The Askey-scheme of hypergeometric orthogonal polynomials and its q -analogue Roelof Koekoek Rene F. Swarttouw February 20, 1996 Abstract We list the so-called Askey-scheme of hypergeometric orthogonal polynomials. In chapter 1 we give the denition, the orthogonality relation, the three term recurrence relation and generating functions of all classes of orthogonal polynomials in this scheme. In chapter 2 we give all limit relations between dierent classes of orthogonal polynomials listed in the Askey-scheme. In chapter 3 we list the q-analogues of the polynomials in the Askey-scheme. We give their denition, orthogonality relation, three term recurrence relation and generating functions. In chapter 4 we give the limit relations between those basic hypergeometric orthogonal polynomials. Finally, in chapter 5 we point out how the `classical' hypergeometric orthogonal polynomials of the Askey-scheme can be obtained from their q-analogues. Acknowledgement We would like to thank Professor Tom H. Koornwinder who suggested us to write a report like this. He also helped us solving many problems we encountered during the research and provided us with several references. Contents Preface Denitions and miscellaneous formulas 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : The q-shifted factorials : : : : : : : : : : : : : : : : : : : The q-gamma function and the q-binomial coecient : : Hypergeometric and basic hypergeometric functions : : The q-binomial theorem and other summation formulas Transformation formulas : : : : : : : : : : : : : : : : : : Some special functions and their q-analogues : : : : : : The q-derivative and the q-integral : : : : : : : : : : : : ASKEY-SCHEME 1 Hypergeometric orthogonal polynomials : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 Limit relations between hypergeometric orthogonal polynomials 2.1 Wilson ! Continuous dual Hahn : : : : : : : : : : : : : : : : : : : : : : 2.2 Wilson ! Continuous Hahn : : : : : : : : : : : : : : : : : : : : : : : : : 2.3 Wilson ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.4 Racah ! Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.5 Racah ! Dual Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.6 Continuous dual Hahn ! Meixner-Pollaczek : : : : : : : : : : : : : : : : 2.7 Continuous Hahn ! Meixner-Pollaczek : : : : : : : : : : : : : : : : : : 2.8 Continuous Hahn ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : 2.9 Hahn ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.9 1.10 1.11 1.12 1.13 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Wilson : : : : : : : : : : : : : : : : : Racah : : : : : : : : : : : : : : : : : Continuous dual Hahn : : : : : : : : Continuous Hahn : : : : : : : : : : : Hahn : : : : : : : : : : : : : : : : : : Dual Hahn : : : : : : : : : : : : : : Meixner-Pollaczek : : : : : : : : : : Jacobi : : : : : : : : : : : : : : : : : 1.8.1 Gegenbauer / Ultraspherical 1.8.2 Chebyshev : : : : : : : : : : 1.8.3 Legendre / Spherical : : : : : Meixner : : : : : : : : : : : : : : : : Krawtchouk : : : : : : : : : : : : : : Laguerre : : : : : : : : : : : : : : : : Charlier : : : : : : : : : : : : : : : : Hermite : : : : : : : : : : : : : : : : : : : : : : : : 5 7 7 8 10 12 14 16 18 20 22 23 23 25 27 28 29 31 32 33 34 35 37 38 38 39 40 41 43 43 43 43 43 44 44 44 44 45 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 Hahn ! Meixner : : : : : : : : Hahn ! Krawtchouk : : : : : : Dual Hahn ! Meixner : : : : : Dual Hahn ! Krawtchouk : : Meixner-Pollaczek ! Laguerre Meixner-Pollaczek ! Hermite : Jacobi ! Laguerre : : : : : : : Jacobi ! Hermite : : : : : : : Meixner ! Laguerre : : : : : : Meixner ! Charlier : : : : : : Krawtchouk ! Charlier : : : : Krawtchouk ! Hermite : : : : Laguerre ! Hermite : : : : : : Charlier ! Hermite : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : q-SCHEME 3 Basic hypergeometric orthogonal polynomials 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 Askey-Wilson : : : : : : : : : : : : : : : : : : q-Racah : : : : : : : : : : : : : : : : : : : : : Continuous dual q-Hahn : : : : : : : : : : : : Continuous q-Hahn : : : : : : : : : : : : : : : Big q-Jacobi : : : : : : : : : : : : : : : : : : : 3.5.1 Big q-Legendre : : : : : : : : : : : : : q-Hahn : : : : : : : : : : : : : : : : : : : : : : Dual q-Hahn : : : : : : : : : : : : : : : : : : Al-Salam-Chihara : : : : : : : : : : : : : : : : q-Meixner-Pollaczek : : : : : : : : : : : : : : Continuous q-Jacobi : : : : : : : : : : : : : : 3.10.1 Continuous q-ultraspherical / Rogers : 3.10.2 Continuous q-Legendre : : : : : : : : : Big q-Laguerre : : : : : : : : : : : : : : : : : Little q-Jacobi : : : : : : : : : : : : : : : : : 3.12.1 Little q-Legendre : : : : : : : : : : : : q-Meixner : : : : : : : : : : : : : : : : : : : : Quantum q-Krawtchouk : : : : : : : : : : : : q-Krawtchouk : : : : : : : : : : : : : : : : : : Ane q-Krawtchouk : : : : : : : : : : : : : : Dual q-Krawtchouk : : : : : : : : : : : : : : : Continuous big q-Hermite : : : : : : : : : : : Continuous q-Laguerre : : : : : : : : : : : : : Little q-Laguerre / Wall : : : : : : : : : : : : q-Laguerre : : : : : : : : : : : : : : : : : : : : Alternative q-Charlier : : : : : : : : : : : : : q-Charlier : : : : : : : : : : : : : : : : : : : : Al-Salam-Carlitz I : : : : : : : : : : : : : : : Al-Salam-Carlitz II : : : : : : : : : : : : : : : Continuous q-Hermite : : : : : : : : : : : : : Stieltjes-Wigert : : : : : : : : : : : : : : : : : Discrete q-Hermite I : : : : : : : : : : : : : : Discrete q-Hermite II : : : : : : : : : : : : : : 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45 45 45 45 45 45 46 46 46 46 46 46 47 47 48 50 50 52 54 55 57 58 59 60 62 64 65 68 70 72 73 74 75 76 77 78 79 80 82 84 84 85 87 87 88 89 90 90 91 4 Limit relations between basic hypergeometric orthogonal polynomials 4.1 Askey-Wilson ! Continuous dual q-Hahn : : : : : : : : : : : : : : : : : : : : : 4.2 Askey-Wilson ! Continuous q-Hahn : : : : : : : : : : : : : : : : : : : : : : : : 4.3 Askey-Wilson ! Big q-Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.4 Askey-Wilson ! Continuous q-Jacobi : : : : : : : : : : : : : : : : : : : : : : : 4.5 Askey-Wilson ! Continuous q-ultraspherical / Rogers : : : : : : : : : : : : : : 4.6 q-Racah ! Big q-Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.7 q-Racah ! q-Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.8 q-Racah ! Dual q-Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.9 q-Racah ! q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.10 q-Racah ! Dual q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.11 Continuous dual q-Hahn ! Al-Salam-Chihara : : : : : : : : : : : : : : : : : : : 4.12 Continuous q-Hahn ! q-Meixner-Pollaczek : : : : : : : : : : : : : : : : : : : : 4.13 Big q-Jacobi ! Big q-Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.14 Big q-Jacobi ! Little q-Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.15 Big q-Jacobi ! q-Meixner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.16 q-Hahn ! Little q-Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.17 q-Hahn ! q-Meixner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.18 q-Hahn ! Quantum q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : 4.19 q-Hahn ! q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.20 q-Hahn ! Ane q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.21 Dual q-Hahn ! Ane q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : 4.22 Dual q-Hahn ! Dual q-Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : 4.23 Al-Salam-Chihara ! Continuous big q-Hermite : : : : : : : : : : : : : : : : : : 4.24 Al-Salam-Chihara ! Continuous q-Laguerre : : : : : : : : : : : : : : : : : : : : 4.25 q-Meixner-Pollaczek ! Continuous q-ultraspherical / Rogers : : : : : : : : : : 4.26 Continuous q-Jacobi ! Continuous q-Laguerre : : : : : : : : : : : : : : : : : : 4.27 Continuous q-ultraspherical / Rogers ! Continuous q-Hermite : : : : : : : : : 4.28 Big q-Laguerre ! Little q-Laguerre / Wall : : : : : : : : : : : : : : : : : : : : : 4.29 Big q-Laguerre ! Al-Salam-Carlitz I : : : : : : : : : : : : : : : : : : : : : : : : 4.30 Little q-Jacobi ! Little q-Laguerre / Wall : : : : : : : : : : : : : : : : : : : : : 4.31 Little q-Jacobi ! q-Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.32 Little q-Jacobi ! Alternative q-Charlier : : : : : : : : : : : : : : : : : : : : : : 4.33 q-Meixner ! q-Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.34 q-Meixner ! q-Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.35 q-Meixner ! Al-Salam-Carlitz II : : : : : : : : : : : : : : : : : : : : : : : : : : 4.36 Quantum q-Krawtchouk ! Al-Salam-Carlitz II : : : : : : : : : : : : : : : : : : 4.37 q-Krawtchouk ! Alternative q-Charlier : : : : : : : : : : : : : : : : : : : : : : 4.38 q-Krawtchouk ! q-Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.39 Ane q-Krawtchouk ! Little q-Laguerre / Wall : : : : : : : : : : : : : : : : : 4.40 Dual q-Krawtchouk ! Al-Salam-Carlitz I : : : : : : : : : : : : : : : : : : : : : 4.41 Continuous big q-Hermite ! Continuous q-Hermite : : : : : : : : : : : : : : : : 4.42 Continuous q-Laguerre ! Continuous q-Hermite : : : : : : : : : : : : : : : : : 4.43 q-Laguerre ! Stieltjes-Wigert : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.44 Alternative q-Charlier ! Stieltjes-Wigert : : : : : : : : : : : : : : : : : : : : : 4.45 q-Charlier ! Stieltjes-Wigert : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.46 Al-Salam-Carlitz I ! Discrete q-Hermite I : : : : : : : : : : : : : : : : : : : : : 4.47 Al-Salam-Carlitz II ! Discrete q-Hermite II : : : : : : : : : : : : : : : : : : : : 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92 92 92 92 92 93 93 93 94 94 94 94 95 95 95 95 95 95 95 96 96 96 96 96 96 96 97 97 97 97 97 97 98 98 98 98 98 98 98 99 99 99 99 99 99 99 100 100 5 From basic to classical hypergeometric orthogonal polynomials 5.1 Askey-Wilson ! Wilson : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.2 q-Racah ! Racah : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.3 Continuous dual q-Hahn ! Continuous dual Hahn : : : : : : : : : : : : : : : : 5.4 Continuous q-Hahn ! Continuous Hahn : : : : : : : : : : : : : : : : : : : : : : 5.5 Big q-Jacobi ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.5.1 Big q-Legendre ! Legendre / Spherical : : : : : : : : : : : : : : : : : : 5.6 q-Hahn ! Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.7 Dual q-Hahn ! Dual Hahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.8 Al-Salam-Chihara ! Meixner-Pollaczek : : : : : : : : : : : : : : : : : : : : : : 5.9 q-Meixner-Pollaczek ! Meixner-Pollaczek : : : : : : : : : : : : : : : : : : : : : 5.10 Continuous q-Jacobi ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.10.1 Continuous q-ultraspherical / Rogers ! Gegenbauer / Ultra-spherical : 5.10.2 Continuous q-Legendre ! Legendre / Spherical : : : : : : : : : : : : : : 5.11 Big q-Laguerre ! Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.12 Little q-Jacobi ! Jacobi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.12.1 Little q-Legendre ! Legendre / Spherical : : : : : : : : : : : : : : : : : 5.12.2 Little q-Jacobi ! Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : 5.13 q-Meixner ! Meixner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.14 Quantum q-Krawtchouk ! Krawtchouk : : : : : : : : : : : : : : : : : : : : : : 5.15 q-Krawtchouk ! Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.16 Ane q-Krawtchouk ! Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : 5.17 Dual q-Krawtchouk ! Krawtchouk : : : : : : : : : : : : : : : : : : : : : : : : : 5.18 Continuous big q-Hermite ! Hermite : : : : : : : : : : : : : : : : : : : : : : : 5.19 Continuous q-Laguerre ! Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : 5.20 Little q-Laguerre / Wall ! Laguerre : : : : : : : : : : : : : : : : : : : : : : : : 5.20.1 Little q-Laguerre / Wall ! Charlier : : : : : : : : : : : : : : : : : : : : 5.21 q-Laguerre ! Laguerre : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.21.1 q-Laguerre ! Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.22 Alternative q-Charlier ! Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : 5.23 q-Charlier ! Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.24 Al-Salam-Carlitz I ! Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.24.1 Al-Salam-Carlitz I ! Hermite : : : : : : : : : : : : : : : : : : : : : : : 5.25 Al-Salam-Carlitz II ! Charlier : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.25.1 Al-Salam-Carlitz II ! Hermite : : : : : : : : : : : : : : : : : : : : : : : 5.26 Continuous q-Hermite ! Hermite : : : : : : : : : : : : : : : : : : : : : : : : : : 5.27 Stieltjes-Wigert ! Hermite : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.28 Discrete q-Hermite I ! Hermite : : : : : : : : : : : : : : : : : : : : : : : : : : 5.29 Discrete q-Hermite II ! Hermite : : : : : : : : : : : : : : : : : : : : : : : : : : Bibliography Index 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101 101 101 101 101 102 102 102 102 102 103 103 103 103 103 103 104 104 104 104 104 104 104 105 105 105 105 105 106 106 106 106 106 106 107 107 107 107 107 108 121 Preface This report deals with orthogonal polynomials appearing in the so-called Askey-scheme of hypergeometric orthogonal polynomials and their q-analogues. Most formulas listed in this report can be found somewhere in the literature, but a handbook containing all these formulas did not exist. We collected known formulas for these hypergeometric orthogonal polynomials and we arranged them into the Askey-scheme and into a q-analogue of this scheme which we called the q-scheme. This q-scheme was not completely documented in the literature. So we lled in some gaps in order to get some sort of `complete' scheme of q-hypergeometric orthogonal polynomials. In chapter 0 we give some general denitions and formulas which can be used to transform several formulas into dierent forms of the same formula. In the other chapters we used the most common notations, but sometimes we had to change some notations in order to be consistent. For each family of orthogonal polynomials listed in this report we give the conditions on the parameters for which the corresponding weight function is positive. These conditions are mentioned in the orthogonality relations. We remark that many of these orthogonal polynomials are still polynomials for other values of the parameters and that they can be dened for other values as well. That is why we gave no restrictions in the denitions. As pointed out in chapter 0 some denitions can be transformed into dierent forms so that they are valid for some values of the parameters for which the given form has no meaning. Other formulas, such as the generating functions, are only valid for some special values of parameters and arguments. These conditions are left out in this report. We are aware of the fact that this report is by no means a full description of all that is known about (basic) hypergeometric orthogonal polynomials. More on each listed family of orthogonal polynomials can be found in the articles and books to which we refer. In later versions of this report we want to add recurrence relations for the monic polynomials in each case, id est for the polynomials with leading coecient equal to 1. We also hope to include more formulas containing quadratic transformations and we want to pay more attention to the transformation q $ q 1. Comments on this version of the report and suggestions for improvement are most welcome. If you nd errors or gaps or if you have suggestions for inclusion of more formulas on (basic) hypergeometric orthogonal polynomials, please contact us and let us know. Roelof Koekoek and Rene F. Swarttouw. Roelof Koekoek Delft University of Technology Faculty of Technical Mathematics and Informatics Mekelweg 4 2628 CD Delft The Netherlands [email protected] 5 Rene F. Swarttouw Free University of Amsterdam Faculty of Mathematics and Informatics De Boelelaan 1081 1081 HV Amsterdam The Netherlands [email protected] 6 Denitions and miscellaneous formulas 0.1 Introduction In this report we will list all known sets of orthogonal polynomials which can be dened in terms of a hypergeometric function or a basic hypergeometric function. In the rst part of the report we give a description of all classical hypergeometric orthogonal polynomials which appear in the so-called Askey-scheme. We give denitions, orthogonality relations, three term recurrence relations, dierential or dierence equations and generating functions for all families of orthogonal polynomials listed in this Askey-scheme of hypergeometric orthogonal polynomials. In the second part we obtain a q-analogue of this scheme. We give