Biological Inorganic Chemistry Oxygen consumption Formation of carbon dioxide 23.10.09 Bioinorganic Chemistry BIC5 1 C6H12O6 + 6O2 6CO2 + 6H2O • Glycolysis in the cytosol (the degradation to puruvate) • Cit Citric i acid id cycle l iin th the mitochondria it h d i (tricarboxylic acid cycle) • Oxidative phosphorylation (electron transport chain) 23.10.09 Bioinorganic Chemistry BIC5 2 Fig. 14.2 a and b Lehninger 23.10.09 Bioinorganic Chemistry BIC5 3 1 Glycolysis 1 1 Hexokinase Mg 2+ + H+ 2 Ph Phosphoglucose h l iisomerase Mg 2+ Phosphofructo kinase 3 Mg 2+ + H+ 23.10.09 Bioinorganic Chemistry BIC5 4 Glycolysis 1 Mg2+ dependence log K MgATP2- = 4.34 log K MgADP- = 3.22 : 2ATP spent, 2 ADP formed 23.10.09 Bioinorganic Chemistry BIC5 5 Glycolysis 2 4 Aldolase Triosephosphate isomerase 5 Glyceraldehyde-3phosphatedehydrogenase h h t d h d 2 ti times NAD++ HPO42- NADH + H+ 6 Phospoglycerate kinase 2 times MgADP- 23.10.09 MgATP2- Bioinorganic Chemistry BIC5 6 2 Glycolysis 1 and 2 + 2 MgATP2- + 2 NAD+ + 2 MgADP- + 2 HPO42give 2 + 2 MgATP2- + 2 NADH + 2 MgADP- + 4 H+ Essentially: loss of 2 NAD+ cleavage of glucose to 2 trioses 23.10.09 Bioinorganic Chemistry BIC5 7 Glycolysis 3 7 phosphoglycerate mutase 3-phosphoglycerate →2+ 2-phosphoglycerate Mg 8 → + H2O enolase l + MgATP2- pyruvate kinase 9 + MgADP- + H+→ 10 ↔ 23.10.09 tautomerisation (keto-form more stable) Bioinorganic Chemistry BIC5 8 Glycolysis 3 2 phosphoglycerate + 2 MgADP- + 2 H+ → 2 pyruvate + 2 MgATP2Essentially: gain of 2 ATP rearrangement: triose to pyruvate 23.10.09 Bioinorganic Chemistry BIC5 9 3 Glycolysis 1 + 2 + 3 + 2 MgATP2- + 2 NAD+ + 4 MgADP- + 2 HPO42- + 2H+ g give + 4 MgATP2- + 2 NADH + 2 MgADP- + 2H2O + 4H+ 2 Essentially : gain of 2 ATP and loss of 2 NAD+ cleavage of glucose to 2 pyruvate 23.10.09 Bioinorganic Chemistry BIC5 10 From cytosol to mitochondria Cytosol: + 2 NAD+ + 2 MgADP- + 2 HPO42- → + 2 MgATP2- + 2 NADH + 2H2O + 2H+ 2 NAD+ NADH Pyruvate + CoA-SH Acetyl-coenzyme A + CO2 Acetyl-coenzyme A is taken into the mitochondria 23.10.09 Bioinorganic Chemistry BIC5 11 Coenzyme A NAD+ NADH CO2 CH2 – CH2 CH3-C- S O 23.10.09 : CH3CO-S-CoA Bioinorganic Chemistry BIC5 12 4 Lehninger • • • • • Fig. 16-7 Fig. 16.10 Fig. 19.5 Fig. 16.11 (First oxidative decarboxylation) Fig 19.10 23.10.09 Bioinorganic Chemistry BIC5 13 Glycolysis + Citric acid cycle C6H12O6 gives six CO2 (and 2ATP+ 2GTP) reducing 12 NAD+ (or similar) to NADH. Reoxidation R id ti iis affected ff t d b by th the electron l t transport chain 23.10.09 Bioinorganic Chemistry BIC5 14 Lehninger • • • • Electron transport chain Table 19.3 Fig. 19.9 cytochrome c reductase Fig. 19.11 Fig. 19.12 23.10.09 Bioinorganic Chemistry BIC5 15 5 Cytochrome c oxidase Lehninger Fig. 19-14 4-electron reduction path – haem a3 – CuB Summary Fig 19-16 Cytochrome c Prostetic group haem c : Cysteine thiols added to haem b -CH=CH2 + R-SH →-(R-S)CH-CH3 23.10.09 Bioinorganic Chemistry BIC5 17 6
© Copyright 2026 Paperzz