mol Part 3: Find Molar Mass and Molecular Formula The molecular formula will be some multiple of the empirical formula: (C7H14O2)n. To find n, the ratio of the molar mass (130.3 g) and the empirical formula mass (7 × 12.01 g + 14 × 1.008 g + 2 16.00 = 130.2 g) is found. The value n is always an integer. Mass ratio, 𝑛 = 130.3 g =1 130.2 g The molecular formula is (C7H14O2)1 or more correctly, C7H14O2
© Copyright 2026 Paperzz