denitions, orthogonality relations, three term recurrence relations, dierence equations and generating functions for all known q-analogues of the hypergeometric orthogonal polynomials listed in the Askey-scheme. Further we give limit relations between dierent families of orthogonal polynomials in both schemes and we point out how to obtain the classical hypergeometric orthogonal polynomials from their q-analogues. The theory of q-analogues or q-extensions of classical formulas and functions is based on the observation that 1 q = : lim q!1 1 q Therefore the number (1 q )=(1 q) is sometimes called the basic number []. Now we can give a q-analogue of the Pochhammer-symbol (a)k which is dened by (a)0 := 1 and (a)k := a(a + 1)(a + 2) (a + k 1); k = 1; 2; 3; : : :: This q-extension is given by (a; q)0 := 1 and (a; q)k := (1 a)(1 aq)(1 aq2) (1 aqk 1); k = 1; 2; 3; : ::: It is clear that (q ; q)k = () : lim k q!1 (1 q)k In this report we will always assume that 0 < q < 1. For more details concerning the q-theory the reader is referred to the book [114] by G. Gasper and M. Rahman. Since many formulas given in this report can be reformulated in many dierent ways we will give a selection of formulas , which can be used to obtain other forms of denitions, orthogonality relations and generating functions. Most of these formulas given in this chapter can be found in [114]. We remark that in orthogonality relations we often have to add some condition(s) on the parameters of the orthogonal polynomials involved in order to have positive weight functions. By 7 using the famous theorem of Favard these conditions can also be obtained from the three term recurrence relation. In some cases, however, some conditions on the parameters may be needed in other formulas too. For instance, the denition (1.11.1) of the Laguerre polynomials has no meaning for negative integer values of the parameter . But in fact the Laguerre polynomials are also polynomials in the parameter . This can be seen by writing n X L(n) (x) = n1! ( kn!)k ( + k + 1)n k xk : k=0 In this way the Laguerre polynomials are dened for all values of the parameter . A similar remark holds for the Jacobi polynomials given by (1.8.1). We may also write (see section 0.4 for the denition of the hypergeometric function 2 F1) Pn(;)(x) = ( 1)n ( +n!1)n 2 F1 n; n + + +1 + 1 1 +2 x ; which implies the well-known symmetry relation Pn(;)(x) = ( 1)n Pn(;)( x): Even more general we have Pn;)(x) = ( n ( n) 1 x k: 1X k (n + + + 1) ( + k + 1) k n k n! k=0 k! 2 From this form it is clear that the Jacobi polynomials can be dened for all values of the parameters and although the denition (1.8.1) is not valid for negative integer values of the parameter . We will not indicate these diculties in each formula. Finally, we remark that in each recurrence relation listed in this report, except for (1.8.24) for the Chebyshev polynomials of the rst kind, we may use P 1(x) = 0 and P0(x) = 1 as initial conditions. 0.2 The q-shifted factorials The symbols (a; q)k dened in the preceding section are called q-shifted factorials. They can also be dened for negative values of k as (a; q)k := (1 aq 1)(1 aq1 2 ) (1 aqk ) ; a 6= q; q2; q3 ; : : :; q k ; k = 1; 2; 3; : : :: (0.2.1) Now we have 1 n n (a; q) n = (aq 1n ; q) = ((qaqa1 ; q)) q( 2 ) ; n = 0; 1; 2; : : :; (0.2.2) where We can also dene This implies that n n n = 1 n(n 1): 2 2 (a; q)1 = 1 Y (1 aqk ): k=0 (a; q)1 ; (a; q)n = (aq n; q) 1 8 (0.2.3) and, for any complex number , (a; q)1 ; (a; q) = (aq ; q) 1 where the principal value of q is taken. If we change q by q 1 we obtain (0.2.4) n (a; q 1)n = (a 1 ; q)n( a)n q ( 2 ) ; a 6= 0: (0.2.5) This formula can be used, for instance, to prove the following transformation formula between the little q-Laguerre (or Wall) polynomials given by (3.20.1) and the q-Laguerre polynomials dened by (3.21.1) : pn(x; q jq 1) = (q(q+1; q;)qn) L(n) ( x; q) n or equivalently +1 )n L(n) (x; q 1) = ((qq; q) ;qqn pn ( x; qjq): n By using (0.2.5) it is not very dicult to verify the following general transformation formula for 43 polynomials (see section 0.4 for the denition of the basic hypergeometric function 43 ) : n q ; a; b; c q 1; q 1 = q n; a 1; b 1; c 1 q; abcqn ; 4 3 4 3 d; e; f d 1; e 1 ; f 1 def where a limit is needed when one of the parameters is equal to zero. Other transformation formulas can be obtained from this one by applying limits as discussed in section 0.4. Finally, we list a number of transformation formulas for the q-shifted factorials, where k and n are nonnegative integers : (a; q)n+k = (a; q)n(aqn ; q)k : (0.2.6) n (aq ; q)k = (a; q)k : (0.2.7) (aqk ; q)n (a; q)n (aqk ; q)n k = ((aa;; qq))n ; k = 0; 1; 2; : ::; n: (0.2.8) k n (a; q)n = (a 1 q1 n; q)n( a)n q( 2 ) ; a 6= 0: (0.2.9) n (aq n; q)n = (a 1 q; q)n( a)n q n ( 2 ) ; a 6= 0: (0.2.10) 1 n n (aq ; q)n = (a q; q)n a ; a 6= 0; b 6= 0: (0.2.11) (bq n ; q)n (b 1 q; q)n b q k k (2) nk; a 6= 0; k = 0; 1; 2; : ::; n: (0.2.12) (a; q)n k = (a 1(aq;1q)nn; q) a q k (a; q)n k = (a; q)n (b 1 q1 n; q)k b k ; a 6= 0; b 6= 0; k = 0; 1; 2; : : :; n: (0.2.13) (b; q)n k (b; q)n (a 1 q1 n; q)k a k (0.2.14) (q n ; q)k = (q(;qq; )q)n ( 1)k q(2) nk ; k = 0; 1; 2; : : :; n: n k 1 (aq n; q)k = (a(a1q1q;kq;)qn) (a; q)k q nk ; a 6= 0: (0.2.15) n n k 1 k n (aq n; q)n k = ((aa 1qq;; qq))n aq q(2) ( 2 ) ; a 6= 0; k = 0; 1; 2; : : :; n: (0.2.16) k (a; q)2n = (a; q2)n (aq; q2)n : (0.2.17) 9 (a2 ; q2)n = (a; q)n( a; q)n : (0.2.18) 2 2 (a; q)1 = (a; q )1 (aq; q )1 : (0.2.19) (a2 ; q2)1 = (a; q)1 ( a; q)1 : (0.2.20) Formula (0.2.18) can be used, for instance, to show that the generating function (3.10.29) for the continuous q-Legendre polynomials is a q-analogue of the generating function (1.8.44) for the Legendre polynomials. In fact we obtain (see section 0.4 for the denition of the basic hypergeometric functions r s ) ! q 21 ei ; q 21 ei q; e i t q 12 e i ; q 21 e 2 1 2 1 q q 2i 2 i = 10 qe q2 ; e i t 10 qe q2 ; ei t : ! i i q; e t Now we use the q-binomial theorem (0.5.2) to show that this equals (qei t; q2)1 (qe i t; q2)1 = q q2 ; ei t q q2 ; e i t : 1 0 (ei t; q2)1 (e i t; q2)1 1 0 If we let q tend to one we now nd by using the binomial theorem (0.5.1) 1 F0 1 2 ei t 1 F0 1 2 e i t = (1 ei t) 21 (1 e i t) 12 ; x = cos ; =p 1 1 2xt + t2 which equals (1.8.44). 0.3 The q-gamma function and the q-binomial coecient The q-gamma function is dened by (q; q)1 1 x (qx ; q)1 (1 q) : This is a q-analogue of the well-known gamma function since we have q (x) := (0.3.1) lim (x) = (x): q "1 q Note that the q-gamma function satises the functional equation 1 qz q (z + 1) = 1 q q (z ); q (1) = 1; which is a q-extension of the well-known functional equation (z + 1) = z (z ); (1) = 1 for the ordinary gamma function. For nonintegral values of z this ordinary gamma function also satises the relation (z ) (1 z ) = sinz ; which can be used to show that lim (1 q +k ) ( ) ( + 1) = ( 1)k+1 ln q; k = 0; 1; 2; : ::: !k 10 This limit can be used to show that the orthogonality relation (3.27.2) for the Stieltjes-Wigert polynomials follows from the orthogonality relation (3.21.2) for the q-Laguerre polynomials. The q-binomial coecient is dened by hni (q; q)n n (0.3.2) k q = n k q := (q; q)k (q; q)n k ; k = 0; 1; 2; : ::; n; where n denotes a nonnegative integer. This denition can be generalized in the following way. For arbitrary complex we have hi (q ; q)k ( 1)k qk (k2) : := (0.3.3) k q (q; q)k Or more general for all complex and we have (q+1 ; q)1 (q +1 ; q)1 : := q ( + 1) = (0.3.4) (q; q)1 (q+1 ; q)1 q q ( + 1) q ( + 1) For instance this implies that (q+1; q)n = n + : n q (q; q)n Note that ( + 1) = = lim q "1 q ( + 1) ( + 1) : For integer values of the parameter we have = ( )k ( 1)k ; k = 0; 1; 2; : :: k k! and when the parameter is an integer too we may write n = n! ; k = 0; 1; 2; : ::; n; n = 0; 1; 2; : : :: k k!(n k)! This latter formula can be used to show that 2n = 21 n 4n; n = 0; 1; 2; : : :: n! n This can be used to write the generating functions (1.8.29) and (1.8.35) for the Chebyshev polynomials of the rst and the second kind in the following form : R and r 1 n 1 2n t ; R = p1 2xt + t2 1 (1 + R xt) = X T ( x ) n 2 4 n=0 n n 1 2n + 2 X t ; R = p1 2xt + t2 4 p U ( x ) = n 4 R 2(1 + R xt) n=0 n + 1 respectively. Finally we remark that (a; q)n = n h i X k=0 n q(k2) ( a)k : k q 11 (0.3.5) 0.4 Hypergeometric and basic hypergeometric functions The hypergeometric series r Fs is dened by 1 (a ; : : :; a ) z k a1; : : :; ar z := X 1 rk ; F r s b ; : : :; b ( b 1 s 1 ; : : :; bs )k k ! k=0 (0.4.1) where (a1 ; : : :; ar )k := (a1)k (ar )k : Of course, the parameters must be such that the denominator factors in the terms of the series are never zero. When one of the numerator parameters ai equals n where n is a nonnegative integer this hypergeometric series is a polynomial in z . Otherwise the radius of convergence of the hypergeometric series is given by 8 1 if r < s + 1 > > > > < = > 1 if r = s + 1 > > > : 0 if r > s + 1: A hypergeometric series of the form (0.4.1) is called balanced (or Saalschutzian) if r = s + 1, z = 1 and a1 + a2 + : : : + as+1 + 1 = b1 + b2 + : : : + bs. The basic hypergeometric series (or q-hypergeometric series) r s is dened by 1 (a ; : : :; a ; q) a1; : : :; ar q; z := X 1 r k ( 1)(1+s r s b ; : : :; b ( b 1 ; : : :; bs ; q )k 1 s k=0 r)k q(1+s r)(k2) zk ; (q; q)k (0.4.2) where (a1 ; : : :; ar ; q)k := (a1 ; q)k (ar ; q)k : Again, we assume that the parameters are such that the denominator factors in the terms of the series are never zero. If one of the numerator parameters ai equals q n where n is a nonnegative integer this basic hypergeometric series is a polynomial in z . Otherwise the radius of convergence of the basic hypergeometric series is given by 8 1 if r < s + 1 > > > > < = > 1 if r = s + 1 > > > : 0 if r > s + 1: The special case r = s + 1 reads s+1s 1 (a ; : : :; a ; q) z k a1 ; : : :; as+1 q; z = X 1 s+1 k : ( b b1; : : :; bs 1 ; : : :; bs ; q )k (q ; q )k k=0 This basic hypergeometric series was rst introduced by Heine in 1846. Therefore it is sometimes called Heine's series. A basic hypergeometric series of this form is called balanced (or Saalschutzian) if z = q and a1a2 as+1 q = b1 b2 bs. The q-hypergeometric series is a q-analogue of the hypergeometric series dened by (0.4.1) since a q 1 ; : : :; qar q; (q 1)1+s r z = F a1; : : :; ar z : lim r s b ; : : :; b q"1 r s qb1 ; : : :; qbs 1 s This limit will be used frequently in chapter 5. 12 We remark that z a a 1 ; : : :; ar 1 ; : : :; ar 1 q; lim = r 1 s b ; : : :; b q; z : ar !1 r s b1; : : :; bs ar 1 s k In fact, this is the reason for the factors ( 1)(1+s r)k q(1+s r)(2) in the denition (0.4.2) of the basic hypergeometric series. The limit relations between hypergeometric orthogonal polynomials listed in chapter 2 of this report are based on the observations that a a 1 ; : : :; ar 1 1 ; : : :; ar 1 ; (0.4.3) r Fs b ; : : :; b ; z = r 1 Fs 1 b ; : : :; b z ; 1 s 1 1 s 1 a1; : : :; ar 1; ar z = F a1; : : :; ar 1 a z ; lim F (0.4.4) !1 r s b1; : : :; bs r 1 s b1; : : :; bs r a a 1 ; : : :; ar 1 ; : : :; ar z z = F (0.4.5) lim F r s 1 r s !1 b1 ; : : :; bs 1 bs b1; : : :; bs 1; bs and a1 ; : : :; ar 1 ; ar z = F a1; : : :; ar 1 ar z : lim F (0.4.6) r 1 s 1 b ; : : :; b b !1 r s b1; : : :; bs 1; bs 1 s 1 s The limit relations between basic hypergeometric orthogonal polynomials described in chapter 4 of this report are based on the observations that a a 1 ; : : :; ar 1 1 ; : : :; ar 1 ; (0.4.7) r s b ; : : :; b ; q; z = r 1 s 1 b ; : : :; b q; z ; 1 s 1 1 s 1 z a a 1 ; : : :; ar 1 1 ; : : :; ar 1 ; ar q ; a z (0.4.8) q ; = lim !1 r s b1 ; : : :; bs r 1 s b1; : : :; bs r ; z a a 1 ; : : :; ar 1 ; : : :; ar q; z = r s 1 b ; : : :; b q; b ; lim (0.4.9) !1 r s b1; : : :; bs 1; bs 1 s 1 s and a1 ; : : :; ar 1; ar q; z = a1; : : :; ar 1 q; ar z : (0.4.10) lim r 1 s 1 b ; : : :; b b !1 r s b1 ; : : :; bs 1; bs s 1 s 1 Mostly, the left-hand sides of the formulas (0.4.3) and (0.4.7) occur as limit cases when some numerator parameter and some denominator parameter tend to the same value. Finally, we introduce a notation for the N th partial sum of a (basic) hypergeometric series. We will use this notation in the denitions of the discrete orthogonal polynomials. We also use it in order to write generating functions for discrete orthogonal polynomials in a compact way. We dene N (a ; : : :; a ) z k X a 1 rk 1 ; : : :; ar ~ (0.4.11) r Fs b ; : : :; b z := (b ; : : :; b ) k! ; 1 s k=0 1 sk where N denotes the nonnegative integer that appears in each denition of a family of discrete orthogonal polynomials. We also dene N (a ; : : :; a ; q) X a1 ; : : :; ar 1 r k ( 1)(1+s r)k q(1+s r)(k2) z k : (0.4.12) r ~s b ; : : :; b q; z := (q; q)k 1 s k=0 (b1 ; : : :; bs; q)k As an example of the use of these notations we remark that the denition (3.14.1) of the quantum q-Krawtchouk polynomials must be understood as n N (q n; q) (q x ; q) x X q ; q k k pqn+1 k : n +1 ~ q ; pq = 2 1 N N q k=0 (q ; q)k (q; q)k 13 In cases of discrete orthogonal polynomials, like the Racah, Hahn, dual Hahn and Krawtchouk polynomials, we need another special notation for the generating functions. In order to simplify the notation we write the generating functions as (products of) (truncated as above) power series in t for which the N th partial sum equals the right-hand side. In these cases we use the notation ' instead of the = sign. As an example of this notation and the one mentioned above we note that the generating function (1.6.8) of the dual Hahn polynomials must be understood as follows. The N th partial sum of et 2F~2 N ( x) (x + + + 1) x; x + + + 1 t = et X k k ( t)k ( + 1) ( N ) k ! + 1; N k k k=0 equals N X Rn((x); ; ; N ) tn : n! n=0 0.5 The q-binomial theorem and other summation formulas One of the most important summation formulas for hypergeometric series is given by the binomial theorem : 1 (a) a z = X n n a F (0.5.1) 1 0 n! z = (1 z ) ; jz j < 1: n=0 A q-analogue of this formula is called the q-binomial theorem : 1 (a; q) a q; z = X n n (az ; q)1 1 0 (q; q) z = (z ; q) ; jz j < 1: n=0 n 1 For a = q n with n a nonnegative integer we nd n q q; z = (zq n ; q) ; n = 0; 1; 2; : : :: n 1 0 (0.5.2) (0.5.3) In fact this is a q-analogue of Newton's binomium 1 F0 n ( n) n n z = X k z k = X n ( z )k = (1 z )n ; n = 0; 1; 2; : : :: k=0 k! k=0 k (0.5.4) As an example of the use of these formulas we note that the generating function (1.6.5) of the dual Hahn polynomials can also be written as : x N; x + + + 1 x ~ t : 1 F0 t 2 F1 N In a similar way we nd for the generating function (3.14.5) of the quantum q-Krawtchouk polynomials : (q x t; q)1 qx N ; 0 q; q xt = q x q; t qx N ; 0 q; q xt : 2 1 1 0 pq pq (t; q)1 2 1 Another example of the use of the q-binomial theorem is the proof of the fact that the generating function (3.10.19) for the continuous q-ultraspherical (or Rogers) polynomials is a q-analogue of 14 the generating function (1.8.14) for the Gegenbauer (or ultraspherical) polynomials. In fact we have, after the substitution = q : i ( ; )1 2 ( i ; ) (q ei t; qe i t; q)1 = q q; ei t q q; e i t ; qe tq = 1 0 1 0 e tq1 (ei t; e i t; q)1 which tends to (for q " 1) F ei t F e i t = (1 ei t) (1 e i t) = (1 2xt + t2 ) ; x = cos ; 1 0 1 0 which equals (1.8.14). The well-known Gauss' summation formula (c) (c a b) a; b 2 F1 c 1 = (c a) (c b) ; Re(c a b) > 0 and Vandermonde's summation formula (c b)n n; b 2 F1 c 1 = (c)n ; n = 0; 1; 2; : :: have the following q-analogues : a; b q; c = (a 1 c; b 1c; q)1 ; c < 1; 2 1 c ab (c; a 1b 1c; q)1 ab n q ; b q; cqn = (b 1c; q)n ; n = 0; 1; 2; : :: 2 1 (c; q)n c b and n q ; b q; q = (b 1 c; q)n bn; n = 0; 1; 2; : : :: 2 1 c (c; q) n (0.5.5) (0.5.6) (0.5.7) (0.5.8) (0.5.9) On the next level we have the summation formula (c a)n(c b)n n; a; b F (0.5.10) 3 2 c; 1 + a + b c n 1 = (c)n (c a b)n ; n = 0; 1; 2; : : : which is called Saalschutz (or Pfa-Saalschutz) summation formula. A q-analogue of this summation formula is n; a; b (a 1 c; b 1c; q)n q (0.5.11) 3 2 c; abc 1q1 n q; q = (c; a 1b 1 c; q)n ; n = 0; 1; 2; : : :: Finally, we have a summation formula for the 1 1 series : a c (a 1 c; q)1 : = (0.5.12) q; 1 1 c a (c; q)1 As an example of the use of this latter formula we remark that the q-Laguerre polynomials dened by (3.21.1) have the property that L(n) ( 1; q) = (q;1q) ; n = 0; 1; 2; : : :: n 15 0.6 Transformation formulas In this section we list a number of transformation formulas which can be used to transform denitions or other formulas into equivalent but dierent forms. First of all we have Heine's transformation formulas for the 2 1 series : 1 b c; z ( az; b ; q ) a; b 1 q; b (0.6.1) q ; z = 2 1 2 1 az c (c; z ; q)1 1 1 = (b (c;c;z ;bzq); q)1 2 1 abc bz z; b q; bc (0.6.2) 1 1 1 1 = (abc(z ; qz); q)1 2 1 a c;c b c q; abz (0.6.3) c : 1 The latter formula is a q-analogue of Euler's transformation formula : c a; c b a; b c a b z : (0.6.4) z = (1 z ) 2 F1 2 F1 c c Another transformation formula for the 2 F1 series which is also due to Euler is : a; b z = (1 z ) b F c a; b z : (0.6.5) F 2 1 2 1 c z 1 c This transformation formula is also known as the Pfa-Kummer transformation formula. As a limit case of this one we have Kummer's transformation formula for the conuent hypergeometric series : a c a z (0.6.6) 1 F1 c z = e 1 F1 c z : Limit cases of Heine's transformation formulas are z 1 0 ; 0 q ; z = q ; c 2 1 1 1 c (c; z ; q)1 0 = (z ; 1q) 01 c q; cz ; 1 2 1 a; 0 q; z c z = ((c;azz;;qq))1 11 az q; c 1 1 1 a c = (z ; q) 1 1 c q; az ; 1 a (a; z ; q)1 a 1c; 0 q; a q ; z = 1 1 z (c; q)1 2 1 c 1 = (ac 1 z ; q)1 21 a cc; 0 q; azc and 2 1 a; b q; z = (az; b; q)1 z; 0 q; b (z ; q)1 2 1 az 0 = ((bzz ;;qq))1 1 1 bzb q; az : 1 16 (0.6.7) (0.6.8) (0.6.9) (0.6.10) (0.6.11) (0.6.12) (0.6.13) (0.6.14) If we reverse the order of summation in a terminating 1F1 series we obtain a 2 F0 series, in fact we have n 1 ( x ) n; a n + 1 n (0.6.15) 1 F1 x ; n = 0; 1; 2; : ::: a x = (a)n 2F0 If we apply this technique to a terminating 2 F1 series we nd n; b x = (b)n ( x)n F n; c n + 1 1 ; n = 0; 1; 2; : ::: F (0.6.16) 2 1 2 1 c b n+1 x (c)n The q-analogues of these formulas are n n 1 n n+1 1 1 n ( q z ) aq q q ; a q ; n = 0; 1; 2; : : : (0.6.17) 1 1 q; z a q; z = (a; q)n 21 0 and n q ; b 2 1 c q; z n n+1 1 1 n n) cq q ; c q ( b ; q ) n n n ( 2 = (c; q) q ( z ) 21 b 1q1 n q; bz ; n = 0; 1; 2; : : :: (0.6.18) n A limit case of the latter formula is n n; 0 q q ; b q n n = (b; q)nz 2 1 b 1q1 n q; bz ; n = 0; 1; 2; : : :: 2 0 q; zq The next transformation formula is due to Jackson : n n 1 n z ; q )1 1 ( bc q q ; b q ; b c; 0 q; q ; n = 0; 1; 2; : : :: q ; z = 2 1 3 2 c c; b 1cqz 1 (bc 1z ; q)1 Equivalently we have n q ; a; 0 q; q = (b 1 q; q)1 q n ; a 1c q; aq ; n = 0; 1; 2; : ::: 3 2 c b b; c (b 1q1 n; q)1 2 1 Other transformation formulas of this kind are given by : n q ; b q; z 2 1 c n n 1 1 1 1 n ( b c ; q ) q ; qz ; c q bz n q; q = (c; q) 3 2 bc 1q 1 n; 0 q n 1 n 1 q nz q; q ; n = 0; 1; 2; : : :; = (b(c; cq;)q)n 32 q bc; b;1 bc 1 n q ;0 n or equivalently n n 1 ( b ; q ) q ; a; b q ; b c q n n 3 2 c; 0 q; q = (c; q)n a 21 b 1q1 n q; a 1 n; a bq ( a c ; q ) q n n = (c; q) a 2 1 ac 1q1 n q; c ; n = 0; 1; 2; : ::: n Limit cases of these formulas are n n n q ; b; bzq q ; b n 2 0 q; z = b 32 0; 0 q; q ; n = 0; 1; 2; : : :; 17 (0.6.19) (0.6.20) (0.6.21) (0.6.22) (0.6.23) (0.6.24) (0.6.25) (0.6.26) or equivalently 3 2 q n ; a; b q; q 0; 0 q n; 0 q; q = b 1q1 n a n n = an2 0 q ; a q; bqa ; n = 0; 1; 2; : ::: (b; q)nan2 1 (0.6.27) (0.6.28) On the next level we have Sears' transformation formula for a terminating balanced 43 series : n q ; a; b; c 4 3 d; e; f q; q 1 1 n ; a; b 1d; c 1d ( a e; a f ; q ) q n n = (0.6.29) (e; f ; q)n a 4 3 d; ae 1q1 n; af 1 q1 n q; q 1 1 a 1 c 1ef ; q)n = (a;(ae; f;ba ef; 1 b 1 c 1 ef ; q ) n n 1 1 1 1 1 q ; a e; a f; a b c ef q; q ; def = abcq1 n: (0.6.30) 4 3 a 1 b 1ef; a 1 c 1ef; a 1 q1 n Sears' transformation formula is a q-analogue of Whipple's transformation formula for a terminating balanced 4 F3 series : n; a; b; c 1 = (e a)n (f a)n 4 F3 d; e; f (e)n (f )n n; a; d b; d c 4 F3 d; a e n + 1; a f n + 1 1 ; a + b + c + 1 = d + e + f + n: (0.6.31) Whipple's formula can be used to show that the Wilson polynomials dened by (1.1.1) are symmetric in their parameters in the sense that the following 24 dierent forms are all equal : Wn (x2 ; a; b; c; d) = Wn (x2 ; a; b; d; c) = Wn (x2 ; a; c; b; d) = = Wn (x2; d; c; b; a): Sears' transformation formula can be used to derive similar symmetry relations for the AskeyWilson polynomials dened by (3.1.1) : pn (x; a; b; c; d) = pn (x; a; b; d; c) = pn (x; a; c; b; d) = = pn(x; d; c; b; a): Finally, we mention a quadratic transformation formula which is due to Singh : 2 2 2 2 2 2 a ; b ; c; d a ; b ; c ; d 2 2 (0.6.32) 4 3 abq 21 ; abq 21 ; cd q; q = 43 a2 b2q; cd; cdq q ; q ; which is valid when both sides terminate. If we apply Singh's formula (0.6.32) to the continuous q-Jacobi polynomials dened by (3.10.1) and (3.10.2) and use Sears' transformation formula (0.6.29), formula (0.2.10) twice and also formula (0.2.18), then we nd the quadratic transformation q)n qn P (;)(x; q): Pn(;)(xjq2) = ( q(+q;+1 n ; q)n 0.7 Some special functions and their q-analogues The classical exponential function exp(z ) and the trigonometric functions sin(z ) and cos(z ) can be expressed in terms of hypergeometric functions as exp(z ) = ez = 0 F0 18 z ; (0.7.1) sin(z ) = z 0 F1 and 3 2 z2 4 (0.7.2) 2 cos(z ) = 0 F1 1 z4 : (0.7.3) 2 Further we have the well-known Bessel function J (z ) which can be dened by z 2 2 (0.7.4) J (z ) := ( + 1) 0F1 + 1 z4 : Applying this formula to the generating function (1.11.6) of the Laguerre polynomials we obtain : 1 () X p (xt) 2 et J(2 xt) = (1+ 1) (Ln+ (1)x) tn: n n=0 These functions all have several q-analogues. The exponential function for instance has two dierent natural q-extensions, denoted by eq (z ) and Eq (z ) dened by 1 n X eq (z ) := 1 0 0 q; z = (qz; q) n=0 and n 1 X q(n2 ) z n : n=0 (q; q)n These q-analogues of the exponential function are related by eq (z )Eq ( z ) = 1: They are q-extensions of the exponential function since lim e ((1 q)z ) = lim E ((1 q)z ) = ez : q "1 q q "1 q Eq (z ) := 0 0 q; z = If we set a = 0 in the q-binomial theorem we nd for the q-exponential functions : eq (z ) = 10 0 q; z = (z ; 1q) ; jz j < 1: 1 Further we have Eq (z ) = 0 0 q; z = ( z ; q)1 : (0.7.5) (0.7.6) (0.7.7) (0.7.8) For instance, these formulas can be used to obtain other versions of a generating function for several sets of orthogonal polynomials mentioned in this report. If we assume that jz j < 1 we may dene 1 n z 2n+1 X sinq (z ) := eq (iz ) 2ieq ( iz ) = ( (q1) n=0 ; q)2n+1 and (0.7.9) 1 ( 1)n z 2n X e ( iz ) + e ( iz ) q q : (0.7.10) = cosq (z ) := 2 n=0 (q; q)2n These are q-analogues of the trigonometric functions sin(z ) and cos(z ). On the other hand we may dene Sinq (z ) := Eq (iz ) 2iEq ( iz ) (0.7.11) 19 and Cosq (z ) := Eq (iz ) +2Eq ( iz ) : Then it is not very dicult to verify that eq (iz ) = cosq (z ) + i sinq (z ) and Eq (iz ) = Cosq (z ) + i Sinq (z ): Further we have 8 < (0.7.12) sinq (z )Sinq (z ) + cosq (z )Cosq (z ) = 1 : sinq (z )Cosq (z ) Sinq (z ) cosq (z ) = 0: The q-analogues of the trigonometric functions can be used to nd dierent forms of formulas appearing in this report, although we will not use them. Some q-analogues of the Bessel functions are given by 2 +1 ; q)1 z z 0 ; 0 ( q (1) J (z ; q) := (q; q) (0.7.13) 2 1 q +1 q; 4 1 2 and +1 z 2 +1; q)1 z q ( q (2) : (0.7.14) J (z ; q) := (q; q) 2 0 1 q +1 q; 4 1 These q-Bessel functions are connected by 2 J(2) (z ; q) = ( z4 ; q)1 J(1) (z ; q); jz j < 2: They are q-analogues of the Bessel function since lim J (k)((1 q)z ; q) = J (z ); k = 1; 2: q "1 These q-Bessel functions were introduced by F.H. Jackson in 1905. They are therefore referred to as Jackson q-Bessel functions. Other q-analogues of the Bessel function are the so-called HahnExton q-Bessel functions. As an example we remark that the generating function (3.20.5) for the little q-Laguerre (or Wall) polynomials can also be written as 1 q(n2 ) ( t; q)1 (q; q)1 (xt) 2 J (1) (2pxt; q) = X pn(x; qjq)tn (q+1 ; q)1 ( q ; q ) n n=0 or as 1 q(n2 ) (q; q)1 (xt) 2 E (t)J (1) (2pxt; q) = X n q (q+1 ; q) (q; q) pn (x; q jq)t : 1 n=0 n 0.8 The q-derivative and the q-integral The q-derivative operator Dq is dened by 8 f (z ) f (qz ) ; z 6= 0 > > < Dq f (z ) := > (1 q)z > : 0 f (0); z = 0: Further we dene Dq0f := f and Dqn f := Dq Dqn 1f ; n = 1; 2; 3; : : :: 20 (0.8.1) (0.8.2) It is not very dicult to see that lim D f (z ) = f 0 (z ) q "1 q if the function f is dierentiable at z . An easy consequence of this denition is Dq [f (x)] = (Dq f ) (x) (0.8.3) (0.8.4) for all real or more general Dqn [f (x)] = n Dqn f (x); n = 0; 1; 2; : : :: Further we have Dq [f (x)g(x)] = f (qx)Dq g(x) + g(x)Dq f (x) (0.8.5) which is often referred to as the q-product rule. This can be generalized to a q-analogue of Leibniz' rule : n hni X n k f (qk x) Dk g (x); n = 0; 1; 2; : ::: (0.8.6) D Dqn [f (x)g(x)] = q q k=0 k q As an example we note that the q-dierence equation (3.21.5) of the q-Laguerre polynomials can also be written in terms of this q-derivative operator as (1 q)2xDq2 y(x)+(1 q) 1 q+1 q+2x (Dq y) (qx)+(1 qn)q+1y(qx) = 0; y(x) = L(n)(x; q): The q-integral is dened by Z z 0 1 X f (t)dq t := z (1 q) n=0 f (zqn )qn : (0.8.7) This denition is due to J. Thomae and F.H. Jackson. Jackson also dened a q-integral on (0; 1) by Z 1 1 X f (qn )qn : (0.8.8) f (t)dq t := (1 q) 0 If the function f is continuous on [0; z ] we have lim q "1 Z 0 z f (t)dq t = n= 1 Z 0 z f (t)dt: For instance, the orthogonality relation (3.12.2) for the little q-Jacobi polynomials can also be written in terms of a q-integral as : Z1 (qx; q)1 x p (x; q; q jq)p (x; q; q jq)d x n q (q+1 x; q)1 m 0 q++2 ; q)1 (1 q++1 ) (q; q+1 ; q)n qn(+1) ; > 1; > 1: = (1 q) ((qq;+1 mn ; q+1 ; q)1 (1 q2n+++1 ) (q+1 ; q++1 ; q)n 21 ASKEY-SCHEME OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS 1 4 F3 (4) 3 F2 (3) Continuous dual Hahn Continuous Hahn Hahn Dual Hahn 2 F1 (2) Meixner Pollaczek Jacobi Meixner Krawtchouk F1 (1)=2F0(1) 2 F0 (0) Wilson Racah Laguerre Charlier Hermite 22 Chapter 1 Hypergeometric orthogonal polynomials 1.1 Wilson Denition. Wn (x2 ; a; b; c; d) = F n; n + a + b + c + d 1; a + ix; a ix 1 : (1.1.1) (a + b)n(a + c)n (a + d)n 4 3 a + b; a + c; a + d Orthogonality. When Re(a; b; c; d) > 0 and non-real parameters occur in conjugate pairs, then 1 1Z 2 (a + ix) (b + ix) (c + ix) (d + ix) 2 W (x2; a; b; c; d)W (x2 ; a; b; c; d)dx m n (2ix) 0 (n + c + d) ; = (n + a + b + c + d 1)n n! (n +(2an++ba) + (1.1.2) b + c + d) mn where (n + a + b) (n + c + d) (n + a + b) (n + a + c) (n + a + d) (n + b + c) (n + b + d) (n + c + d): = If a < 0 and a + b, a + c, a + d are positive or a pair of complex conjugates occur with positive real parts, then 1 1 Z (a + ix) (b + ix) (c + ix) (d + ix) 2 W (x2 ; a; b; c; d)W (x2; a; b; c; d)dx + m n 2 (2ix) 0 + (a + b) (a + c) (a + (d) 2(ab) a) (c a) (d a) X (2a)k (a + 1)k (a + b)k (a + c)k (a + d)k 2 2 (k!)(a)k (a b + 1)k (a c + 1)k (a d + 1)k Wm ( (a + k) )Wn ( (a + k) ) k=0;1;2::: a+k<0 d) = (n + a + b + c + d 1)nn! (n +(2an++ba) + b +(nc ++ cd+ ) mn ; 23 (1.1.3) where Wm ( (a + k)2 )Wn ( (a + k)2 ) = Wm ( (a + k)2 ; a; b; c; d)Wn( (a + k)2 ; a; b; c; d): Recurrence relation. a2 + x2 W~ n (x2) = AnW~ n+1 (x2 ) (An + Cn) W~ n (x2 ) + CnW~ n 1(x2 ); where 2 W~ n (x2) := W~ n (x2 ; a; b; c; d) = (a +Wb)n((xa +; a;c)b; (c;ad+) d) n and n (1.1.4) n 8 > > > > < n + a + b)(n + a + c)(n + a + d) An = (n + a(2+nb++ac++ bd+ c1)( + d 1)(2n + a + b + c + d) > > > > : n + b + d 1)(n + c + d 1) Cn = (2nn(n++ab++bc+ c1)( + d 2)(2n + a + b + c + d 1) : Dierence equation. n(n + a + b + c + d 1)y(x) = B (x)y(x + i) [B (x) + D(x)] y(x) + D(x)y(x i); where y(x) = Wn (x2; a; b; c; d) and 8 )(c ix)(d ix) > > B (x) = (a ix)(b2ixix > > < (2ix 1) > > (a + ix)(b + ix)(c + ix)(d + ix) : > > : D(x) = 2ix(2ix + 1) (1.1.5) Generating functions. 1 W (x2 ; a; b; c; d)tn a + ix; b + ix t F c ix; d ix t = X n F : 2 1 a+b 2 1 c+d ( a n=0 + b)n (c + d)nn! (1.1.6) 1 W (x2 ; a; b; c; d)tn a + ix; c + ix t F b ix; d ix t = X n F : 2 1 b+d a+c 2 1 ( a n=0 + c)n (b + d)nn! (1.1.7) 1 W (x2 ; a; b; c; d)tn a + ix; d + ix t F b ix; c ix t = X n : F 2 1 ( a b+c a+d 2 1 n=0 + d)n (b + c)n n! (1.1.8) 1 4 t ( a + b + c + d 1) ; ( a + b + c + d ) ; a + ix; a ix 2 (1 t) (1 t)2 a + b; a + c; a + d 1 X b + c + d 1)n W (x2; a; b; c; d)tn: (1.1.9) = (a +(ab+ )n (a + c)n(a + d)nn! n n=0 1 a b c d 4 F3 Remark. If we set and 1 2 a = 12 ( + + 1) ; b = 21 (2 + 1) c = 12 (2 + + 1) ; d = 12 ( + 1) ix ! x + 21 ( + + 1) 24 in 2 W~ n (x2; a; b; c; d) = (a +Wb)n ((xa +; a;c)b; (c;ad+) d) ; n dened by (1.1.1) and take n n + 1 = N or + + 1 = N or + 1 = N; with N a nonnegative integer we obtain the Racah polynomials dened by (1.2.1). References. [31], [44], [45], [132], [133], [155], [156], [171], [175], [227], [228]. 1.2 Racah Denition. Rn((x); ; ; ; ) = 4F~3 where and n; n + + + 1; x; x + + + 1 1 ; n = 0; 1; 2; : ::; N; (1.2.1) + 1; + + 1; + 1 (x) = x(x + + + 1) + 1 = N or + + 1 = N or + 1 = N; with N a nonnegative integer. Orthogonality. N X ( + + 1)x(( + + 3)=2)x( + 1)x ( + + 1)x ( + 1)x R ((x))R ((x)) m n x=0 (x!)(( + + 1)=2)x ( + + 1)x ( + 1)x( + 1)x n( + 1)n( + 1)n( + + 1)nn! ; = M (n + (+++ 1) (1.2.2) mn + 2)2n( + 1)n ( + + 1)n ( + 1)n where Rn((x)) := Rn((x); ; ; ; ) and 8 > > > > > > > > > < ( + + 2)N ( )N ( + 1)N ( + 1)N 2)N ( )N M = > ((+ + + + 1)N ( + 1)N > > > > > > > ( )N ( + + 2)N > : ( + 1)N ( + 1)N if + 1 = N if + + 1 = N if + 1 = N: Recurrence relation. (x)Rn((x)) = An Rn+1((x)) (An + Cn) Rn((x)) + Cn Rn 1((x)); where and Rn((x)) := Rn((x); ; ; ; ) 8 > > > > < n + + 1)(n + + + 1)(n + + 1) An = (n + + (2+n 1)( + + + 1)(2n + + + 2) > > > > : + )(n + ) ; Cn = n(n(2+n+)(n ++ )(2 n + + + 1) 25 (1.2.3) hence 8 > > > > > > > > > < (n + N )(n N )(n + + + 1)(n + + 1) (2n + N )(2n + N + 1) n + + 1)(n N )(n + + 1) An = > (n + (2+n++1)( + + 1)(2n + + + 2) > > > > > > > > : and if + 1 = N if + + 1 = N (n + + + 1)(n + + 1)(n + + + 1)(n N ) if + 1 = N (2n + + + 1)(2n + + + 2) 8 > > > > > > > > > < Cn = > > > > > > > > > : n(n + )(n + N 1)(n N 1) if + 1 = N (2n + N 1)(2n + N ) n(n + )(n + + )(n + + + N + 1) if + + 1 = N (2n + + )(2n + + + 1) n(n + )(n + + + N + 1)(n + ) if + 1 = N: (2n + + )(2n + + + 1) Dierence equation. n(n + + + 1)y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); where and (1.2.4) y(x) = Rn((x); ; ; ; ) 8 > > > > < x + + + 1)(x + + 1)(x + + + 1) B (x) = (x + + 1)( (2x + + + 1)(2x + + + 2) > > > > : + )(x + + ) : D(x) = x(x(2+x+)(x + )(2 x + + + 1) Generating functions. x + + 1 ; x + + + 1 x + ; x ~ 2 F1 t 2 F1 t +1 +1 ' N X ( + + 1)n( + 1)n R ((x); ; ; ; )tn: n ( + 1)nn! n=0 (1.2.5) ~ x + + + 1; x + + + 1 t 2F1 x + ; x t 2 F1 ++1 +1 N X n R ((x); ; ; ; )tn: ' ((+ 1)n+(1)+ 1) n n ! n n=0 (1.2.6) x + + 1; x + + + 1 t F x + ; x + t ~ F 2 1 2 1 +1 + +1 N X ' ((++1)n (++1)+ 1)n!n Rn((x); ; ; ; )tn: n n=0 26 (1.2.7) 4t ( + + 1); 21 ( + + 2); x; x + + + 1 (1 t)2 + 1; + + 1; + 1 N X (1.2.8) ' ( + n!+ 1)n Rn((x); ; ; ; )tn : n=0 (1 t) 1 ~ 4 F3 1 2 Remark. If we set = a + b 1, = c + d 1, = a + d 1, = a d and x ! a + ix in the denition (1.2.1) of the Racah polynomials we obtain the Wilson polynomials dened by (1.1.1) : Rn(( a + ix); a + b 1; c + d 1; a + d 1; a d) 2 = W~ n (x2; a; b; c; d) = (a +Wb)n ((xa +; a;c)b; (c;ad+) d) : n n n References. [31], [43], [45], [47], [90], [156], [180], [183], [192], [194], [227]. 1.3 Continuous dual Hahn Denition. Sn (x2; a; b; c) = F n; a + ix; a ix 1 : (1.3.1) (a + b)n(a + c)n 3 2 a + b; a + c Orthogonality. When a,b and c are positive except possibly for a pair of complex conjugates with positive real parts, then 1 1 Z (a + ix) (b + ix) (c + ix) 2 S (x2; a; b; c)S (x2 ; a; b; c)dx n m 2 (2ix) 0 = (n + a + b) (n + a + c) (n + b + c)n!mn : (1.3.2) If a < 0 and a + b, a + c are positive or a pair of complex conjugates with positive real parts, then 1 1 Z (a + ix) (b + ix) (c + ix) 2 S (x2; a; b; c)S (x2; a; b; c)dx + n m 2 (2ix) 0 ( a + b) (a + c) (b a) (c a) + ( 2a) X (2a)k (a + 1)k (a + b)k (a + c)k k 2 2 (k!)(a)k (a b + 1)k (a c + 1)k ( 1) Sm ( (a + k) )Sn ( (a + k) ) = where k=0;1;2::: a+k<0 (n + a + b) (n + a + c) (n + b + c)n!mn ; (1.3.3) Sm ( (a + k)2)Sn ( (a + k)2 ) = Sm ( (a + k)2 ; a; b; c)Sn( (a + k)2; a; b; c): Recurrence relation. a2 + x2 S~n (x2 ) = An S~n+1 (x2) (An + Cn) S~n (x2 ) + CnS~n 1 (x2); where 2 b; c) S~n (x2) := S~n (x2 ; a; b; c) = (aS+n (bx) ;(a;a + c) n 27 n (1.3.4) and 8 < An = (n + a + b)(n + a + c) : Cn = n(n + b + c 1): Dierence equation. ny(x) = B (x)y(x + i) [B (x) + D(x)] y(x) + D(x)y(x i); y(x) = Sn (x2; a; b; c); where 8 )(b ix)(c ix) > > B (x) = (a ix2ix > > < (2ix 1) > > > > : Generating functions. (1.3.5) )(b + ix)(c + ix) : D(x) = (a + ix2ix (2ix + 1) 1 S (x2 ; a; b; c) b + ix t = X n (1 t) c+ix 2 F1 a + ix; tn : a+b ( a + b ) n ! n n=0 (1.3.6) 1 S (x2 ; a; b; c) c + ix t = X n tn : (1 t) b+ix 2F1 a + ix; ( a + c ) n ! a+c n n=0 1 S (x2; a; b; c) c + ix t = X n (1 t) a+ix 2F1 b + ix; tn: b+c ( b + c ) n ! n n=0 (1.3.7) (1.3.8) 1 S (x2 ; a; b; c) X n t = tn: et 2 F2 aa++ix;b; aa + ix ( a + b ) ( a + c ) n ! c n n n=0 References. [45], [130], [155], [156], [168], [169]. (1.3.9) 1.4 Continuous Hahn Denition. pn(x; a; b; c; d) = in (a + c)n (a + d)n 3 F2 Orthogonality. n! n; n + a + b + c + d 1; a + ix 1 : a + c; a + d (1.4.1) 1 1 Z (a + ix) (b + ix) (c ix) (d ix)p (x; a; b; c; d)p (x; a; b; c; d)dx m n 2 1 ) (n + a + d) (n + b + c) (n + b + d) ; = (2(nn++aa++bc+ (1.4.2) c + d 1) (n + a + b + c + d 1)n! mn where Recurrence relation. Re(a; b; c; d) > 0; c = a and d = b: (a + ix)~pn (x) = An p~n+1(x) (An + Cn) p~n (x) + Cn p~n 1(x); where p~n(x) := p~n (x; a; b; c; d) = in (a + c)n!(a + d) pn(x; a; b; c; d) n 28 n (1.4.3) and 8 > > > > < > > > > : n + a + b + c + d 1)(n + a + c)(n + a + d) An = ((2 n + a + b + c + d 1)(2n + a + b + c + d) 1)(n + b + d 1) Cn = (2n + a +n(bn++cb++dc 2)(2 n + a + b + c + d 1) : Dierence equation. n(n + a + b + c + d 1)y(x) = B (x)y(x + i) [B (x) + D(x)] y(x) + D(x)y(x i); where y(x) = pn(x; a; b; c; d) and 8 < B (x) = (c ix)(d ix) : Generating functions. 2 F0 D(x) = (a + ix)(b + ix): 1 a + ix; b + ix it F c ix; d ix it X pn(x; a; b; c; d)tn: 2 0 n=0 1 X F1 aa++ixc it 1F1 db + ixd it = (apn+(xc;)a;(bb;+c;dd)) tn : n n n=0 1 1 p (x; a; b; c; d) a + ix it F c ix it = X n F tn : 1 1 1 1 b+c a+d ( a + d ) ( b + c ) n n n=0 (1.4.4) (1.4.5) (1.4.6) (1.4.7) 4t (a + b + c + d 1); 12 (a + b + c + d); a + ix (1 t) a + c; a + d (1 t)2 1 X = ((aa++bc+) c(a++dd) 1)inn pn(x; a; b; c; d)tn: (1.4.8) n n n=0 1 a b c d 3 F2 1 2 Remark. Since the generating function (1.4.5) is divergent this relation must be seen as an equality in terms of formal power series. References. [29], [31], [46], [51], [120], [156]. 1.5 Hahn Denition. Qn(x; ; ; N ) = 3 F~2 Orthogonality. N X n; n + + + 1; x 1 ; n = 0; 1; 2; : : :; N: + 1; N + xN + xQ (x; ; ; N )Q (x; ; ; N ) m n x N x x=0 1)n n!( + 1)n(n + + + 1)N +1 : = ((N !)(2 n + + + 1)( N )n( + 1)n mn (1.5.1) 29 (1.5.2) Recurrence relation. xQn(x) = An Qn+1(x) (An + Cn) Qn(x) + CnQn 1(x); where Qn(x) := Qn(x; ; ; N ) and 8 > > > > < n + + + 1)(n + + 1)(N n) An = ((2 n + + + 1)(2n + + + 2) > > > > : n(n + )(n + + + N + 1) : Cn = (2 n + + )(2n + + + 1) Dierence equation. where (1.5.3) n(n + + + 1)y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); (1.5.4) y(x) = Qn (x; ; ; N ) and Generating functions. 8 < B (x) = (x N )(x + + 1) : D(x) = x(x N 1): N X F1 x +N1 t 1 F1 +x1 t ' (( +N1))nn! Qn (x; ; ; N )tn: n n=0 1 (1.5.5) N X ( + 1)n x N N x + + 1 ~ t t ' F Qn(x; ; ; N )tn: (1.5.6) 1 F1 1 1 N + +N +2 ( + + N + 2) n ! n n=0 4t ( + + 1); 21 ( + + 2); x (1 t) (1 t)2 + 1; N N X (1.5.7) ' ( + n!+ 1)n Qn(x; ; ; N )tn: n=0 Remarks. If we interchange the role of x and n in (1.5.1) we obtain the dual Hahn polynomials dened by (1.6.1). Since Qn (x; ; ; N ) = Rx((n); ; ; N ) we obtain the dual orthogonality relation for the Hahn polynomials from the orthogonality relation (1.6.2) of the dual Hahn polynomials : N (N !)( N ) ( + 1) (2n + + + 1) X n n n n!( + 1)n (n + + + 1)N +1 Qn (x; ; ; N )Qn(y; ; ; N ) ( 1) n=0 xy = + xN + x ; x; y 2 f0; 1; 2; : : :; N g: N x x For x = 0; 1; 2; : ::; N the generating function (1.5.5) can also be written as : X N ( N) x N x n n 1 F1 + 1 t 1 F1 + 1 t = n=0 ( + 1)n n! Qn (x; ; ; N )t : References. [10], [25], [27], [31], [45], [47], [77], [80], [82], [87], [89], [104], [105], [124], [144], [153], [156], [165], [167], [180], [187], [189], [190], [195], [217], [218], [227]. 1 ~ 3 F2 1 2 30 1.6 Dual Hahn Denition. Rn((x); ; ; N ) = 3 F~2 where n; x; x + + + 1 1 ; n = 0; 1; 2; : : :; N; + 1; N (1.6.1) (x) = x(x + + + 1): Orthogonality. N X (N !)( N )x ( + 1)x (2x + + + 1) R ((x); ; ; N )R ((x); ; ; N ) m n x ( x=0 1) (x!)( + 1)x (x + + + 1)N +1 = + nmn (1.6.2) N + n : n N n Recurrence relation. (x)Rn((x)) = An Rn+1((x)) (An + Cn) Rn((x)) + Cn Rn 1((x)); where (1.6.3) Rn((x)) := Rn((x); ; ; N ) and Dierence equation. 8 < An = (n N )(n + + 1) : Cn = n(n N 1): ny(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); y(x) = Rn((x); ; ; N ); (1.6.4) where 8 (x + + + 1)(x + + 1)(N x) > > B ( x ) = > > < (2x + + + 1)(2x + + + 2) > > > > : x(x + )(x + + + N + 1) : D(x) = (2 x + + )(2x + + + 1) Generating functions. N X (1 t)x+ 2F~1 x N; x +N + + 1 t ' ( +n!1)n Rn((x); ; ; N )tn : n=0 (1 t)N x 2F1 N ( N) x; x t ' X n R ((x); ; ; N )tn : n +1 n ! n=0 N X n R ((x); ; ; N )tn: (1 t)x 2F1 x N;x +N + 1 t ' ( ( N)n (N+) 1) n n ! n n=0 et 2F~2 N R ((x); ; ; N ) x; x + + + 1 t ' X n tn : + 1; N n ! n=0 31 (1.6.5) (1.6.6) (1.6.7) (1.6.8) Remarks. If we interchange the role of x and n in the denition (1.6.1) of the dual Hahn polynomials we obtain the Hahn polynomials dened by (1.5.1). Since Rn((x); ; ; N ) = Qx(n; ; ; N ) we obtain the dual orthogonality relation for the dual Hahn polynomials from the orthogonality relation (1.5.2) for the Hahn polynomials : N + nN + n X N n Rn((x); ; ; N )Rn((y); ; ; N ) n n=0 x x (x + + + 1)N +1 ; x; y 2 f0; 1; 2; : ::; N g: = ((N1)!)((xN!)() (+ 1) xy x + 1)x (2x + + + 1) For x = 0; 1; 2; : ::; N the generating function (1.6.6) can also be written as : N ( N) X x; x n n N x (1 t) 2F1 + 1 t = n=0 n! Rn((x); ; ; N )t : For x = 0; 1; 2; : ::; N the generating function (1.6.7) can also be written as : N ( N ) ( + 1) X x N; x + + 1 n n R ((x); ; ; N )tn : x t = (1 t) 2 F1 n N ( N ) n ! n n=0 References. [45], [47], [144], [153], [156], [180], [194], [217], [227]. 1.7 Meixner-Pollaczek Denition. Orthogonality. Pn (x; ) = ( ) 1 2 Z1 1 Recurrence relation. e(2 (2)n ein F 2 1 n! )x j n; + ix 1 e 2 2 i : (1.7.1) ( + ix)j2 Pm()(x; )Pn()(x; )dx (n + 2) ; > 0 and 0 < < : = (2 sin )2n! mn (1.7.2) (n + 1)Pn(+1) (x; ) 2 [x sin + (n + ) cos ] Pn()(x; ) + (n + 2 1)Pn()1(x; ) = 0: (1.7.3) Dierence equation. ei ( ix)y(x + i) + 2i [x cos (n + ) sin ] y(x) e i ( + ix)y(x i) = 0; where y(x) = Pn() (x; ): Generating functions. 1 X (1 ei t) +ix(1 e i t) ix = Pn()(x; )tn: n=0 (1.7.4) (1.7.5) 1 P ()(x; ) + ix (e 2i 1)t = X n n (1.7.6) in t : (2 ) e 2 n n=0 References. [10], [15], [25], [31], [45], [47], [72], [77], [126], [156], [174], [180], [189], [227], [230]. e t 1 F1 32 1.8 Jacobi Denition. Pn;) (x) = ( Orthogonality. Z1 ( + 1)n F n! 2 1 n; n + + + 1 1 x : 2 +1 (1.8.1) (1 x)(1 + x) Pm(;)(x)Pn(;)(x)dx 1 ++1 = 2n +2 + + 1 (nn+! (n++1) +(n++1)+ 1) mn ; > 1 and > 1: (1.8.2) Recurrence relation. + + + 1) (; ) xPn(;)(x) = (2n +2(n++1)(+n1)(2 n + + + 2) Pn+1 (x) + 2 2 )(n + ) (; ) + (2n + + )(2n+ + + 2) Pn(;)(x) + (2n + 2(+n +)(2 n + + + 1) Pn 1 (x): (1.8.3) Dierential equation. (1 x2)y00 (x)+[ ( + + 2)x] y0 (x)+ n(n + + +1)y(x) = 0; y(x) = Pn(;) (x): (1.8.4) Generating functions. 1 X 2+ (; ) n ; R = p1 2xt + t2 : = P ( x ) t n R(1 + R t) (1 + R + t) n=0 1 X (x + 1)t (x 1)t Pn(;) (x) tn : = F F 0 1 0 1 + 1 2 + 1 2 n=0 ( + 1)n( + 1)n ( + + 1); 21 ( + + 2) 2(x 1)t (1 t) 2 F1 (1 t)2 +1 1 X = ((+ + +1) 1)n Pn(;)(x)tn : n n=0 1 1 2 ( + + 1); 21 ( + + 2) 2(x + 1)t (1 + t)2 +1 1 X = ((+ + +1) 1)n Pn(;)(x)tn : n n=0 (1 + t) 1 2 F1 1 2 (1.8.5) (1.8.6) (1.8.7) (1.8.8) 1 R+t 1 R t ; + + 1 ; + + 1 2 F1 2 F1 +1 2 2 +1 1 p X ( )n ( + + 1 )n = Pn(;)(x)tn ; R = 1 2xt + t2 ; arbitrary: (1.8.9) ( + 1) ( + 1) n n n=0 Remarks. The Jacobi polynomials dened by (1.8.1) and the Meixner polynomials given by (1.9.1) are related in the following way : ( )n M (x; ; c) = P ( 1; n x) 2 c : n n! n c 33 The Jacobi polynomials are also related to the Gegenbauer (or ultraspherical) polynomials dened by (1.8.10) by the quadratic transformations : 1 1 C2(n) (x) = (1 ))n Pn( 2 ; 2 ) (2x2 1) (2 n and 1 1 C2(n)+1(x) = ((1 ))n+1 xPn( 2 ; 2 ) (2x2 1): 2 n+1 References. [2], [3], [7], [9], [14], [25], [26], [27], [28], [31], [33], [34], [35], [42], [45], [50], [55], [61], [68], [69], [77], [80], [82], [90], [93], [94], [98], [99], [100], [101], [102], [103], [104], [105], [106], [115], [119], [122], [123], [124], [134], [146], [147], [148], [149], [151], [152], [155], [156], [165], [170], [173], [176], [178], [180], [182], [184], [185], [186], [188], [193], [203], [205], [211], [213], [214], [218], [220], [229], [232]. Special cases 1.8.1 Gegenbauer / Ultraspherical Denition. The Gegenbauer (or ultraspherical) polynomials are Jacobi polynomials with == 1 2 and another normalization : Cn (x) = ( ) (2)n P ( 21 ; ( + 12 )n n 21 ) (x) = (2)n F n! 2 1 n; n + 2 1 x ; 6= 0: + 21 2 (1.8.10) Orthogonality. Z1 1 1 2 mn ; > 21 and 6= 0: (1 x2 ) 21 Cm()(x)Cn()(x)dx = (n +2 2)2 f ()g (n + )n! (1.8.11) Recurrence relation. 2(n + )xCn() (x) = (n + 1)Cn(+1) (x) + (n + 2 1)Cn()1(x): (1.8.12) (1 x2)y00 (x) (2 + 1)xy0 (x) + n(n + 2)y(x) = 0; y(x) = Cn()(x): (1.8.13) Dierential equation. Generating functions. 1 X (1 2xt + t2 ) = Cn()(x)tn : n=0 R 1 1 + R xt 2 1 2 = 1 X p ( + 12 )n () n C ( x ) t ; R = 1 2xt + t2: n (2 ) n n=0 1 X (x 1)t (x + 1)t Cn()(x) tn : F F = 0 1 0 1 1 + 12 2 + 21 2 n=0 (2)n ( + 2 )n ext 0 F1 1 + 2 1 C ()(x) (x2 1)t2 = X n tn : 4 (2 ) n n=0 34 (1.8.14) (1.8.15) (1.8.16) (1.8.17) 2 (1 xt) F1 2 F1 ; 2 1 R t F ; 2 1 R + t 2 1 + 12 2 + 12 2 1 ( ) (2 ) X n n C () (x)tn; R = p1 2xt + t2; arbitrary: (1.8.18) = (2 n 1 n=0 )n ( + 2 )n 1 2 ! 1 ( ) ; 12 + 21 (x2 1)t2 = X n C ()(x)tn; arbitrary: 1 2 (1 xt ) (2 ) + 2 n n n=0 (1.8.19) Remarks. The case = 0 needs another normalization. In that case we have the Chebyshev polynomials of the rst kind described in the next subsection. The Gegenbauer (or ultraspherical) polynomials dened by (1.8.10) and the Jacobi polynomials given by (1.8.1) are related by the quadratic transformations : 1 1 C2(n) (x) = (1 ))n Pn( 2 ; 2 ) (2x2 1) (2 n and 1 1 C2(n)+1(x) = ((1 ))n+1 xPn( 2 ; 2 ) (2x2 1): 2 n+1 References. [2], [4], [26], [27], [31], [33], [41], [54], [55], [56], [61], [62], [63], [64], [65], [66], [68], [77], [83], [92], [94], [103], [108], [119], [123], [156], [164], [180], [203], [205], [220], [223], [232]. 1.8.2 Chebyshev Denitions. The Chebyshev polynomials of the rst kind can be obtained from the Jacobi polynomials by taking = = 21 : 1 1 ( 2; 2) Tn(x) = Pn( 12 ; 21 )(x) = 2 F1 n;1 n 1 2 x (1.8.20) 2 Pn (1) and the Chebyshev polynomials of the second kind can be obtained from the Jacobi polynomials by taking = = 21 : 1 1 (2;2) Un (x) = (n + 1) Pn( 12 ; 21 )(x) = (n + 1)2 F1 Pn (1) Orthogonality. Z1 (1 x2) 12 Tm (x)Tn (x)dx = 1 Z1 Recurrence relations. 1 8 > < > : n; n + 2 1 x : 3 2 2 ; n 6= 0 2 mn mn ; n = 0: (1 x2) 12 Um (x)Un (x)dx = 2 mn : 2xTn (x) = Tn+1 (x) + Tn 1(x); T0 (x) = 1 and T1 (x) = x: 35 (1.8.21) (1.8.22) (1.8.23) (1.8.24) 2xUn(x) = Un+1 (x) + Un 1(x): (1.8.25) (1 x2 )y00 (x) xy0 (x) + n2y(x) = 0; y(x) = Tn (x): (1.8.26) (1 x2)y00 (x) 3xy0 (x) + n(n + 2)y(x) = 0; y(x) = Un (x): (1.8.27) 1 1 xt = X n 1 2xt + t2 n=0 Tn (x)t : (1.8.28) Dierential equations. Generating functions. R r 1 0 F1 1 1 1 (1 + R xt) = X 2 n n ; R = p1 2xt + t2 : T ( x ) t n 2 n=0 n! 1 2 (x 1)t 2 ext0 F1 1 T (x) (x + 1)t = X n tn : 1 1 2 2 n=0 2 n n! 2 1 T (x) (x 1)t2 = X n tn: 1 4 2 n=0 n! 0 F1 (1 xt) 1 2 1 3 X 1 2 n n ; R = p1 2xt + t2 : q U ( x ) t = n R 12 (1 + R xt) n=0 (n + 1)! 2 (1 xt) F1 2 F1 3 2 1 (x + 1)t = X Un (x) tn : 3 3 2 2 n=0 2 n (n + 1)! X 2 1 2 ) tn : ext 0F1 3 (x 4 1)t = (nUn+(x1)! 2 n=0 (x 1)t 2 0 F1 (1.8.32) (1.8.33) (1.8.34) (1.8.35) (1.8.36) (1.8.37) ; 2 1 R t F ; 2 1 R + t 2 1 3 3 2 2 2 2 1 ( ) (2 ) p X n n U (x)tn ; R = 1 2xt + t2 ; arbitrary: = n 3 n=0 2 n (n + 1)! 1 2 (1.8.31) ! 1 ( ) X ; 12 + 21 (x2 1)t2 n T (x)tn; arbitrary: = n 1 2 (1 xt ) n ! 2 n=0 1 X 1 n = 1 2xt + t2 n=0 Un (x)t : 0 F1 (1.8.30) ; 1 R t F ; 1 R + t F 2 1 2 1 1 1 2 2 2 2 1 p X = ( )1n( )n Tn (x)tn; R = 1 2xt + t2; arbitrary: n=0 2 n n! 2 F1 (1.8.29) (1.8.38) ! 1 ( ) ; 12 + 21 (x2 1)t2 = X n U (x)tn ; arbitrary: 3 2 (1 xt ) ( n + 1)! n 2 n=0 36 (1.8.39) Remarks. The Chebyshev polynomials can also be written as : Tn (x) = cos(n arccos x) and n + 1) ; x = cos : Un (x) = sin(sin Further we have Un (x) = Cn(1)(x) where Cn() (x) denotes the Gegenbauer (or ultraspherical) polynomial dened by (1.8.10) in the preceding subsection. References. [2], [33], [36], [77], [83], [94], [119], [170], [180], [205], [206], [210], [220], [232]. 1.8.3 Legendre / Spherical Denition. The Legendre (or spherical) polynomials are Jacobi polynomials with = = 0 : ; Pn(x) = Pn (x) = 2 F1 (0 0) Orthogonality. Z1 1 Recurrence relation. n; n + 1 1 x : 1 2 Pm (x)Pn(x)dx = 2n 2+ 1 mn : (1.8.40) (1.8.41) (2n + 1)xPn(x) = (n + 1)Pn+1 (x) + nPn 1(x): (1.8.42) Dierential equation. (1 x2)y00 (x) 2xy0 (x) + n(n + 1)y(x) = 0; y(x) = Pn(x): Generating functions. 1 X 1 P (x)tn: = 1 2xt + t2 n=0 n 1 P (x) X (x 1)t (x + 1)t n tn: F F = 0 1 0 1 2 1 2 1 2 n n=0 ! p ext 0 F1 1 (x 4 1)t 2 (1 xt) F1 2 F1 2 2 = 1 X Pn(x) tn : n=0 n! 1 2 (1.8.45) 1 ( ) ; 21 + 12 (x2 1)t2 = X n P (x)tn ; arbitrary: n (1 xt)2 n ! 1 n=0 (1.8.44) (1.8.46) ; 1 1 R t F ; 1 1 R + t 2 1 1 2 1 2 1 p X = ( )n (1n!2 )n Pn (x)tn; R = 1 2xt + t2; arbitrary: n=0 (1.8.43) (1.8.47) (1.8.48) References. [2], [5], [10], [53], [55], [77], [83], [94], [119], [180], [182], [205], [220], [232]. 37 1.9 Meixner Denition. Mn (x; ; c) = 2F1 Orthogonality. n; x 1 1 : c 1 X ( )x cx M (x; ; c)M (x; ; c) = c nn! ; > 0 and 0 < c < 1: m n ( )n (1 c) mn x=0 x! (1.9.1) (1.9.2) Recurrence relation. (c 1)xMn (x; ; c) = c(n + )Mn+1 (x; ; c) + [n + (n + )c] Mn(x; ; c) + nMn 1(x; ; c): (1.9.3) Dierence equation. n(c 1)y(x) = c(x + )y(x + 1) [x + (x + )c] y(x) + xy(x 1); y(x) = Mn (x; ; c): (1.9.4) Generating functions. 1 ct x 1 X (1 t) x = (n)!n Mn (x; ; c)tn: n=0 (1.9.5) 1 M (x; ; c) x 1 c t = X n tn: (1.9.6) c n ! n=0 Remarks. The Meixner polynomials dened by (1.9.1) and the Jacobi polynomials given by (1.8.1) are related in the following way : ( )n M (x; ; c) = P ( 1; n x) 2 c : n n! n c The Meixner polynomials are also related to the Krawtchouk polynomials dened by (1.10.1) in the following way : Kn (x; p; N ) = Mn x; N; p p 1 : e t 1 F1 References. [7], [10], [15], [17], [25], [27], [31], [36], [45], [47], [77], [82], [94], [97], [104], [105], [129], [135], [143], [156], [174], [180], [189], [222], [233]. 1.10 Krawtchouk Denition. Orthogonality. Kn (x; p; N ) = 2F~1 n; x 1 ; n = 0; 1; 2; : : :; N: N p N X x=0 (1.10.1) N px (1 p)N x K (x; p; N )K (x; p; N ) = ( 1)n n! 1 p n ; 0 < p < 1: (1.10.2) mn m n ( N )n p x 38 Recurrence relation. xKn (x; p; N ) = p(N n)Kn+1 (x; p; N ) + [p(N n) + n(1 p)] Kn (x; p; N ) + n(1 p)Kn 1(x; p; N ): Dierence equation. ny(x) = p(N x)y(x + 1) [p(N x) + x(1 p)] y(x) + x(1 p)y(x 1); where (1.10.4) y(x) = Kn (x; p; N ): Generating functions. (1.10.3) x N N X Kn (x; p; N )tn: 1 (1 p p) t (1 + t)N x ' n n=0 (1.10.5) N K (x; p; N ) x t ' X n n (1.10.6) N p n=0 n! t : Remarks. The Krawtchouk polynomials are self-dual, which means that Kn (x; p; N ) = Kx (n; p; N ); n; x 2 f0; 1; 2; : ::; N g: By using this relation we easily obtain the so-called dual orthogonality relation from the orthogonality relation (1.10.2) : 1 p x N N X n(1 p)N n Kn (x; p; N )Kn(y; p; N ) = p xy ; p N n=0 n x where 0 < p < 1 and x; y 2 f0; 1; 2; : : :; N g. The Krawtchouk polynomials are related to the Meixner polynomials dened by (1.9.1) in the following way : Kn (x; p; N ) = Mn x; N; p p 1 : et 1 F~1 For x = 0; 1; 2; : ::; N the generating function (1.10.5) can also be written as : x N N X 1 (1 p p) t (1 + t)N x = Kn (x; p; N )tn: n n=0 References. [10], [25], [27], [31], [45], [77], [87], [90], [91], [94], [104], [105], [143], [154], [156], [167], [180], [189], [191], [217], [218], [220], [233]. 1.11 Laguerre Denition. Orthogonality. Ln ( ) Z1 0 (x) = ( +n!1)n 1 F1 +n1 x : x e x L(m) (x)L(n) (x)dx = (n +n! + 1) mn ; > 1: 39 (1.11.1) (1.11.2) Recurrence relation. (n + 1)L(n+1) (x) (2n + + 1 x)L(n) (x) + (n + )L(n)1 (x) = 0: (1.11.3) Dierential equation. xy00 (x) + ( + 1 x)y0 (x) + ny(x) = 0; y(x) = L(n) (x): Generating functions. (1 t) 1 xt 1 X exp t 1 = L(n) (x)tn: n=0 1 () X et 0F1 + 1 xt = (Ln+ (1)x) tn: n n=0 (1.11.4) (1.11.5) (1.11.6) 1 ( ) X xt n () n (1.11.7) = (1 t) + 1 t 1 n=0 ( + 1)n Ln (x)t ; arbitrary: Remarks. The denition (1.11.1) of the Laguerre polynomials can also be written as : 1 F1 n X L(n) (x) = n1! ( kn!)k ( + k + 1)n k xk : k=0 In this way the Laguerre polynomials can be dened for all . Then we have the following connection with the Charlier polynomials dened by (1.12.1) : ( a)n C (x; a) = L(x n) (a): n n! n The Laguerre polynomials dened by (1.11.1) and the Hermite polynomials dened by (1.13.1) are connected by the following quadratic transformations : 1 H2n(x) = ( 1)n n!22nL(n 2 ) (x2) and 1 H2n+1(x) = ( 1)n n!22n+1xL(n2 ) (x2): In combinatorics the Laguerre polynomials with = 0 are often called Rook polynomials. References. [1], [2], [3], [7], [9], [10], [14], [15], [25], [27], [31], [35], [36], [40], [45], [52], [55], [57], [58], [61], [65], [66], [67], [68], [70], [75], [77], [81], [82], [94], [95], [106], [116], [117], [119], [123], [124], [129], [134], [135], [139], [141], [143], [150], [152], [155], [156], [174], [180], [182], [205], [210], [211], [220], [222]. 1.12 Charlier Denition. Orthogonality. Cn (x; a) = 2F0 1 X n; x 1 : a ax C (x; a)C (x; a) = n!a nea ; a > 0: m n mn x=0 x! 40 (1.12.1) (1.12.2) Recurrence relation. xCn(x; a) = aCn+1 (x; a) (n + a)Cn(x; a) + nCn 1(x; a): (1.12.3) Dierence equation. ny(x) = ay(x + 1) (x + a)y(x) + xy(x 1); y(x) = Cn (x; a): (1.12.4) Generating function. x 1 X et 1 at = Cn(nx!; a) tn: (1.12.5) n=0 Remark. The denition (1.11.1) of the Laguerre polynomials can also be written as : n X L(n) (x) = n1! ( kn!)k ( + k + 1)n k xk : k=0 In this way the Laguerre polynomials can be dened for all . Then we have the following connection with the Charlier polynomials dened by (1.12.1) : ( a)n C (x; a) = L(x n) (a): n n! n References. [7], [10], [15], [17], [25], [27], [45], [77], [78], [87], [94], [104], [105], [129], [156], [167], [174], [180], [220], [222], [233]. 1.13 Hermite Denition. Hn(x) = (2x)n2 F0 Orthogonality. Z1 n=2; (n 1)=2 1 x2 : (1.13.1) x2 Hm (x)Hn(x)dx = 2nn!pmn : (1.13.2) Hn+1(x) 2xHn(x) + 2nHn 1(x) = 0: (1.13.3) y00 (x) 2xy0 (x) + 2ny(x) = 0; y(x) = Hn(x): (1.13.4) Recurrence relation. 1 e Dierential equation. Generating functions. exp 2xt t2 = 1 X Hn(x) tn : n=0 n! 8 > > > > > < 1 n p X et cos(2x t) = ((2n1))! H2n(x)tn > > > > > : 1 n t p X pe sin(2x t) = (2(n +1)1)! H2n+1(x)tn: t n=0 n=0 41 (1.13.5) (1.13.6) 8 > > > > > < > > > > > : e e 1 t2 cosh(2xt) = X H2n(x) t2n n=0 (2n)! t2 sinh(2xt) = 1 X H2n+1(x) t2n+1 : n=0 (2n + 1)! 8 > > > > > > < (1 + t ) > > > > > > : 1 ( + 1 ) 1 2 2 X 2 n p xt 2 1F1 +3 2 1x+tt2 = (2 H2n+1(x)t2n+1: n + 1)! 1+t 2 n=0 2 1 F1 1 ( ) x2t2 = X n H (x)t2n 1 2 1 + t (2 n )! 2n 2 n=0 ! 1 H (x) 1 + 2xt + 4t2 exp 4x2t2 = X n tn; 32 2 2 1 + 4 t [ n= 2]! (1 + 4t ) n=0 where [] denotes the largest integer smaller than or equal to . Remarks. The Hermite polynomials can also be written as : (1.13.7) (1.13.8) (1.13.9) n=2] Hn (x) = [X ( 1)k (2x)n 2k ; n! k=0 k!(n 2k)! where [] denotes the largest integer smaller than or equal to . The Laguerre polynomials dened by (1.11.1) and the Hermite polynomials dened by (1.13.1) are connected by the following quadratic transformations : 1 H2n(x) = ( 1)n n!22nLn( 2 ) (x2) and 1 H2n+1(x) = ( 1)n n!22n+1xL(n2 ) (x2): References. [2], [7], [10], [14], [15], [25], [27], [31], [35], [45], [49], [55], [57], [58], [71], [77], [81], [83], [94], [118], [119], [123], [156], [174], [180], [182], [205], [210], [220], [222], [225], [231]. 42 Chapter 2 Limit relations between hypergeometric orthogonal polynomials 2.1 Wilson ! Continuous dual Hahn The continuous dual Hahn polynomials can be found from the Wilson polynomials dened by (1.1.1) by dividing by (a + d)n and letting d ! 1 : Wn (x2 ; a; b; c; d) = S (x2 ; a; b; c); lim n d!1 (a + d)n where Sn (x2 ; a; b; c) is dened by (1.3.1). 2.2 Wilson ! Continuous Hahn The continuous Hahn polynomials dened by (1.4.1) are obtained from the Wilson polynomials by the substitution a ! a it, b ! b it, c ! c + it, d ! d + it and x ! x + t in the denition (1.1.1) of the Wilson polynomials and the limit t ! 1 in the following way : W n (x + t)2 ; a it; b it; c + it; d + it = pn(x; a; b; c; d): tlim !1 ( 2t)n n! 2.3 Wilson ! Jacobi The Jacobi polynomials given by (1.8.1) can be found from the Wilson polynomials by substituting q 1 1 1 1 a = b = 2 ( +1), c = 2 ( +1)+ it, d = 2 ( +1) it and x ! t 2 (1 x) in the denition (1.1.1) of the Wilson polynomials and taking the limit t ! 1. In fact we have W n 12 (1 x)t2 ; 12 ( + 1); 21 ( + 1); 21 ( + 1) + it; 21 ( + 1) it lim = Pn(;)(x): t!1 t2nn! 2.4 Racah ! Hahn If we take +1 = N and let ! 1 in the denition (1.2.1) of the Racah polynomials, we obtain the Hahn polynomials dened by (1.5.1). Hence lim R ((x); ; ; N 1; ) = Qn(x; ; ; N ): !1 n 43 The Hahn polynomials can also be obtained from the Racah polynomials by taking = N 1 in the denition (1.2.1) and letting ! 1 : lim R ((x); ; ; ; N 1) = Qn (x; ; ; N ): !1 n Another way to do this is to take +1 = N and ! + + N +1 in the denition (1.2.1) of the Racah polynomials and then take the limit ! 1. In that case we obtain the Hahn polynomials given by (1.5.1) in the following way : lim R ((x); N 1; + + N + 1; ; ) = Qn(x; ; ; N ): !1 n 2.5 Racah ! Dual Hahn If we take + 1 = N and let ! 1 in (1.2.1), then we obtain the dual Hahn polynomials from the Racah polynomials. So we have lim R ((x); N 1; ; ; ) = Rn((x); ; ; N ): !1 n And if we take = N 1 and let ! 1 in (1.2.1), then we also obtain the dual Hahn polynomials : lim R ((x); ; N 1; ; ) = Rn ((x); ; ; N ): !1 n Finally, if we take + 1 = N and ! + + N + 1 in the denition (1.2.1) of the Racah polynomials and take the limit ! 1 we nd the dual Hahn polynomials given by (1.6.1) in the following way : lim R ((x); ; ; N 1; + + N + 1) = Rn((x); ; ; N ): !1 n 2.6 Continuous dual Hahn ! Meixner-Pollaczek The Meixner-Pollaczek polynomials given by (1.7.1) can be obtained from the continuous dual Hahn polynomials by the substitutions x ! x t, a = + it, b = it and c = t cot in the denition (1.3.1) and the limit t ! 1 : (x t)2; + it; it; t cot S n = Pn()(x; ): lim t!1 t n! sin n 2.7 Continuous Hahn ! Meixner-Pollaczek By taking x ! x t, a = + it, c = it and b = d = t tan in the denition (1.4.1) of the continuous Hahn polynomials and taking the limit t ! 1 we obtain the Meixner-Pollaczek polynomials dened by (1.7.1) : pn (x t; + it; t tan ; it; t tan ) = P ()(x; ): lim n t!1 it n i cos n 2.8 Continuous Hahn ! Jacobi The Jacobi polynomials dened by (1.8.1) follow from the continuous Hahn polynomials by the substitution x ! 12 xt, a = 12 ( +1+ it), b = 21 ( +1 it), c = 12 ( +1 it) and d = 21 ( +1+ it) in (1.4.1), division by ( 1)n tn and the limit t ! 1 : 1 xt ; 21 ( + 1 + it); 12 ( + 1 it); 21 ( + 1 it); 12 ( + 1 + it) = P (;)(x): p n 2 lim n t!1 ( 1)n tn 44 2.9 Hahn ! Jacobi To nd the Jacobi polynomials from the Hahn polynomials we take x ! Nx in (1.5.1) and let N ! 1: We have Pn(;)(1 2x) : lim Q ( Nx ; ; ; N ) = n N !1 Pn(;)(1) 2.10 Hahn ! Meixner If we take = b 1, = N (1 c)c 1 in the denition (1.5.1) of the Hahn polynomials and let N ! 1 we nd the Meixner polynomials given by (1.9.1) : 1 c ; N = M (x; b; c): x ; b 1 ; N lim Q n N !1 n c 2.11 Hahn ! Krawtchouk If we take = pt and = (1 p)t in the denition (1.5.1) of the Hahn polynomials and let t ! 1 we obtain the Krawtchouk polynomials dened by (1.10.1) : lim Q (x; pt; (1 p)t; N ) = Kn (x; p; N ): t!1 n 2.12 Dual Hahn ! Meixner To obtain the Meixner polynomials from the dual Hahn polynomials we have to take = 1 and = N (1 c)c 1 in the denition (1.6.1) of the dual Hahn polynomials and let N ! 1 : 1 c lim R (x); 1; N c ; N = Mn (x; ; c): N !1 n 2.13 Dual Hahn ! Krawtchouk In the same way we nd the Krawtchouk polynomials from the dual Hahn polynomials by setting = pt, = (1 p)t in (1.6.1) and let t ! 1 : lim R ((x); pt; (1 p)t; N ) = Kn (x; p; N ): t!1 n 2.14 Meixner-Pollaczek ! Laguerre The Laguerre polynomials can be obtained from the Meixner-Pollaczek polynomials dened by (1.7.1) by the substitution = 12 ( + 1), x ! 21 1x and letting ! 0 : 1 1 lim P ( 2 + 2 ) !0 n x ; = L() (x): n 2 2.15 Meixner-Pollaczek ! Hermite p If we substitute x ! (sin ) 1 (x cos ) in the denition (1.7.1) of the Meixner-Pollaczek polynomials and then let ! 1 we obtain the Hermite polynomials : lim !1 n 2 Pn ( ) ! p x cos ; = Hn(x) : sin n! 45 2.16 Jacobi ! Laguerre The Laguerre polynomials can be obtained from the Jacobi polynomials dened by (1.8.1) by letting x ! 1 2 1 x and then ! 1 : 2 x (; ) lim P 1 = L(n) (x): !1 n 2.17 Jacobi ! Hermite The Hermite polynomials given by (1.13.1) follow from the Jacobi polynomials dened by (1.8.1) by taking = and letting ! 1 in the following way : Hn(x) : n (;) x 2 Pn = lim 1 !1 2n n! 2 2.18 Meixner ! Laguerre If we take = + 1 and x ! (1 c) 1 x in the denition (1.9.1) of the Meixner polynomials and let c ! 1 we obtain the Laguerre polynomials : lim M c!1 n x ; + 1; c = L(n)(x) : 1 c L(n) (0) 2.19 Meixner ! Charlier If we take c = (a + ) 1 a in the denition (1.9.1) of the Meixner polynomials and let ! 1 we nd the Charlier polynomials : a lim M x; ; a + = Cn (x; a): !1 n 2.20 Krawtchouk ! Charlier The Charlier polynomials given by (1.12.1) can be found from the Krawtchouk polynomials dened by (1.10.1) by taking p = N 1a and let N ! 1 : a ; N = Cn (x; a): x ; lim K N !1 n N 2.21 Krawtchouk ! Hermite The Hermiteppolynomials follow from the Krawtchouk polynomials dened by (1.10.1) by setting x ! pN + x 2p(1 p)N and then letting N ! 1 : lim N !1 s N K pN + xp2p(1 p)N ; p; N = s ( 1)n Hn(x) : n n n p n 2 (n!) 1 p 46 2.22 Laguerre ! Hermite The Hermite polynomials dened by (1.13.1) can be obtained from the Laguerre polynomials given by (1.11.1) by taking the limit ! 1 in the following way : n lim 2 !1 2 n L(n) (2) 21 x + = ( n1)! Hn(x): 2.23 Charlier ! Hermite If we set x ! (2a)1=2x + a in the denition (1.12.1) of the Charlier polynomials and let a ! 1 we nd the Hermite polynomials dened by (1.13.1). In fact we have lim (2a) n2 Cn (2a) 12 x + a; a = ( 1)n Hn(x): a!1 47 SCHEME OF BASIC HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS Askey-Wilson (4) Continuous dual q-Hahn (3) (2) (1) (0) Al-Salam Chihara Continuous big q-Hermite q-Meixner Pollaczek Big q-Jacobi Continuous q-Hahn Continuous q-Jacobi Continuous q-Laguerre Big q-Laguerre Little q-Laguerre Stieltjes Wigert Continuous q-Hermite 48 Little q-Jacobi q-Laguerre SCHEME OF BASIC HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS q-Racah Big q-Jacobi (4) q-Hahn q-Meixner Alternative q-Charlier Quantum q-Krawtchouk Dual q-Hahn q-Krawtchouk Ane q-Krawtchouk Al-Salam Carlitz I q-Charlier Discrete q-Hermite I Discrete q-Hermite II 49 (3) Dual q-Krawtchouk Al-Salam Carlitz II (2) (1) (0) Chapter 3 Basic hypergeometric orthogonal polynomials 3.1 Askey-Wilson Denition. anpn (x; a; b; c; djq) = q n ; abcdqn 1; aei ; ae i q; q ; x = cos : (3.1.1) 4 3 ab; ac; ad (ab; ac; ad; q)n The Askey-Wilson polynomials are q-analogues of the Wilson polynomials given by (1.1.1). Orthogonality. When a; b; c; d are real, or occur in complex conjugate pairs if complex, and max(jaj; jbj; jcj; jdj) < 1, then we have the following orthogonality relation 1 Z pw(x) p (x; a; b; c; djq)p (x; a; b; c; djq)dx = h ; m n n mn 2 2 1 x 1 1 where ( (3.1.2) 2i 2 21 )h(x; q 21 ) ( e ; q ) h ( x; 1) h ( x; 1) h ( x; q 1 w(x) := w(x; a; b; c; djq) = aei ; bei ; cei ; dei ; q) = h(x; a)h(x; b)h(x; c)h(x; d) ; 1 with 1 Y h(x; ) := 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos k=0 and (abcdqn 1; q)n(abcdq2n; q)1 hn = (qn+1 ; abq n; acqn; adqn; bcqn; bdqn; cdqn; q)1 : If a > 1 and b; c; d are real or one is real and the other two are complex conjugates, max(jbj; jcj; jdj) < 1 and the pairwise products of a; b; c and d have absolute value less than one, then we have another orthogonality relation given by : 1 Z pw(x) p (x; a; b; c; djq)p (x; a; b; c; djq)dx + n 2 1 x2 m 1 1 X + 1 k <aqk a wk pm (xk ; a; b; c; djq)pn(xk ; a; b; c; djq) = hn mn ; 50 (3.1.3) where w(x) and hn are as before, and aqk + aqk xk = 2 1 2 2 2k 2 ad; q)k q k : wk = (q; ab; ac; ad;(aa 1b;; qa)11c; a 1d; q) (1 (1a2)(aq;qab )(1aq;;acab;1ac; q; ad 1q; q)k abcd 1 Recurrence relation. 2xp~n(x) = Anp~n+1 (x) + a + a where 1 (An + Cn) p~n (x) + Cn p~n 1(x); n n(x; a; b; c; djq) p~n(x) := a (pab; ac; ad; q) n and 8 > > > > < n acqn)(1 adqn)(1 abcdqn 1) An = (1 abqa(1)(1 abcdq 2n 1)(1 abcdq2n) > > > > : n bcqn 1)(1 bdqn 1)(1 cdqn 1) : Cn = a(1 q (1)(1 abcdq 2n 2)(1 abcdq2n 1) q-Dierence equation. h i (1 q)2 Dq w~(x; aq 21 ; bq 21 ; cq 21 ; dq 21 jq)Dq y(x) + + nw~(x; a; b; c; djq)y(x) = 0; y(x) = pn (x; a; b; c; djq); where If we dene Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q n n 1; az; az 1 q; q Pn(z ) := (ab; ac;anad; q)n 4 3 q ; abcdq ab; ac; ad then the q-dierence equation can also be written in the form q n (1 qn)(1 abcdqn 1)Pn (z ) = A(z )Pn (qz ) A(z ) + A(z 1 ) Pn(z ) + A(z 1 )Pn(q 1 z ); where bz )(1 cz )(1 dz ) : A(z ) = (1 az )(1 (1 z 2)(1 qz 2 ) Generating functions. aei ; bei q; e i t ce i ; de 2 1 2 1 cd ab 1 (3.1.5) w~(x; a; b; c; djq) := w(xp; a; b; c;2djq) ; 1 x n +1 n n = 4q (1 q )(1 abcdqn 1) and 2 (3.1.4) aei ; cei q; e i t be i ; de 2 1 ac bd i i q; ei t = q; ei t 51 = (3.1.6) 1 X pn (x; a; b; c; djq) tn ; x = cos : (3.1.7) n=0 (ab; cd; q; q)n 1 X pn (x; a; b; c; djq) tn ; x = cos : (3.1.8) n=0 (ac; bd; q; q)n 1 p (x; a; b; c; djq) i ; dei i ; ce i X ae be n i i n 2 1 ad q; e t 21 bc q; e t = n=0 (ad; bc; q; q)n t ; x = cos : (3.1.9) Remark. The q-Racah polynomials dened by (3.2.1) and the Askey-Wilson polynomials given by (3.1.1) are related in the following way. If we substitute a2 = q, b2 = 2 1 1 q, c2 = 2 1 q, d2 = 1 q and e2i = q2x+1 in the denition (3.1.1) of the Askey-Wilson polynomials we nd : 12 n 12 21 12 21 12 q 21 ; 21 21 q 12 ; 12 21 q 21 jq) ( q ) p ( ( x ); q ; n Rn ((x); ; ; ; jq) = ; (q; q; q; q)n where (x) = 21 21 21 qx+ 12 + 21 12 12 q x 12 : References. [10], [25], [31], [45], [47], [48], [73], [112], [114], [127], [131], [133], [134], [136], [137], [140], [162], [163], [166], [176], [179], [180], [197], [198], [200], [202], [228]. 3.2 q -Racah Denition. n n+1 ; q x; qx+1 q ; q ~ q; q ; n = 0; 1; 2; : : :; N; Rn((x); ; ; ; jq) = 4 3 q; q; q where (x) := q x + qx+1 and q = q N or q = q N or q = q N ; with N a nonnegative integer. Since kY1 (q x ; qx+1 ; q)k = 1 (x)qj + q2j +1 ; (3.2.1) j =0 it is clear that Rn ((x); ; ; ; jq) is a polynomial of degree n in (x). Orthogonality. N X where (q; q; q; q; q)x (1 q2x+1 ) R ((x))R ((x)) = h ; m n n mn 1 1 x x=0 (q; q; q; q; q)x (q) (1 q) (3.2.2) Rn((x)) := Rn((x); ; ; ; jq) and 2 ; 1 1 ; 1 ; 1 ; q)1 (1 q)(q)n (q; q; 1q; 1 q; q)n : hn = ( (q 1 q; 1 q; q; 1 1 q 1 ; q ) 1 (1 q2n+1 ) (q; q; q; q; q)n This implies 8 (q2 ; 1 ; q)N (1 q N )(q)n (q; q; 1 q N ; 1 q N ; q)n > > if q = q N > > 1 q; q ; q ) 2n N ) N ; q N ; q; q; q)n > ( (1 q ( q N > > > > > < 1 ; q2; q)N (1 q)( 1 q N )n (q; q; qN +2 ; 1 q; q)n if q = q hn = > (( 1 q; q ; q ) (1 q2n+1 ) (q; q; q N ; q; q)n N > > > > > > > > > : (q2 ; 1; q)N (1 q)(q N )n (q; q; 1q; qN +2 ; q)n (q; 1 q; q)N (1 q2n+1 ) (q; q; q; q N ; q)n 52 N if q = q N : Recurrence relation. 1 q x 1 qx+1 Rn((x)) = An Rn+1((x)) (An + Cn) Rn((x)) + CnRn 1((x)); where 8 > > > > < > > > > : (3.2.3) n+1 )(1 qn+1 )(1 qn+1 )(1 qn+1 ) An = (1 q (1 q2n+1 )(1 q2n+2 ) n n )( qn)( qn ) Cn = q(1 q(1)(1 qq2n)(1 : q2n+1 ) q-Dierence equation. [w(x 1)B (x 1)y(x 1)] + q n (1 qn )(1 qn+1 )w(x)y(x) = 0; y(x) = Rn((x); ; ; ; jq); (3.2.4) where f (x) := f (x + 1) f (x); q; q; q; q)x (1 q2x+1 ) w(x) = (q;(q;1q; 1 q; q; q)x (q)x (1 q) and B (x) as below. This q-dierence equation can also be written in the form q n(1 qn )(1 qn+1 )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); (3.2.5) where y(x) = Rn((x); ; ; ; jq) and 8 (1 qx+1 )(1 qx+1 )(1 qx+1 )(1 qx+1 ) > > > B ( x ) = > < (1 q2x+1 )(1 q2x+2 ) > > > > : x x)( qx )( qx ) D(x) = q(1 q(1)(1 qq2x )(1 : q2x+1 ) Generating functions. x+1 x+1 1 x 1 x ~ q ; q q; q xt 21 q ; q q; qx+1 t 2 1 q q N (q; q; q) X n R ((x); ; ; ; jq)tn: ' n ( q; q ; q ) n n=0 ~ 2 1 (3.2.6) qx+1 ; qx+1 q; q xt 1 1 q x; 1 q x q; qx+1 t 2 1 1 q q N (q; q; q) X n R ((x); ; ; ; jq)tn: ' ( n 1 q; q ; q ) n n=0 (3.2.7) x+1 q ; qx+1 q; q xt 1 1 q x ; 1 q x q; qx+1 t ~ 2 1 2 1 1 q q N (q; q; q) X n R ((x); ; ; ; jq)tn: ' ( n 1 q; q ; q ) n n=0 53 (3.2.8) Remark. The Askey-Wilson polynomials dened by (3.1.1) and the q-Racah polynomials given by (3.2.1) are related in the following way. If we substitute = abq 1 , = cdq 1, = adq 1, = ad 1 and qx = a 1 e i in the denition (3.2.1) of the q-Racah polynomials we nd : (x) = 2a cos and n n (x; a; b; c; djq) Rn 2a cos ; abq 1; cdq 1; adq 1; ad 1jq = a (pab; ac; ad; q) : n References. [10], [22], [25], [43], [45], [111], [114], [127], [160], [180], [183], [197]. 3.3 Continuous dual q-Hahn Denition. an pn(x; a; b; cjq) = q n; aei ; ae i q; q ; x = cos : (3.3.1) 3 2 ab; ac (ab; ac; q)n Orthogonality. When a; b; c are real, or one is real and the other two are complex conjugates, and max(jaj; jbj; jcj) < 1, then we have the following orthogonality relation 1 Z pw(x) p (x; a; b; cjq)p (x; a; b; cjq)dx = h ; n n mn 2 1 x2 m 1 1 where with (3.3.2) ( 2i 2 x; 1)h(x; q 21 )h(x; q 21 ) ; w(x) := w(x; a; b; cjq) = aei ;(ebei;; qce)1i ; q) = h(x; 1)hh((x; a)h(x; b)h(x; c) 1 h(x; ) := and 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos 1 hn = (qn+1 ; abqn; acq n; bcqn; q) : 1 If a > 1 and b and c are real or complex conjugates, max(jbj; jcj) < 1 and the pairwise products of a; b and c have absolute value less than one, then we have another orthogonality relation given by : 1 Z pw(x) p (x; a; b; cjq)p (x; a; b; cjq)dx + n 2 1 x2 m 1 1 X + 1 k <aqk a where w(x) and hn are as before, and wk pm (xk ; a; b; cjq)pn(xk ; a; b; cjq) = hn mn ; k k xk = aq + 2aq 1 k 2 2 2k 2 k) ( a ; q ) (1 a q )( a ; ab; ac ; q ) 1 1 k k ( 2 wk = (q; ab; ac; a 1b; a 1c; q) (1 a2 )(q; ab 1q; ac 1q; q) ( 1) q a2bc : 1 k 54 (3.3.3) Recurrence relation. 2xp~n(x) = Anp~n+1 (x) + a + a where 1 (An + Cn) p~n (x) + Cn p~n 1(x); (3.3.4) n n(x; a; b; cjq) p~n(x) := a p(ab; ac; q)n and q-Dierence equation. 8 < An = a 1 (1 abqn )(1 acqn) : Cn = a(1 qn )(1 bcqn 1): h i (1 q)2 Dq w~ (x; aq 21 ; bq 21 ; cq 21 jq)Dq y(x) + + 4q n+1 (1 qn )w~ (x; a; b; cjq)y(x) = 0; y(x) = pn(x; a; b; cjq); (3.3.5) where w~(x; a; b; cjq) := w(px; a; b; c2jq) 1 x and If we dene Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q n ( ab; ac ; q ) az; az n Pn(z ) := an 32 q ;ab; ac then the q-dierence equation can also be written in the form q n (1 qn)Pn (z ) = A(z )Pn (qz ) where Generating functions. 1 q; q A(z ) + A(z 1 ) Pn(z ) + A(z 1 )Pn(q 1 z ); (3.3.6) bz )(1 cz ) A(z ) = (1 (1az )(1 z 2)(1 qz 2 ) : 1 p (x; a; b; cjq) (ct; q)1 aei ; bei q; e i t = X n tn; x = cos : ab (ei t; q)1 2 1 ( ab; q ; q ) n n=0 (3.3.7) 1 p (x; a; b; cjq) (bt; q)1 aei ; cei q; e i t = X n tn ; x = cos : 2 1 ac (ei t; q)1 ( ac; q ; q ) n n=0 (3.3.8) 1 p (x; a; b; cjq) (at; q)1 bei ; cei q; e i t = X n tn; x = cos : 2 1 bc (ei t; q)1 ( bc; q ; q ) n n=0 (3.3.9) References. 3.4 Continuous q-Hahn Denition. (aei )npn (x; a; b; c; d; q) = q n ; abcdqn 1; aei(+2); ae i q; q ; x = cos( + ): (3.4.1) 4 3 abe2i ; ac; ad (abe2i ; ac; ad; q)n 55 Orthogonality. When c = a and d = b then we have, if a and b are real and max(jaj; jbj) < 1 or if b = a and jaj < 1 : 1 Z w(cos( + ))p (cos( + ); a; b; c; d; q)p (cos( + ); a; b; c; d; q)d = h ; m n n mn 4 (3.4.2) where 2 2i( +) w(x) := w(x; a; b; c; d; q) = (aei(+2) ;(bee i(+2);;qce)1i ; dei ; q) 1 1 1 2 )h(x; q 2 ) h ( x; 1) h ( x; 1) h ( x; q = h(x; aei)h(x; bei)h(x; ce i )h(x; de i) ; with h(x; ) := and 1 Y k=0 1 2xqk + 2 q2k = ei(+) ; e i(+); q 1 ; x = cos( + ) n 1; q)n(abcdq2n; q)1 hn = (qn+1 ; abqne2(iabcdq ; acqn; adqn; bcqn; bdqn; cdqne 2 Recurrence relation. i ; q)1 : 2xp~n(x) = An p~n+1(x) + aei + a 1e i (An + Cn) p~n (x) + Cnp~n 1(x); where (3.4.3) i n pn(x; a; b; c; d; q) p~n(x) := (ae(ac;) ad; abe2i; q) n and 8 > > > > < 2i n acqn)(1 adqn)(1 abcdqn 1) An = (1 abe aeiq (1)(1 abcdq 2n 1)(1 abcdq2n) > > > > : i n bcqn 1)(1 bdqn 1)(1 cde Cn = ae (1 q )(1 (1 abcdq2n 2)(1 abcdq2n 1) q-Dierence equation. 2 iqn 1 ): i h (1 q)2 Dq w~(x; aq 21 ; bq 21 ; cq 12 ; dq 21 ; q)Dq y(x) + + n w~(x; a; b; c; d; q)y(x) = 0; y(x) = pn (x; a; b; c; d; q); where and (3.4.4) w~(x; a; b; c; d; q) := w(xp; a; b; c;2d; q) ; 1 x n +1 n n = 4q (1 q )(1 abcdqn 1) Dq f (x) := qf (xx) with q f (ei(+) ) = f (q 12 ei(+) ) f (q 12 ei(+) ); x = cos( + ): q Generating functions. 2 1 aei(+2) ; bei(+2) q; e i(+)t ce i(+2) ; de i(+2) q; ei(+)t 2 1 cde 2i abe2i 1 p (x; a; b; c; d; q)tn X n ; x = cos( + ): (3.4.5) = (abe 2i ; cde 2i ; q ; q ) n n=0 56 i(+2) ae ; cei q; e i(+) t be i ; de i(+2) q; ei(+)t 2 1 2 1 ac bd 1 X x; a; b; c; d; q) tn; x = cos( + ): = pn((ac; bd; q; q)n n=0 2 1 (3.4.6) aei(+2) ; dei q; e i(+)t be i ; ce i(+2) q; ei(+)t 2 1 bc ad 1 X x; a; b; c; d; q) tn; x = cos( + ): = pn((ad; bc; q; q)n n=0 (3.4.7) References. [25], [45], [114]. 3.5 Big q-Jacobi Denition. Pn(x; a; b; c; q) = 3 2 Orthogonality. Zaq cq q n; abqn+1; x q; q : aq; cq (3.5.1) (a 1 x; c 1x; q)1 P (x; a; b; c; q)P (x; a; b; c; q)d x n q (x; bc 1x; q)1 m a 1c; ac 1q; abq2; q)1 = aq(1 q) (q;(aq; bq; cq; abc 1q; q)1 ) (q; bq; abc 1q; q)n ( acq2 )n q(n2 ) : (1 (1 abqabq mn 2n+1 ) (abq; aq; cq ; q ) n (3.5.2) Recurrence relation. (x 1)Pn(x; a; b; c; q) = An Pn+1(x; a; b; c; q) (An + Cn) Pn(x; a; b; c; q) + CnPn 1(x; a; b; c; q); where 8 > > > > < n+1 n+1 abqn+1) An = (1 (1aq abq)(12n+1cq)(1 )(1 abq2n+2) > > > > : n bqn)(1 abc 1 qn) : Cn = acqn+1 (1 (1q )(1 abq2n)(1 abq2n+1) q-Dierence equation. q n (1 qn )(1 abqn+1)x2 y(x) = B (x)y(qx) [B (x) + D(x)] y(x) + D(x)y(q 1 x); where y(x) = Pn (x; a; b; c; q) and 8 < B (x) = aq(x 1)(bx c) : D(x) = (x aq)(x cq): 57 (3.5.3) (3.5.4) Generating functions. 2 2 1 1 (cq; q) aqx 1 ; 0 q; xt bc 1x q; cqt = X n P (x; a; b; c; q)tn: 1 1 aq bq ( bq; q ; q )n n n=0 (3.5.5) 1 (aq; q)n P (x; a; b; c; q)tn: cqx 1; 0 q; xt bc 1 x q; aqt = X n 1 1 1 1 abc q cq n=0 (abc q; q; q)n (3.5.6) 1 Remarks. The big q-Jacobi polynomials with c = 0 and the little q-Jacobi polynomials dened by (3.12.1) are related in the following way : bq; q)n ( 1)n anqn+(n2 ) p x ; b; a q : Pn (x; a; b; 0; q) = ((aq n aq ; q)n Sometimes the big q-Jacobi polynomials are dened in terms of four parameters instead of three. In fact the polynomials given by the denition n abqn+1; ac 1qx q; q Pn(x; a; b; c; d; q) = 3 2 q ;aq; ac 1dq are orthogonal on the interval [ d; c] with respect to the weight function (c 1 qx; d 1qx; q)1 d x: (ac 1 qx; bd 1qx; q)1 q These polynomials are not really dierent from those dened by (3.5.1) since we have Pn (x; a; b; c; d; q) = Pn(ac 1qx; a; b; ac 1d; q) and Pn(x; a; b; c; q) = Pn(x; a; b; aq; cq; q): References. [8], [10], [25], [114], [121], [127], [140], [142], [160], [163], [176], [180], [181], [212]. Special case 3.5.1 Big q-Legendre Denition. The big q-Legendre polynomials are big q-Jacobi polynomials with a = b = 1 : n n+1 Pn (x; c; q) = 32 q ;q;qcq ; x q; q : (3.5.7) Orthogonality. Zq cq ) (c 1 q; q)n ( cq2 )n q(n2 ) : Pm (x; c; q)Pn(x; c; q)dq x = q(1 c) (1 (1 q2nq+1 mn ) (cq; q)n (3.5.8) Recurrence relation. (x 1)Pn(x; c; q) = An Pn+1(x; c; q) (An + Cn ) Pn(x; c; q) + Cn Pn 1(x; c; q); 58 (3.5.9) where 8 > > > > < qn+1 )(1 cqn+1) An = (1 (1 + qn+1 )(1 q2n+1 ) > > > > : qn)(1 c 1 qn) : Cn = cqn+1 (1 (1 + qn)(1 q2n+1) q-Dierence equation. q n(1 qn)(1 qn+1 )x2y(x) = B (x)y(qx) [B (x) + D(x)] y(x) + D(x)y(q 1 x); where y(x) = Pn(x; c; q) and 8 < B (x) = q(x 1)(x c) : Generating functions. 2 1 (3.5.11) 1 P (x; c; q) cqx 1 ; 0 q; xt c 1x q; qt = X n tn: 1 1 1 q; q) cq c 1q ( c n n=0 (3.5.12) References. [160]. q D(x) = (x q)(x cq): 1 (cq; q) qx 1; 0 q; xt c 1x q; cqt = X n P (x; c; q)tn: n 1 1 q ( q; q ; q ) q n n=0 2 1 3.6 (3.5.10) -Hahn Denition. n qn+1 ; q Qn (q x ; ; ; N jq) = 3 ~2 q ; q; q N x q; q ; n = 0; 1; 2; : ::; N: (3.6.1) Orthogonality. N X (q; q N ; q)x (q) x Q (q x ; ; ; N jq)Q (q x ; ; ; N jq) m n 1 N x=0 (q; q ; q)x 2 ; q)N (q; q; qN +2 ; q)n (1 q)( q)n q(n2 ) Nn : = (q(q mn ; q)N (q)N (q; q; q N ; q)n (1 q2n+1 ) (3.6.2) Recurrence relation. 1 q x Qn(q x ) = An Qn+1(q x ) (An + Cn) Qn(q x ) + CnQn 1(q x ); where and Qn(q x ) := Qn (q x ; ; ; N jq) 8 > > > > < n N )(1 qn+1 )(1 qn+1 ) An = (1 (1q q 2n+1 )(1 q2n+2 ) > > > > : n n)(1 qn )(q N qn+1 ) : Cn = q (1(1 q q 2n )(1 q2n+1 ) 59 (3.6.3) q-Dierence equation. q n(1 qn )(1 qn+1 )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); (3.6.4) where y(x) = Qn(q x ; ; ; N jq) and 8 x N )(1 qx+1 ) < B (x) = (1 q : Generating functions. 2 1 D(x) = q(1 qx )( qx N 1 ): N (q N ; q) qx N ; 0 q; q xt q x q; qt ' X n Q (q x ; ; ; N jq)tn: 1 1 n q q ( q; q ; q ) n n=0 (3.6.5) N +1 x x N ~ q N; 0 q; q xt 1 1 q N +2 q; qt 2 1 q q N X ; q)n x n ' (q(q N +2 ; q; q)n Qn(q ; ; ; N jq)t : n=0 (3.6.6) Remarks. The q-Hahn polynomials dened by (3.6.1) and the dual q-Hahn polynomials given by (3.7.1) are related in the following way : Qn(q x ; ; ; N jq) = Rx((n); ; ; N jq); with (n) = q n + qn+1 or Rn((x); ; ; N jq) = Qx(q n ; ; ; N jq); where (x) = q x + qx+1 : For x = 0; 1; 2; : ::; N the generating function (3.6.5) can also be written as : x N N (q N ; q) q ; 0 q; q xt q x q; qt = X n Q (q x ; ; ; N jq)tn: n 1 1 2 1 q ( q; q ; q ) q n n=0 References. [10], [25], [43], [45], [88], [111], [114], [121], [142], [145], [158], [160], [180], [197], [215], [217], [218]. 3.7 Dual q-Hahn Denition. n q x ; qx+1 q; q ; n = 0; 1; 2; : ::; N; Rn((x); ; ; N jq) = 3 ~2 q ;q; q N where (x) := q x + qx+1 : 60 (3.7.1) Orthogonality. N X (q; q; q N ; q)x (1 q2x+1 ) qNx (x2) R ((x); ; ; N jq)R ((x); ; ; N jq) m n N +2 ; q; q)x (1 q)( q)x x=0 (q; q 2 ; q)N (q) N (q; 1q N ; q)n (q)n : = (q (3.7.2) mn (q; q)N (q; q N ; q)n Recurrence relation. 1 q x 1 qx+1 Rn((x)) = An Rn+1((x)) (An + Cn) Rn((x)) + CnRn 1((x)); where (3.7.3) Rn((x)) := Rn((x); ; ; N jq) and 8 < An = 1 q n : Cn = q (1 qn) qn N 1 qn+1 N 1 : q-Dierence equation. q n(1 qn )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); where y(x) = Rn((x); ; ; N jq) and 8 (1 qx+1 )(1 qx+1 )(1 qx N ) > > B ( x ) = > > < (1 q2x+1 )(1 q2x+2 ) > > > > : (3.7.4) x N x )(1 qx )(1 qx+N +1 ) : D(x) = q (1(1 qq 2x )(1 q2x+1 ) Generating functions. N (q; q) (qt; q)1 ~ qx N ; qx+1 q; q xt ' X n R ((x); ; ; N jq)tn: 1 n 2 q N (qx+1 t; q)1 ( q ; q ) n n=0 (3.7.5) N (q N ; q) (q N t; q)1 q x ; 1q x q; qx+1 t ' X n R ((x); ; ; N jq)tn : 2 1 n q (q x t; q)1 ( q ; q ) n n=0 (3.7.6) N (q N ; q; q) (qt; q)1 qx N ; qx+1 q; q x t ' X n R ((x); ; ; N jq)tn: (3.7.7) n 1 q N ; q; q) (qx+1 t; q)1 2 1 1q N ( n n=0 Remarks. The dual q-Hahn polynomials dened by (3.7.1) and the q-Hahn polynomials given by (3.6.1) are related in the following way : Qn(q x ; ; ; N jq) = Rx((n); ; ; N jq); with (n) = q n + qn+1 or Rn((x); ; ; N jq) = Qx(q n ; ; ; N jq); 61 where (x) = q x + qx+1 : For x = 0; 1; 2; : ::; N the generating function (3.7.6) can also be written as : (q N t; q)N x 2 1 q x ; 1q q x q; qx+1 t = N X (q N ; q)n R ((x); ; ; N jq)tn: n n=0 (q; q)n For x = 0; 1; 2; : ::; N the generating function (3.7.7) can also be written as : (qt; q)x 2 1 N (q N ; q; q) qx N ; qx+1 q; q xt = X n R ((x); ; ; N jq)tn: n 1 q N ; q; q) 1q N ( n n=0 References. [25], [43], [45], [114], [145], [180], [217]. 3.8 Al-Salam-Chihara Denition. n i ; ae i q ; ae ( ab ; q ) n q; q (3.8.1) Qn(x; a; bjq) = an 3 2 ab; 0 n i = (be i ; q)nein 2 1 bq 1q1; aenei q; b 1qe i ; x = cos : Orthogonality. When a and b are real or complex conjugates and max(jaj; jbj) < 1, then we have the following orthogonality relation 1 Z pw(x) Q (x; a; bjq)Q (x; a; bjq)dx = mn m n 2 2 (qn+1; abqn; q)1 ; 1 x 1 1 where ( (3.8.2) 12 2i 2 21 w(x) := w(x; a; bjq) = ae(ie ; be; iq);1q) = h(x; 1)h(x;h(x;1)ah)(hx;(x;q b))h(x; q ) ; 1 with h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : If a > 1, jbj < 1 and jabj < 1, then we have another orthogonality relation given by : 1 Z pw(x) Q (x; a; bjq)Q (x; a; bjq)dx + n 2 1 x2 m 1 1 X + 1 k <aqk a where w(x) is as before, mn wk Qm (xk ; a; bjq)Qn(xk ; a; bjq) = (qn+1 ;abq n; q) ; 1 k k xk = aq + 2aq 62 1 (3.8.3) and (a 2 ; q)1 (1 a2q2k )(a2 ; ab; q)k q wk = (q; ab; a 1b; q)1 (1 a2 )(q; ab 1q; q)k Recurrence relation. 2xQ~ n(x) = AnQ~ n+1 (x) + a + a where k2 1 k: a3 b (An + Cn) Q~ n (x) + Cn Q~ n 1(x); 1 (3.8.4) n bjq) Q~ n(x) := a Q(nab(x; ;qa; )n and 8 < An = a 1 (1 abqn) : Cn = a(1 qn): q-Dierence equation. h i (1 q)2 Dq w~(x; aq 21 ; bq 21 jq)Dq y(x) + + 4q n+1(1 qn)w~(x; a; bjq)y(x) = 0; y(x) = Qn(x; a; bjq); where (3.8.5) w~ (x; a; bjq) := wp(x; a; bj2q) 1 x and If we dene Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q n az; az 1 Pn(z ) := (aba;nq)n 3 2 q ;ab; 0 q; q then the q-dierence equation can also be written in the form q n (1 qn)Pn (z ) = A(z )Pn (qz ) where Generating functions. A(z ) + A(z 1 ) Pn(z ) + A(z 1 )Pn(q 1 z ); )(1 bz ) : A(z ) = (1(1 zaz2)(1 qz 2 ) 1 Q (x; a; bjq) aei ; bei q; e i t = X 1 n tn; x = cos : 2 1 ab (ei t; q)1 ( ab; q ; q ) n n=0 (3.8.6) 1 Q (x; a; bjq) (at; bt; q)1 = X n n (ei t; e i t; q)1 n=0 (q; q)n t ; x = cos : References. [10], [15], [16], [39], [79], [84]. 63 (3.8.7) (3.8.8) 3.9 q -Meixner-Pollaczek Denition. n i(+2); ae i q ; ae ; q ) n q; q (3.9.1) Pn(x; ajq) = a a2 ; 0 (q; q)n 3 2 n i i = (ae(q; q;) q)n ein(+) 2 1 aq 1q1; aenei q; qa 1e i(+2) ; x = cos( + ): n n e in (a 2 Orthogonality. 1 Z w(cos( + ); ajq)P (cos( + ); ajq)P (cos( + ); ajq)d = mn m n 2 (q; q)n (q; a2qn ; q)1 ; (3.9.2) where 0<a<1 and ( 2 1 1 2i( +) 2 )h(x; q 2 ) h ( x; 1) h ( x; 1) h ( x; q ( e ; q ) 1 w(x; ajq) = aei(+2) ; aei ; q) = ; h(x; aei)h(x; ae i ) 1 with h(x; ) := 1 Y 1 2xqk + 2 q2k = ei(+) ; e i(+) ; q ; x = cos( + ): 1 k=0 Recurrence relation. 2xPn(x; ajq) = (1 qn+1)Pn+1 (x; ajq) + + 2aqn cos Pn(x; ajq) + (1 a2qn 1)Pn 1(x; ajq): (3.9.3) q-Dierence equation. h i (1 q)2 Dq w~(x; aq 21 jq)Dq y(x) + 4q n+1(1 qn )w~ (x; ajq)y(x) = 0; y(x) = Pn(x; ajq); (3.9.4) where and w~(x; ajq) := wp(x; ajq2) 1 x Dq f (x) := qf (xx) with q f (ei(+) ) = f (q 12 ei(+) ) f (q 12 ei(+) ); x = cos( + ): q Generating functions. 1 ae t q 2 = X n e t q 1 n=0 Pn(x; ajq)t ; x = cos( + ): ( i ; )1 ( i(+) ; ) 1 (ei(+) t; q)1 1 2 aei(+2); aei q; e a2 i(+) t References. [10], [16], [39], [45], [72], [126]. 64 = 1 X (3.9.5) Pn (x; ajq) tn; x = cos( + ): (3.9.6) 2 n=0 (a ; q)n 3.10 Continuous q-Jacobi Denitions. If we take a = q 21 14 , b = q 12 43 , c = q 21 41 and d = q 12 34 in the denition + + + (3.1.1) of the Askey-Wilson polynomials we nd after renormalizing + ! n ; qn+++1 ; q 21 + 41 ei ; q 21 + 14 e i +1 ; q)n q ( q Pn(;) (xjq) = (q; q) 43 q+1 ; q 21 (++1) ; q 21 (++2) q; q ; x = cos : (3.10.1) n In [196] M. Rahman takes a = q 12 , b = q+ 12 , c = q+ 21 and d = q 21 to obtain after renormalizing Pn;)(x; q) = ( ! (q+1; q+1 ; q)n q n ; qn+++1 ; q 21 ei ; q 21 e i q; q ; x = cos : (3.10.2) (q; q; q)n 4 3 q+1 ; q+1 ; q These two q-analogues of the Jacobi polynomials are not really dierent, since they are connected by the quadratic transformation : q)n qn P (;)(x; q): Pn(;)(xjq2) = ( q(+q;+1 n ; q)n Orthogonality. For 12 and 21 the orthogonality relations are respectively 1 Z pw(xjq) P (;)(xjq)P (;)(xjq)dx n 2 1 x2 m 1 1 = (q 21 (++2) ; q 21 (++3) ; q)1 (q; q+1; q+1 ; q 21 (++1) ; q 21 (++2) ; q)1 ++1 )(q+1 ; q+1 ; q 21 (++3) ; q)n (1 2qn+++1 q(+ 21 )n mn ; (1 q )(q; q++1 ; q 21 (++1) ; q)n where (3.10.3) ( ( 2 (e2i ; q)1 q 12 + 14 ei ; q 21 + 34 ei ; q 21 + 41 ei ; q 21 + 34 ei ; q)1 2 i ; ei ; q 21 )1 ( e = 1 + 1 i 1 + 1 i 1 q 2 4 e ; q 2 4 e ; q 2 )1 h(x; 1)h(x; 1)h(x; q 21 )h(x; q 12 ) = ; 12 + 14 h(x; q )h(x; q 12 + 43 )h(x; q 12 + 41 )h(x; q 21 + 34 ) w(xjq) := w(x; q; q jq) = with h(x; ) := and 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos 1 Z pw(x; q) P (;)(x; q)P (;)(x; q)dx n 2 1 x2 m 1 (q++2 ; q)1 = (q; q; q+1; q+1 ; q+1 ; q+1 ; q++1 ; q)1 ++1 +1 ; q+1; q+1 ; q+1 ; q++1 ; q)n qnmn ; (3.10.4) (1 q(1 q2)(n+q++1 )(q++1 ; q; q; q; q; q)n 1 65 where with h(x; ) := 1 Y k=0 2 (e2i ; q)1 = 1 1 1 1 (q+ 2 ei ; q 2 ei ; q+ 2 ei ; q 2 ei ; q)1 2 i ; ei ; q)1 h(x; 1)h(x; 1) ; ( e = = + 1 i + 1 i (q 2 e ; q 2 e ; q)1 h(x; q+ 21 )h(x; q+ 12 ) w(x; q) := w(x; q; q ; q) 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : Recurrence relations. h 2xP~n(xjq) = AnP~n (xjq) + q 21 41 + q + +1 where 1 1 2 4 i (An + Cn) P~n(xjq) + CnP~n 1(xjq); (3.10.5) P~n(xjq) := (q(q+1; q;)qn) Pn(;)(xjq) n and 8 > > > > < n++1)(1 qn+++1 )(1 + qn+ 21 (++1) )(1 + qn+ 21 (++2) ) An = (1 q q 12 + 14 (1 q2n+++1 )(1 q2n+++2 ) > > > > : Cn = q 1 1 2 + 4 (1 qn)(1 qn+ )(1 + qn+ 12 (+) )(1 + qn+ 21 (++1) ) : (1 q2n++ )(1 q2n+++1 ) h 2xP~n(x; q) = An P~n+1(x; q) + q 21 + q where 1 2 i (An + Cn ) P~n(x; q) + CnP~n 1(x; q); (3.10.6) (q; q; q)n P (;) (x; q) P~n(x; q) := (q+1 ; q+1 ; q)n n and 8 > > > > < n++1 n+++1 n+1 + qn++1 ) An = (1 q 12 )(1 2nq+++1 )(1 + 2qn++)(1 +2 ) )(1 q q (1 q > > > > : 1 2 qn )(1 qn+ )(1 + qn+ )(1 + qn++ ) : Cn = q (1 (1 q2n++ )(1 q2n+++1 ) q-Dierence equations. h i (1 q)2 Dq w~ (x; q+ 12 ; q+ 12 jq)Dq y(x) + n w~(x; q; q jq)y(x) = 0; y(x) = Pn(;)(xjq); (3.10.7) where x ; q ; q jq ) ; w~ (x; q; q jq) := w(p 1 x2 n = 4q n+1(1 qn)(1 qn+++1 ) and Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q h i (1 q)2Dq w~(x; q+ 21 ; q+ 21 ; q)Dq y(x) + n w~ (x; q; q ; q)y(x) = 0; y(x) = Pn(;)(x; q); (3.10.8) 66 where w~ (x; q; q ; q) := w(xp; q ; q 2; q) ; 1 x n +1 n n = 4q (1 q )(1 qn+++1 ) and Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q Generating functions. 2 2 2 1 1 ! ! ! q 12 + 14 e i ; q 21 + 43 e i q; ei t q 12 + 41 ei ; q 21 + 34 ei q; e i t 2 1 q+1 q+1 1 1 1 (; ) X 2 (++1) 2 (++2) = ( q (q+1;; qq+1 ; q) ; q)n Pn( 1 +(1x)jnq) tn; x = cos : (3.10.9) n q2 4 n=0 ! q 12 + 41 ei ; q 21 + 14 ei q; e i t q 21 + 34 e i ; q 21 + 43 e 2 1 q 12 (++1) q 12 (++3) 1 ( q 12 (++2) ; q) P (;)(xjq) X n n n = 1 (++3) 1 + 1 )n t ; x = cos : (2 2 4 ( q ; q ) q n n=0 ! q 12 + 41 ei ; q 21 + 34 ei q; e i t q 21 + 34 e i ; q 21 + 41 e 2 1 q 12 (++2) q 12 (++2) 12 (++1) 1 (; ) X = ( q 1 (++2) ; q)n Pn( 1 +(1x)jnq) tn ; x = cos : ; q)n q 2 4 n=0 ( q 2 1 2 1 ! 1 i q; e t (3.10.10) ! i i q; e t (3.10.11) ! q 12 ei ; q+ 21 ei q; e i t q 21 e i ; q+ 12 e i q; ei t 2 1 q+1 q+1 1 X ; q)n Pn(;)(x; q) tn; x = cos : = (q(+1q;; qq+1 ; q)n q 12 n n=0 2 i ! ! q 12 e i ; q+ 12 e i q; ei t q 12 ei ; q+ 21 ei q; e i t 2 1 q+1 q+1 1 (; ) X = ( q(+1q;; qq;q+1)n; q) Pn 1 (nx; q) tn ; x = cos : n q2 n=0 ! (3.10.12) (3.10.13) ! q 12 ei ; q 21 ei q; e i t q+ 21 e i ; q+ 12 e i q; ei t 2 1 2 1 q q++1 1 ( ; ) X q)n Pn (x; q) tn; x = cos : = ( q(+q;+1 (3.10.14) ; q)n q 12 n n=0 Remark. The continuous q-Jacobi polynomials given by (3.10.2) and the continuous qultraspherical (or Rogers) polynomials given by (3.10.15) are connected by the quadratic transformations : 1 1 C2n(x; qjq) = (q12 ; q21; q)n q 21 n Pn( 2 ; 2 ) (2x2 1; q) (q ; q ; q)n 67 and 1 1 C2n+1(x; qjq) = (q12 ; 1;21 q)n+1 q 21 nxPn( 2 ; 2 ) (2x2 1; q): (q ; q ; q)n+1 References. [45], [112], [114], [136], [179], [180], [196], [198], [199]. Special cases 3.10.1 Continuous q-ultraspherical / Rogers Denition. If we set a = 12 , b = 12 q 12 , c = 21 and d = 12 q 21 in the denition (3.1.1) of the Askey-Wilson polynomials and change the normalization we obtain the continuous q-ultraspherical (or Rogers) polynomials : ! n 2 qn; 12 ei ; 12 e i 2 Cn(x; jq) = ((q;;qq))n 21 n 43 q ; q q; q 1 1 2 ; ; q 2 n n 2i 2 q; q = ((q;;qq))n n e in 3 2 q ;;2 ; e 0 n n = ((q;; qq))n ein 2 1 q 1 q;1 n q; 1qe 2i ; x = cos : (3.10.15) n Orthogonality. 1 Z pw(x) C (x; jq)C (x; jq)dx = (; q; q)1 ( 2 ; q)n (1 ) ; j j < 1; (3.10.16) n 2 ( 2 ; q; q)1 (q; q)n (1 qn ) mn 1 x2 m 1 1 where 2 (e2i ; q)1 2 (e2i ; q)1 = ( 21 ei ; 21 q 12 ei ; 12 ei ; 21 q 12 ei ; q)1 (e2i ; q)1 h(x; 1)h(x; 1)h(x; q 21 )h(x; q 12 ) ; = h(x; 12 )h(x; 12 q 21 )h(x; 12 )h(x; 21 q 21 ) w(x) := w(x; jq) = with h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : Recurrence relation. 2(1 qn )xCn(x; jq) = (1 qn )Cn (x; jq) + (1 qn )Cn (x; jq): q-Dierence equation. h i (1 q) Dq w~ (x; q 12 jq)Dq y(x) + n w~(x; jq)y(x) = 0; y(x) = Cn(x; jq); +1 2 +1 1 1 2 where and w~(x; jq) := wp(x; jq2) ; 1 x n = 4q n+1(1 qn )(1 2 qn) Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q 68 (3.10.17) (3.10.18) Generating functions. 1 (ei t; e i t; q)1 = X n (ei t; e i t; q)1 n=0 Cn(x; jq)t ; x = cos : (3.10.19) 1 C (x; jq) 1 ; e 2i q; ei t = X n tn ; x = cos : 2 1 2 ; q) 2 (e i t; q)1 ( n n=0 (e i t; q)1 2 1 1 ( 1)n n q(n2 ) ; e2i q; e i t = X Cn(x; jq)tn; x = cos : 2 ; q) 2 ( n n=0 2 1 1 ! ! ! (3.10.22) ! 12 ei ; 12 ei q; e i t 12 q 21 e i ; 12 q 21 e i q; ei t 2 1 q 1 1 1 X 2 ; q 2 ; q)n = (q Cn(x; jq)tn; x = cos : 2; ( q ; q ) n n=0 (3.10.21) ! 21 e i ; 12 q 21 e i q; ei t 12 ei ; 12 q 21 ei q; e i t 2 1 q 12 q 12 1 1 X 2 = ( ;2 q12 ; q)n Cn(x; jq)tn; x = cos : n=0 ( ; q ; q)n 2 (3.10.20) (3.10.23) ! 12 i 12 21 i 21 q 12 e i ; 21 e i e ; q e i q; e t 21 q; ei t 2 1 q 12 q 12 1 ( ; q 12 ; q) X n C (x; jq)tn ; x = cos : = (3.10.24) n 12 2; ( q ; q ) n n=0 Remarks. The continuous q-ultraspherical (or Rogers) polynomials can also be written as : Cn (x; jq) = n X ( ; q)k ( ; q)n k ei(n 2k); x = cos : k=0 (q; q)k (q; q)n k They can be obtained from the continuous q-Jacobi polynomials dened by (3.10.1) in the following way. Set = in the denition (3.10.1) and change q+ 12 by and we nd the continuous q-ultraspherical (or Rogers) polynomials with a dierent normalization. We have + 12 ! (q 12 ; q)n 1 2n Pn(;)(xjq) q ! ( 2 ; q) Cn (x; jq): n If we set = q+ 21 in the denition (3.10.15) of the q-ultraspherical (or Rogers) polynomials we nd the continuous q-Jacobi polynomials given by (3.10.1) with = . In fact we have 2+1 Cn x; q+ 21 q = +1(q ;(q21)n+ 41 )n Pn(;)(xjq): (q ; q)nq If we change q to q 1 we nd Cn(x; jq 1) = (q)n Cn (x; 1jq): 69 The special case = q of the continuous q-ultraspherical (or Rogers) polynomials equals the Chebyshev polynomials of the second kind dened by (1.8.21). In fact we have n + 1) = U (x); x = cos : Cn (x; qjq) = sin(sin n The limit case ! 1 leads to the Chebyshev polynomials of the rst kind given by (1.8.20) in the following way : 1 qn C (x; jq) = cos n = T (x); x = cos ; n = 1; 2; 3; : ::: lim n !1 2(1 ) n The continuous q-Jacobi polynomials given by (3.10.2) and the continuous q-ultraspherical (or Rogers) polynomials given by (3.10.15) are connected by the quadratic transformations : 1 1 C2n(x; qjq) = (q12 ; q21; q)n q 21 n Pn( 2 ; 2 ) (2x2 1; q) (q ; q ; q)n and 1 1 C2n+1(x; qjq) = (q12 ; 1;21 q)n+1 q 21 nxPn( 2 ; 2 ) (2x2 1; q): (q ; q ; q)n+1 Finally we remark that the continuous q-ultraspherical (or Rogers) polynomials are related to the continuous q-Legendre polynomials dened by (3.10.25) in the following way : Cn(x; qjq2) = q 12 n Pn(x; q): References. [10], [11], [12], [25], [31], [32], [37], [38], [39], [41], [45], [60], [62], [63], [107], [108], [109], [110], [112], [113], [114], [127], [137], [159], [179], [180], [181], [202], [204], [207], [208], [209]. 3.10.2 Continuous q-Legendre Denition. The continuous q-Legendre polynomials are continuous q-Jacobi polynomials with = = 0. If we set = = 0 in the denition (3.10.2) of the continuous q-Jacobi polynomials we obtain ! n ; qn+1; q 12 ei ; q 21 e i q (3.10.25) Pn(x; q) = 43 q; q ; x = cos : q; q; q If we set = = 0 in the denition (3.10.1) we nd Pn(xjq) = 4 3 q n ; qn+1; q 41 ei ; q 41 e q; q 21 ; q i ! q; q ; x = cos ; but these are not really dierent in view of the quadratic transformation Pn(xjq2 ) = Pn(x; q): Orthogonality. 1 Z pw(x) P (x; q)P (x; q)dx = (q; q)2n(q2n+2; q)1 qn ; n 2 ( q; q)41 (q; q)31 mn 1 x2 m 1 1 where w(x) = (3.10.26) 2 (ei ; ei ; q)1 2 (e2i ; q)1 = h(x; 1)h(x; 1) ; = (q 12 ei ; q 21 ei ; q 21 ei ; q 21 ei ; q)1 (q 12 ei ; q 21 ei ; q)1 h(x; q 21 )h(x; q 12 ) 70 with h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : Recurrence relation. 2(1 q2n+1)xPn(x; q) = q 21 (1 q2n+2 )Pn+1(x; q) + q 21 (1 q2n)Pn 1(x; q): (3.10.27) q-Dierence equation. (3.10.28) (1 q)2Dq [w~(x; q; q)Dq y(x)] + n w~(x; q 21 ; q)y(x) = 0; y(x) = Pn(x; q); where n = 4q n+1 (1 qn )(1 qn+1) and w~(x; a; q) := wp(x; a; q2) ; 1 x where 2 1 2i 2 q 12 ) ; w(x; a; q) = (aei ; aei(;e ae; iq);1 aei ; q) = hh(x;(x;1)ah)h(x;(x; a1))hh((x;x; q a))hh((x; x; a) 1 with 1 Y 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos h(x; ) := and k=0 Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q Generating functions. 2 1 2 1 ! q; ei t (3.10.29) ! ! (3.10.30) ! q 21 ei ; q 23 ei q2; e i t q 12 e i ; q 23 e i q2 ; ei t 2 1 q2 q2 1 n+1 X = ((q; qq; q;;qq))n Pn (12xn; q) tn ; x = cos : n q n=0 2 1 ! i q 21 ei ; q 21 ei q; e i t q 12 e i ; q 21 e i q; ei t 2 1 q q 1 X q; q)n Pn(x; q) tn; x = cos : = ( (q; q; q ; q)n q 12 n n=0 2 1 ! q 21 ei ; q 21 ei q; e i t q 12 e i ; q 21 e 2 1 q q 1 X = Pn (12xn; q) tn ; x = cos : n=0 q ! ! q 21 ei ; q 21 ei q2 ; e i t q 23 e i ; q 23 e i q2 ; ei t 2 1 q q3 1 2 2 X = (( qq3 ;; qq2))n Pn(12xn; q) tn ; x = cos : n q n=0 71 (3.10.31) (3.10.32) ! ! q 21 ei ; q 23 ei q2 ; e i t q 23 e i ; q 21 e i q2 ; ei t 2 1 q2 q2 1 2 X = (( qq2;;qq2))n Pn(12xn; q) tn ; x = cos : n q n=0 2 1 (3.10.33) Remarks. The continuous q-Legendre polynomials can also be written as : Pn(x; q) = q 12 n n X (q; q2)k (q; q2)n k ei(n 2k) ; x = cos : 2 2 2 2 k=0 (q ; q )k (q ; q )n k They are related to the continuous q-ultraspherical (or Rogers) polynomials given by (3.10.15) in the following way : Pn(x; q) = q 12 n Cn(x; qjq2): References. [157], [160], [163]. 3.11 Big q-Laguerre Denition. Orthogonality. n; 0; x q Pn (x; a; b; q) = 3 2 aq; bq q; q n aqx 1 = (b 1 q n; q) 2 1 q ;aq n Zaq bq (3.11.1) 1 q; xb : (a 1x; b 1x; q)1 P (x; a; b; q)P (x; a; b; q)d x m n q (x; q)1 1 1 (q; q)n ( abq2 )n q(n2 ) : = aq(1 q) (q; a(aq;b;bqab; q)q; q)1 (aq; mn bq; q) 1 Recurrence relation. n (3.11.2) (x 1)Pn(x; a; b; q) = An Pn+1(x; a; b; q) (An + Cn) Pn(x; a; b; q) + Cn Pn 1(x; a; b; q); (3.11.3) where 8 n+1 )(1 bqn+1 ) < An = (1 aq : Cn = abqn+1 (1 qn ): q-Dierence equation. q n(1 qn )x2y(x) = B (x)y(qx) [B (x) + D(x)] y(x) + D(x)y(q 1 x); where y(x) = Pn(x; a; b; q) and 8 < B (x) = abq(1 x) : D(x) = (x aq)(x bq): 72 (3.11.4) Generating functions. (bqt; q)1 21 1 (bq; q) aqx 1; 0 q; xt = X n P (x; a; b; q)tn: n aq ( q ; q ) n n=0 (3.11.5) 1 ( 1)n q(n2 ) X 0 ; 0 ; x Pn (x; a; b; q)tn: (3.11.6) (t; q)1 32 aq; bq q; t = ( q ; q ) n n=0 Remark. The big q-Laguerre polynomials dened by (3.11.1) and the ane q-Krawtchouk polynomials given by (3.16.1) are related in the following way : KnAff (q x ; p; N ; q) = Pn(q x ; p; q N 1 ; q): References. [10], [23]. 3.12 Little q-Jacobi Denition. pn(x; a; bjq) = 2 1 Orthogonality. q n ; abqn+1 q; qx : aq (3.12.1) 1 X (bq; q)k (aq)k p (qk ; a; bjq)p (qk ; a; bjq) m n k=0 (q; q)k 2 ; q)1 (1 abq)(aq)n (q; bq; q)n ; 0 < aq < 1; b < q 1: = (abq (aq; q)1 (1 abq2n+1) (aq; abq; q)n mn Recurrence relation. xpn(x; a; bjq) = Anpn (x; a; bjq) (An + Cn ) pn(x; a; bjq) + Cnpn (x; a; bjq); +1 where 8 > > > > < > > > > : 1 aqn+1 )(1 An = qn (1(1 abq 2n+1 )(1 n)(1 Cn = aqn (1 (1abq2qn)(1 (3.12.2) (3.12.3) abqn+1) abq2n+2) bqn ) : abq2n+1) q-Dierence equation. q n (1 qn)(1 abqn+1)xy(x) = B (x)y(qx) [B (x) + D(x)] y(x) + D(x)y(q 1 x); y(x) = pn (x; a; bjq); (3.12.4) where 8 < B (x) = a(bqx 1) : Generating function. 2 1 D(x) = x 1: 1 ( 1)n q(n2 ) 0; 0 q; xt bqx q; t = X pn(x; a; bjq)tn: 1 1 ( bq; q ; q ) bq aq n n=0 73 (3.12.5) Remarks. The little q-Jacobi polynomials dened by (3.12.1) and the big q-Jacobi polynomials given by (3.5.1) are related in the following way : bq; q)n ( 1)n b n q n (n2 ) P (bqx; b; a; 0; q): pn(x; a; bjq) = ((aq n ; q )n The little q-Jacobi polynomials and the q-Meixner polynomials dened by (3.13.1) are related in the following way : Mn (q x ; b; c; q) = pn( c 1 qn ; b; b 1q n x 1jq): References. [8], [10], [18], [19], [24], [25], [31], [111], [114], [121], [127], [134], [140], [145], [158], [160], [161], [163], [172], [176], [180], [197], [212], [214]. Special case 3.12.1 Little q-Legendre Denition. The little q-Legendre polynomials are little q-Jacobi polynomials with a = b = 1 : Orthogonality. n n+1 pn (xjq) = 2 1 q ;qq q; qx : (3.12.6) n qk pm (qk jq)pn(qk jq) = (1 qq2n+1) mn : k=0 (3.12.7) 1 X Recurrence relation. xpn(xjq) = An pn (xjq) (An + Cn) pn(xjq) + Cnpn (xjq); +1 where 1 8 > > > > < qn+1 ) An = qn (1 + q(1 n+1 )(1 q2n+1 ) > > > > : qn ) Cn = qn (1 + q(1 n)(1 q2n+1) : q-Dierence equation. q n(1 qn )(1 qn+1 )xy(x) = B (x)y(qx) [B (x) + D(x)] y(x) + D(x)y(q 1 x); where y(x) = pn (xjq) and 8 < B (x) = qx 1 : Generating function. (3.12.8) (3.12.9) D(x) = x 1: X 1 ( 1)n q(n2 ) qx 0 ; 0 n 2 1 q q; xt 1 1 q q; t = n=0 (q; q; q)n pn (xjq)t : References. [160], [161], [201], [221]. 74 (3.12.10) 3.13 q -Meixner Denition. Orthogonality. n Mn (q x ; b; c; q) = 21 q bq; q x n+1 q; q c : (3.13.1) 1 X (bq; q)x cx q(x2) M (q x ; b; c; q)M (q x ; b; c; q) m n x=0 (q; bcq; q)x c; q)1 (q; c 1 q; q)n q n ; 0 < bq < 1; c > 0: = ( ( bcq mn ; q)1 (bq; q)n (3.13.2) Recurrence relation. q2n+1 (1 q x )Mn (q x ) = c(1 bqn+1 )Mn+1 (q x ) + c(1 bqn+1 ) + q(1 qn )(c + qn ) Mn (q x ) + q(1 qn )(c + qn )Mn 1(q x ); where (3.13.3) Mn (q x ) := Mn (q x ; b; c; q): q-Dierence equation. (1 qn )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); where y(x) = Mn (q x ; b; c; q) and 8 x x+1 ) < B (x) = cq (1 bq : Generating functions. (3.13.4) D(x) = (1 qx )(1 + bcqx): 1 M (q x ; b; c; q) 1 q x q; qt = X n tn : 1 1 bq c (t; q)1 ( q ; q ) n n=0 (3.13.5) 1 (bq; q)n M (q x ; b; c; q)tn: b 1c 1 q x q; bqt = X 1 (3.13.6) 1 1 n 1 1 c q (t; q)1 n=0 ( c q; q; q)n Remarks. The q-Meixner polynomials dened by (3.13.1) and the little q-Jacobi polynomials given by (3.12.1) are related in the following way : Mn (q x ; b; c; q) = pn( c 1 qn ; b; b 1q n x 1jq): The q-Meixner polynomials and the quantum q-Krawtchouk polynomials dened by (3.14.1) are related in the following way : Knqtm (q x ; p; N ; q) = Mn(q x ; q N 1 ; p 1; q): References. [10], [22], [23], [114], [121], [180]. 75 3.14 Quantum q-Krawtchouk Denition. n Knqtm (q x ; p; N ; q) = 2 ~1 q q ; Nq x q; pqn+1 ; n = 0; 1; 2; : ::; N: (3.14.1) Orthogonality. N X (pq; q)N x ( 1)N x q(x2) K qtm (q x ; p; N ; q)K qtm(q x ; p; N ; q) m n x=0 (q; q)x (q; q)N x n N N +1 n+1 = ( 1) p ((qq;; qq);Nq) n (q; pq; q)n q( 2 ) ( 2 )+Nn mn : (3.14.2) N Recurrence relation. x) + pq2n+1(1 q x )Knqtm (q x ) = (1 qn N )Knqtm +1 (q (1 qn N ) + q(1 qn )(1 pqn) Knqtm (q x ) + q(1 qn )(1 pqn)Knqtm1 (q x ); (3.14.3) where Knqtm (q x ) := Knqtm (q x ; p; N ; q): q-Dierence equation. p(1 qn )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); where y(x) = Knqtm (q x ; p; N ; q) and 8 x x N) < B (x) = q (1 q D(x) = (1 qx )(p qx : Generating function. N 1 (3.14.4) ): N (q N ; q) (q x t; q)1 qx N ; 0 q; q xt ' X n K qtm (q x ; p; N ; q)tn: pq (t; q)1 2 1 ( pq; q ; q ) n n n=0 (3.14.5) Remarks. The quantum q-Krawtchouk polynomials dened by (3.14.1) and the q-Meixner polynomials given by (3.13.1) are related in the following way : Knqtm (q x ; p; N ; q) = Mn(q x ; q N 1 ; p 1; q): The quantum q-Krawtchouk polynomials are related to the ane q-Krawtchouk polynomials dened by (3.16.1) by the transformation q $ q 1 in the following way : n n p qtm x 1 1 Kn (q ; p; N ; q ) = (p q; q)n q q ( 2 ) KnAff (qx N ; p 1; N ; q): For x = 0; 1; 2; : ::; N the generating function (3.14.5) can also be written as : (q x t; q)x 2 1 N (q N ; q) qx N ; 0 q; q xt = X n K qtm (q x ; p; N ; q)tn: pq ( pq; q ; q ) n n n=0 References. [114], [158], [160]. 76 3.15 q -Krawtchouk Denition. n x n (3.15.1) Kn (q x ; p; N ; q) = 3~2 q ;qq N ;; 0 pq q; q n; q x x N ; q)n q ( q n +N +1 ; n = 0; 1; 2; : ::; N: = (q N ; q) qnx 2 1 qN x n+1 q; pq n Orthogonality. N X (q N ; q)x ( p) x K (q x ; p; N ; q)K (q x ; p; N ; q) m n x=0 (q; q)x pqN +1 ; q)n (1 + p) = (q; ( p; q N ; q)n (1 + pq2n) N +1 ( pq; q)N p N q ( 2 ) pq N n qn2 mn : (3.15.2) Recurrence relation. 1 q x Kn (q x ) = An Kn+1 (q x ) (An + Cn) Kn (q x ) + CnKn 1 (q x ); where (3.15.3) Kn (q x ) := Kn(q x ; p; N ; q) and 8 > > > > < n N n) An = (1(1+ pqq2n)(1)(1+ +pqpq 2n+1 ) > > > > : Cn = pq2n N 1 (1 + pqn+N )(1 qn) : (1 + pq2n 1)(1 + pq2n) q-Dierence equation. q n(1 qn )(1 + pqn )y(x) = (1 qx N )y(x + 1) + (1 qx N ) p(1 qx ) y(x) p(1 qx )y(x 1); where y(x) = Kn(q x ; p; N ; q): (3.15.4) Generating functions. x N N (q N ; q) q ; 0 q; q xt q x q; pqt X n q (n2 ) K (q x ; p; N ; q)tn: (3.15.5) 1 1 2 0 n 0 (q; q) n n=0 x N ~ q N; 0 q; q x t 0 1 2 1 q pq N +1 q; pqN +1 x t ' N X Kn (q x ; p; N ; q) tn : N +1 ; q; q)n n=0 ( pq (3.15.6) Remarks. The q-Krawtchouk polynomials dened by (3.15.1) and the dual q-Krawtchouk polynomials given by (3.17.1) are related in the following way : Kn(q x ; p; N ; q) = Kx ((n); pqN ; N jq) with (n) = q n pqn 77 or Kn ((x); c; N jq) = Kx (q n ; cq N ; N ; q) with (x) = q x + cqx N : The generating function (3.15.5) must be seen as an equality in terms of formal power series. For x = 0; 1; 2; : ::; N this generating function can also be written as : x N N (q N ; q) q ; 0 q; q xt q x q; pqt = X n (n2 ) x n 1 1 2 0 0 (q; q) q Kn (q ; p; N ; q)t : n n=0 References. [43], [114], [180], [181], [216], [217]. 3.16 Ane q-Krawtchouk Denition. n x KnAff (q x ; p; N ; q) = 3 ~2 q pq;; 0q; qN q; q n )n q( 2 ) ~ q n ; qx = ( (pq 2 1 q N pq; q)n (3.16.1) N q; q p x ; n = 0; 1; 2; : : :; N: Orthogonality. N X (pq; q)x(q; q)N (pq) x K Aff (q x ; p; N ; q)K Aff (q x ; p; N ; q) m n ( x=0 q; q)x (q; q)N x ; q)n (q; q)N n ; 0 < pq < 1: = (pq)n N ((qpq ; q)n(q; q)N mn (3.16.2) Recurrence relation. x) + (1 q x )KnAff (q x ) = (1 qn N )(1 pqn+1)KnAff +1 (q (1 qn N )(1 pqn+1 ) pqn N (1 qn ) KnAff (q x ) pqn N (1 qn)KnAff1 (q x ); (3.16.3) where KnAff (q x ) := KnAff (q x ; p; N ; q): q-Dierence equation. q n(1 qn )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); where y(x) = KnAff (q x ; p; N ; q) and 8 x N )(1 pqx+1) < B (x) = (1 q : Generating functions. (q (q (3.16.4) D(x) = p(1 qx )qx N : x N (q N ; q) N t; q)1 q q; pqt ' X n K Aff (q x ; p; N ; q)tn: 1 1 n x t; q)1 pq ( q ; q ) n n=0 78 (3.16.5) x N X N (pq; q) q ; 0 n K Aff (q x ; p; N ; q)tn: x ~ (3.16.6) (pqt; q)1 2 1 q N q; q t ' n ( q ; q ) n n=0 Remarks. The ane q-Krawtchouk polynomials dened by (3.16.1) and the big q-Laguerre polynomials given by (3.11.1) are related in the following way : KnAff (q x ; p; N ; q) = Pn(q x ; p; q N 1; q): The ane q-Krawtchouk polynomials are related to the quantum q-Krawtchouk polynomials dened by (3.14.1) by the transformation q $ q 1 in the following way : KnAff (qx ; p; N ; q 1) = (p 11q; q) Knqtm (qx N ; p 1; N ; q): n For x = 0; 1; 2; : ::; N the generating function (3.16.5) can also be written as : x X N N (q N t; q)N x 1 1 qpq q; pqt = (q(q; q;)q)n KnAff (q x ; p; N ; q)tn: n n=0 References. [85], [86], [88], [114], [217]. 3.17 Dual q-Krawtchouk Denition. n x ; cqx N q ; q ~ (3.17.1) Kn ((x); c; N jq) = 3 2 q N ; 0 q; q x N n x = (q(q N ; q); qq)nnx 21 qqN x; qn+1 q; cqx+1 ; n = 0; 1; 2; : ::; N; n where (x) := q x + cqx N : Orthogonality. N X (cq N ; q N ; q)x (1 cq2x N ) c x qx(2N x) K ((x))K ((x)) m n (1 cq N ) x=0 (q; cq; q)x = (c 1 ; q)N (q(qN; q;)qn) (cq N )n mn ; n where Recurrence relation. (1 q x )(1 (1 qn where (3.17.2) Kn((x)) := Kn ((x); c; N jq): cqx N )Kn ((x)) =(1 qn N )Kn+1 ((x)) + N ) + cq N (1 qn) Kn((x)) + cq N (1 qn)Kn 1 ((x)); (3.17.3) Kn((x)) := Kn ((x); c; N jq): q-Dierence equation. q n(1 qn )y(x) = B (x)y(x + 1) [B (x) + D(x)] y(x) + D(x)y(x 1); 79 (3.17.4) where y(x) = Kn((x); c; N jq) and 8 > > > > < > > > > : x N )(1 cqx N ) B (x) = (1 (1 cq2qx N )(1 cq2x N +1 ) x cqx ) D(x) = cq2x 2N 1 (1 cq(12x Nq )(1 1 )(1 cq2x N ) : Generating functions. (q (q N t; cq N t; q)1 x t; cqx N t; q)1 ' N X (q N ; q)n K ((x); c; N jq)tn: n n=0 (q; q)n (3.17.5) N K ((x); c; N jq) 1 q x ; c 1q x q; cqx N t ' X n ~ tn : (3.17.6) 1 2 q N (q x t; q)1 ( q ; q ) n n=0 Remark. The dual q-Krawtchouk polynomials dened by (3.17.1) and the q-Krawtchouk polynomials given by (3.15.1) are related in the following way : Kn(q x ; p; N ; q) = Kx ((n); pqN ; N jq) with (n) = q n pqn or Kn ((x); c; N jq) = Kx (q n ; cq N ; N ; q) with (x) = q x + cqx N : For x = 0; 1; 2; : ::; N the generating function (3.17.5) can also be written as : N N X (q N t; q)N x (cq N t; q)x = (q(q; q;)q)n Kn ((x); c; N jq)tn: n n=0 References. [160], [163]. 3.18 Continuous big q-Hermite Denition. q n; aei ; ae i q; q Hn(x; ajq) = a 0; 0 n i = ein 2 0 q ; ae q; qne 2i ; x = cos : n3 2 (3.18.1) Orthogonality. When a is real and jaj < 1, then we have the following orthogonality relation 1 Z pw(x) H (x; ajq)H (x; ajq)dx = mn ; m n 2 2 (qn+1 ; q)1 1 x 1 1 where ( ( e2i ; q)1 2 = h(x; 1)h(x; 1)h(x; q 21 )h(x; q 21 ) ; w(x) := w(x; ajq) = ae i ; q)1 h(x; a) 80 (3.18.2) with h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : If a > 1, then we have another orthogonality relation given by : 1 Z pw(x) H (x; ajq)H (x; ajq)dx + n 2 1 x2 m 1 1 X + 1 k <aqk a where w(x) is as before, and mn ; wk Hm (xk ; ajq)Hn(xk ; ajq) = (qn+1 ; q) 1 k k xk = aq + 2aq 2 2k 2 2 wk = (a(q; q; )q)1 (1 (1 a aq 2)()(qa; q;) q)k q 1 k (3.18.3) 1 3 2 2 k 12 k 1 k: a4 Recurrence relation. 2xHn(x; ajq) = Hn (x; ajq) + aqnHn(x; ajq) + (1 qn )Hn (x; ajq): q-Dierence equations. +1 1 (3.18.4) h i (1 q)2 Dq w~ (x; aq 21 jq)Dq y(x) + 4q n+1(1 qn)w~(x; ajq)y(x) = 0; y(x) = Hn(x; ajq); (3.18.5) where and If we dene w~(x; ajq) := wp(x; ajq2) 1 x Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q n ; az; az 1 q q; q Pn(z ) := a 0; 0 then the q-dierence equation can also be written in the form q n (1 qn )Pn(z ) = A(z )Pn (qz ) A(z ) + A(z 1) Pn(z ) + A(z 1 )Pn (q 1z ); where A(z ) = (1 (1z 2)(1az ) qz 2 ) : n3 2 (3.18.6) Generating function. References. 1 H (x; ajq) (at; q)1 = X n n (ei t; e i t; q)1 n=0 (q; q)n t ; x = cos : 81 (3.18.7) 3.19 Continuous q-Laguerre Denitions. We have two kinds of continuous q-Laguerre polynomials coming from the continuous q-Jacobi polynomials dened by (3.10.1) and (3.10.2) : ! +1 n 21 + 41 i 21 + 41 e i = (q(q; q;)q)n 32 q ; q qe+1;; q0 (3.19.1) q; q n ! 12 + 34 i n ; q 21 + 14 ei q e ; q ) 1 1 1 ( q n (1 + ) n in + i q 2 4 e 2 1 q 21 + 41 nei q; q 2 4 e ; x = cos = (q; q)n Pn (xjq) ( ) and ! n ; q 21 ei ; q 21 e i +1 ; q)n q ( q () Pn (x; q) = (q; q) 3 2 (3.19.2) q+1 ; q q; q ; x = cos : n These two q-analogues of the Laguerre polynomials are connected by the following quadratic transformation : Pn()(xjq2) = qnPn()(x; q): Orthogonality. For 12 the orthogonality relations are respectively 1 (q+1 ; q)n q(+ 12 )n ; 1 Z pw(xjq) P ()(xjq)P ()(xjq)dx = mn m n +1 2 (q; q ; q)1 (q; q)n 1 x2 1 1 where (3.19.3) 2 1 2i 2 (ei ; ei ; q 2 )1 ( e ; q ) 1 w(xjq) := w(x; q jq) = = (q 12 + 41 ei ; q 21 + 43 ei ; q)1 (q 12 + 41 ei ; q 21 )1 1 21 2 = h(x; 1)h(x;21 +1)41h(x; q )12h(+x;34 q ) ; )h(x; q ) h(x; q with 1 Y h(x; ) := k=0 and 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos 1 Z pw(x; q) P ()(x; q)P ()(x; q)dx n 2 1 x2 m 1 +1 +1 = (q; q; q+11; q+1; q) (q (q;; qq; q) ; q)n qnmn ; 1 n 1 where (3.19.4) i 2 i 2 (e2i ; q)1 = (e ; 1 e ; q)1 = h(x; 1)h(x;1 1) ; 1 1 1 + 2 i 2 i (q e ; q e ; q 2 ei ; q)1 (q+ 2 ei ; q)1 h(x; q+ 2 ) w(x; q) := w(x; q; q) = with h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : 82 Recurrence relations. 2xPn (xjq) = q ( ) 1 1 ) 2 4 (1 qn+1 )Pn(+1 (xjq) + 1 1 () + n +1 + q 2 4 (1 + q 2 )Pn (xjq) + q 12 + 14 (1 qn+)Pn()1(xjq): (3.19.5) 2xPn()(x; q) = q 21 (1 q2n+2)Pn(+1) (x; q) + + q2n++ 21 (1 + q)Pn()(x; q) + q 21 (1 q2n+2)Pn()1(x; q): (3.19.6) q-Dierence equations. h i (1 q)2Dq w~(x; q+ 12 jq)Dq y(x) +4q n+1(1 qn)w~(x; qjq)y(x) = 0; y(x) = Pn()(xjq); (3.19.7) where and w~(x; qjq) := wp(x; q jq2 ) 1 x Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q i h (1 q)2 Dq w~(x; q+ 21 ; q)Dq y(x) +4q n+1 (1 qn )w~ (x; q; q)y(x) = 0; y(x) = Pn()(x; q); (3.19.8) where and w~(x; q; q) := wp(x; q ; 2q) 1 x Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q Generating functions. (q+ 21 t; q+1t; q)1 12 + 14 i 21 + 41 i (q e t; q e t; q)1 = 1 X n=0 Pn()(xjq)tn; x = cos : (3.19.9) ! 1 q 12 + 14 ei ; q 21 + 43 ei q; e i t = X Pn()(xjq)tn ; x = cos : (3.19.10) 1 2 1 ( 1 + 1 )n +1 (ei t; q)1 q+1 n=0 (q ; q)nq 2 4 ! 1 (q+1 t; q)1 q 12 ei ; q 21 ei q; q 21 e i t = X Pn()(x; q)tn; x = cos : q (q 12 ei t; q)1 2 1 n=0 (3.19.11) ! 1 ( q; q) P ()(x; q) ( q 21 t; q)1 q 21 ei ; q+ 12 ei q; e i t = X n n n +1 ; q)n q 12 n t ; x = cos : (3.19.12) q+1 (ei t; q)1 2 1 ( q n=0 References. [45]. ! q 12 e i ; q+ 12 e i q; ei t q+1 1 X ; q)n Pn()(x; q) tn; x = cos : = ( (qq+1 ; q)n q 12 n n=0 (q 12 t; q)1 (e i t; q)1 2 1 83 (3.19.13) 3.20 Little q-Laguerre / Wall Denition. Orthogonality. n pn(x; ajq) = 21 q aq; 0 q; qx n = (a 1q 1 n ; q) 2 0 q ; x n (3.20.1) 1 q; xa : 1 X (aq)k p (qk ; ajq)p (qk ; ajq) = (aq)n (q; q)n ; 0 < aq < 1: m n (aq; q)1 (aq; q)n mn k=0 (q; q)k Recurrence relation. xpn (x; ajq) = An pn (x; ajq) (An + Cn ) pn(x; ajq) + Cnpn (x; ajq); +1 1 where 8 < An = qn (1 aqn+1) : Cn = aqn(1 qn ): (3.20.2) (3.20.3) q-Dierence equation. q n(1 qn )xy(x) = ay(qx) + (x a 1)y(x) + (1 x)y(q 1 x); y(x) = pn (x; ajq): (3.20.4) Generating function. X 1 ( 1)n q(n2 ) 0 ; 0 pn(x; ajq)tn: (3.20.5) (t; q)1 2 1 aq q; xt = ( q ; q ) n n=0 Remark. If we set a = q and change q to q 1 we nd the q-Laguerre polynomials dened by (3.21.1) in the following way : ; q)n L() ( x; q): pn (x; q jq 1) = (q(q+1 ; q)n n References. [10], [21], [75], [77], [78], [114], [160], [161], [180], [221], [224]. 3.21 q -Laguerre Denition. Ln ( ) +1 n (x; q) = (q(q; q;)q)n 1 1 qq+1 q; xqn++1 n n ; x 1 q q; qn++1 : = (q; q) 21 0 (3.21.1) n Orthogonality. The q-Laguerre polynomials satisfy two kinds of orthogonality relations, an absolutely continuous one and a discrete one. These orthogonality relations are given by, respectively : Z1 0 x L() (x; q)L()(x; q)dx = (q ; q)1 (q+1 ; q)n ( ) ( + 1) ; > 1 (3.21.2) mn n ( x; q)1 m (q; q)1 (q; q)nqn 84 and 1 X qk+k L()(cqk ; q)L()(cqk ; q) m n k k= 1 ( cq ; q)1 +1 ; c 1q ; q)1 (q+1 ; q)n = (q;(qcq +1 ; c; c 1q; q)1 (q; q)nqn mn ; > 1; c > 0: (3.21.3) Recurrence relation. q2n++1 xLn()(x; q) = (1 qn+1 )L(n+1) (x; q) + (1 qn+1 ) + q(1 qn+ ) L(n) (x; q) + q(1 qn+ )L(n)1(x; q): (3.21.4) q-Dierence equation. q (1 qn)xy(x) = q (1 + x)y(qx) [1 + q (1 + x)] y(x) + y(q 1 x); where y(x) = L(n) (x; q): (3.21.5) Generating functions. 1 L() (x; q) ( xt; q)1 0; 0 q; xt = X n n 2 1 +1 ; q)n t : q+1 (t; q)1 ( q n=0 (3.21.6) 1 1 x q; q+1t = X L(n) (x; q)tn: (3.21.7) (t; q)1 1 1 0 n=0 Remarks. The q-Laguerre polynomials are sometimes called the generalized Stieltjes-Wigert polynomials. If we change q to q 1 we obtain the little q-Laguerre (or Wall) polynomials given by (3.20.1) in the following way : +1 )n pn ( x; qjq): L(n) (x; q 1) = ((qq; q) ;qqn n The q-Laguerre polynomials dened by (3.21.1) and the alternative q-Charlier polynomials given by (3.22.1) are related in the following way : Kn (qx ; a; q) = L(x n)(aqn ; q): n (q; q)n The q-Laguerre polynomials dened by (3.21.1) and the q-Charlier polynomials given by (3.23.1) are related in the following way : Cn( x; q ; q) = L() (x; q): n (q; q)n Since the Stieltjes and Hamburger moment problems corresponding to the q-Laguerre polynomials are indeterminate there exist many dierent weight functions. References. [8], [10], [30], [31], [45], [75], [77], [78], [96], [114], [177]. 3.22 Alternative q-Charlier 85 Denition. n n Kn (x; a; q) = 2 1 q ;0 aq q; qx n = (xq1 n; q)n 1 1 xqq 1 n q; axqn+1 n 1 n 1 = ( axqn )n 2 1 q 0; x q; q a : (3.22.1) Orthogonality. 1 X n (n+1 2 ) ak q(k+1 2 ) Km (qk ; a; q)Kn(qk ; a; q) = (q; q)n( aqn ; q)1 a q (1 + aq2n) mn ; a > 0: (3.22.2) k=0 (q; q)k Recurrence relation. xKn (x; a; q) = An Kn+1 (x; a; q) (An + Cn)Kn (x; a; q) + CnKn 1(x; a; q); where 8 > > > > < n) An = qn (1 + aq(12n+)(1aq+ aq 2n+1 ) > > > > : qn ) Cn = aq2n 1 (1 + aq2(1n 1)(1 + aq2n) : q-Dierence equation. q n (1 qn )(1 + aqn)xy(x) = axy(qx) (ax + 1 x)y(x) + (1 x)y(q 1 x); where y(x) = Kn (x; a; q): (3.22.3) (3.22.4) Generating functions. 2 0 1 K (x; a; q) x 1; 0 q; xt q; aqxt X n n 0 1 0 (q; q) t : n=0 n (3.22.5) 1 ( 1)n q(n2 ) xt q; aqxt = X (t; q)1 Kn(x; a; q)tn: (3.22.6) (xt; q)1 1 3 0; 0; t ( q ; q ) n n=0 Remarks. The alternative q-Charlier polynomials dened by (3.22.1) and the q-Laguerre polynomials given by (3.21.1) related in the following way : Kn (qx ; a; q) = L(x n)(aqn ; q): n (q; q)n The generating function (3.22.5) must be seen as an equality in terms of formal power series. For x = 0; 1; 2; : ::; N this generating function can also be written as : 1 K (qx ; a; q) X q x ; 0 q; qxt n x +1 q ; aq t = tn: 0 1 2 0 0 ( q ; q ) n n=0 References. 86 3.23 q -Charlier Denition. Cn(q x ; a; q ) n x = 2 1 q 0; q q; 1 = ( a q; q)n 11 Orthogonality. qn+1 a q n q; qn+1 a 1q a (3.23.1) x : 1 X ax q(x2) C (q x ; a; q)C (q x ; a; q) = q n ( a; q) ( a 1 q; q; q) ; a > 0: m n 1 n mn x=0 (q; q)x (3.23.2) Recurrence relation. q2n+1(1 q x )Cn(q x ) = aCn+1(q x ) + [a + q(1 qn )(a + qn)] Cn(q x ) + q(1 qn)(a + qn )Cn 1(q x ); (3.23.3) where Cn(q x ) := Cn (q x ; a; q): q-Dierence equation. qny(x) = aqx y(x + 1) qx (a 1)y(x) + (1 qx )y(x 1); y(x) = Cn(q x ; a; q): (3.23.4) Generating functions. 1 C (q x ; a; q) 1 q x q; a 1qt = X n tn : 1 1 0 (t; q)1 ( q ; q ) n n=0 (3.23.5) 1 C (q x ; a; q) (q x t; q)1 0; 0 q; q x t = X n tn: (3.23.6) 1 q; q ; q ) (t; q)1 2 1 a 1 q ( a n n=0 Remark. The q-Charlier polynomials dened by (3.23.1) and the q-Laguerre polynomials given by (3.21.1) are related in the following way : Cn( x; q ; q) = L() (x; q): n (q; q)n References. [114], [121], [180]. 3.24 Al-Salam-Carlitz I Denition. Una ( ) (x; q) = ( a)n q(n2 ) 21 Orthogonality. Z q n; x 0 1 qx q; a : (3.24.1) 1 (qx; a 1qx; q)1Um(a) (x; q)Un(a) (x; q)dq x n = ( a)n (1 q)(q; q)n (q; a; a 1q; q)1q( 2 ) mn ; a < 0: a 87 (3.24.2) Recurrence relation. xUn(a) (x; q) = Un(a+1) (x; q) + (a + 1)qnUn(a) (x; q) aqn 1(1 qn)Un(a)1 (x; q): q-Dierence equation. (1 qn )x2y(x) = aqn 1y(qx) aqn 1 + qn (1 x)(a x) y(x) + + qn(1 x)(a x)y(q 1 x); y(x) = Un(a) (x; q): (3.24.3) (3.24.4) Generating function. 1 U (a) (x; q) (t; q)1 (at; q)1 = X n tn: (3.24.5) (xt; q)1 ( q ; q ) n n=0 Remark. The Al-Salam-Carlitz I polynomials are related to the Al-Salam-Carlitz II polynomials dened by (3.25.1) in the following way : Un(a) (x; q 1) = Vn(a) (x; q): References. [10], [13], [15], [75], [77], [84], [114], [125], [135]. 3.25 Al-Salam-Carlitz II Denition. Orthogonality. n n n Vn(a) (x; q) = ( a)n q ( 2 ) 20 q ; x q; qa : 1 X qk2 ak V (a) (q k ; q)V (a) (q k ; q) = (q; q)nan ; a > 0: m n (aq; q)1 qn2 mn k=0 (q; q)k (aq; q)k Recurrence relation. a) (x; q) + (a + 1)q nV (a) (x; q) + aq xVn(a) (x; q) = Vn(+1 n n 2 +1 (1 qn )Vn(a)1(x; q): q-Dierence equation. (1 qn )x2 y(x) = (1 x)(a x)y(qx) [(1 x)(a x) + aq] y(x) + + aqy(q 1 x); y(x) = Vn(a) (x; q): (3.25.1) (3.25.2) (3.25.3) (3.25.4) Generating functions. 1 ( 1)n q(n2 ) (xt; q)1 = X (a) n (t; q)1 (at; q)1 n=0 (q; q)n Vn (x; q)t : (3.25.5) 1 q2(n2 ) X x (3.25.6) (at; q)1 11 at q; t = (q; q) Vn(a) (x; q)tn: n n=0 Remark. The Al-Salam-Carlitz II polynomials are related to the Al-Salam-Carlitz I polynomials dened by (3.24.1) in the following way : Vn(a) (x; q 1) = Un(a) (x; q): References. [10], [13], [15], [74], [75], [77], [84], [125]. 88 3.26 Continuous q-Hermite Denition. Hn(xjq) = ein 20 q n ; 0 q; qne 2 i ; x = cos : (3.26.1) Orthogonality. 1 Z pw(x) H (xjq)H (xjq)dx = mn ; n 2 (qn+1 ; q)1 1 x2 m 1 1 where with (3.26.2) w(x) = e2i ; q 1 2 = h(x; 1)h(x; 1)h(x; q 21 )h(x; q 21 ); h(x; ) := 1 Y k=0 1 2xqk + 2q2k = ei ; e i ; q 1 ; x = cos : Recurrence relation. 2xHn(xjq) = Hn+1(xjq) + (1 qn )Hn 1(xjq): q-Dierence equation. (1 q)2 Dq [w~(x)Dq y(x)] + 4q where and n+1(1 qn)w~(x)y(x) = 0; y(x) = Hn (xjq); (3.26.3) (3.26.4) w~(x) := pw(x) 2 1 x Dq f (x) := qf (xx) with q f (ei ) = f (q 12 ei ) f (q 21 ei ); x = cos : q Generating functions. 1 H (xjq) X 1 n tn; x = cos : = j(ei t; q)1 j2 n=0 (q; q)n X 1 ( 1)n q(n2 ) 0 i i Hn(xjq)tn; x = cos : (e t; q)1 11 ei t q; e t = ( q ; q ) n n=0 Remark. The continuous q-Hermite polynomials can also be written as : Hn(xjq) = (3.26.5) (3.26.6) n X (q; q)n ei(n 2k); x = cos : ( q ; q ) k (q; q)n k k=0 References. [6], [10], [20], [25], [31], [32], [37], [38], [45], [59], [62], [110], [114], [128], [137], [138], [180], [207], [208], [209]. 89 3.27 Stieltjes-Wigert Denition. Orthogonality. Z1 0 n Sn (x; q) = (q;1q) 1 1 q 0 q; xqn+1 : n (3.27.1) Sm (x; q)Sn(x; q) dx = ln q (q; q)1 : ( x; q)1 ( qx 1 ; q)1 qn (q; q)n mn (3.27.2) Recurrence relation. q2n+1xSn (x; q) = (1 qn+1)Sn+1 (x; q) [1 + q qn+1]Sn (x; q) + qSn 1 (x; q): q-Dierence equation. x(1 qn )y(x) = xy(qx) (x + 1)y(x) + y(q 1 x); y(x) = Sn (x; q): (3.27.3) (3.27.4) Generating functions. 1 X 1 q; qxt = Sn (x; q)tn: 0 1 0 (t; q)1 n=0 (3.27.5) 1 X n (3.27.6) (t; q)1 0 2 0; t q; qxt = ( 1)n q( 2 ) Sn (x; q)tn: n=0 Remark. Since the Stieltjes and Hamburger moment problems corresponding to the StieltjesWigert polynomials are indeterminate there exist many dierent weight functions. For instance, they are also orthogonal with respect to the weight function w(x) = p exp 2 ln2 x ; x > 0; with 2 = 2 ln1 q : References. [30], [31], [76], [77], [84], [180], [219], [220], [226]. 3.28 Discrete q-Hermite I Denition. The discrete q-Hermite I polynomials are Al-Salam-Carlitz I polynomials with a= 1: n 1 hn (x; q) = Un (x; q) = q(n2 ) 2 1 q 0; x q; qx n n+1 q2n 1 q2; = xn2 0 q ; q x2 : ( 1) (3.28.1) Orthogonality. Z 1 1 (qx; qx; q)1hm (x; q)hn(x; q)dq x = (1 q)(q; q)n (q; 1; q; q)1q( 2 ) mn : n (3.28.2) Recurrence relation. xhn(x; q) = hn+1 (x; q) + qn 1(1 qn)hn 1(x; q): 90 (3.28.3) q-Dierence equation. q n+1x2 y(x) = y(qx) (1 + q)y(x) + q(1 x2)y(q 1 x); y(x) = hn(x; q): Generating function. (3.28.4) 1 h (x; q) (t; q)1 ( t; q)1 = X n tn: (3.28.5) (xt; q)1 ( q ; q ) n n=0 Remark. The discrete q-Hermite I polynomials are related to the discrete q-Hermite II polynomials dened by (3.29.1) in the following way : hn(ix; q 1 ) = in ~hn (x; q): References. [10], [13], [62], [114], [121]. 3.29 Discrete q-Hermite II Denition. The discrete q-Hermite II polynomials are Al-Salam-Carlitz II polynomials with a= 1: Orthogonality. 1 h X k= 1 where n n h~ n (x; q) = i n Vn( 1) (ix; q) = i nq ( 2 ) 2 0 q ; ix q; n n+1 q ; q n q2; = x 2 1 0 qn q x2 : i h~ m (cqk ; q)~hn (cqk ; q) + h~ m ( cqk ; q)~hn( cqk ; q) w(cqk )qk 2 2 2 2 = 2 ((qq;; cc2;q; c c2 q2q;;qq2))1 (qq;nq2)n mn ; c > 0; 1 Recurrence relation. (3.29.1) 2 (3.29.2) w(x) = (ix; q) (1 ix; q) = ( x21; q2) : 1 1 1 x~hn(x; q) = h~ n+1 (x; q) + q n 2 +1 (1 qn)~hn 1(x; q): q-Dierence equation. (1 qn)x2 ~hn(x; q) = (1 + x2)~hn (qx; q) (1 + x2 + q)~hn(x; q) + qh~ n(q 1 x; q): Generating functions. (3.29.3) (3.29.4) 1 q(n2 ) ( xt; q)1 = X n ~ (3.29.5) ( t2 ; q2)1 n=0 (q; q)n hn (x; q)t : X 1 n 2(n2 ) (3.29.6) ( it; q)1 1 1 ixit q; it = ( (1)q; qq) h~ n (x; q)tn: n n=0 Remark. The discrete q-Hermite II polynomials are related to the discrete q-Hermite I polynomials dened by (3.28.1) in the following way : ~hn(x; q 1) = i n hn(ix; q): References. 91 Chapter 4 Limit relations between basic hypergeometric orthogonal polynomials 4.1 Askey-Wilson ! Continuous dual q-Hahn The continuous dual q-Hahn polynomials dened by (3.3.1) simply follow from the Askey-Wilson polynomials given by (3.1.1) by setting d = 0 in (3.1.1) : pn (x; a; b; c; 0jq) = pn(x; a; b; cjq): 4.2 Askey-Wilson ! Continuous q-Hahn The continuous q-Hahn polynomials dened by (3.4.1) can be obtained from the Askey-Wilson polynomials given by (3.1.1) by the substitutions ! + , a ! aei , b ! bei , c ! ce i and d ! de i : pn(cos( + ); aei ; bei; ce i ; de ijq) = pn(cos( + ); a; b; c; d; q): 4.3 Askey-Wilson ! Big q-Jacobi The big q-Jacobi polynomials dened by (3.5.1) can be obtained from the Askey-Wilson polynomials by setting x ! 12 a 1 x, b = a 1 q, c = a 1 q and d = a 1 in n n (x; a; b; c; djq) p~n (x; a; b; c; djq) = a (pab; ac; ad; q) n dened by (3.1.1) and then taking the limit a ! 0 : x q q a lim p ~ ; a; ; ; n a!0 2a a a q = Pn(x; ; ; ; q): 4.4 Askey-Wilson ! Continuous q-Jacobi If we take a = q 21 + 14 , b = q 21 + 34 , c = q 21 + 41 and d = q 21 + 34 in the denition (3.1.1) of the Askey-Wilson polynomials and change the normalization we nd the continuous q-Jacobi 92 polynomials given by (3.10.1) : q( 21 + 14 )n pn x; q 21 + 14 ; q 21 + 43 ; q 21 + 14 ; q 21 + 43 q = Pn(;) (xjq): (q; q 21 (++1) ; q 21 (++2) ; q)n In [196] M. Rahman takes a = q 12 , b = q+ 21 , c = q+ 12 and d = q 21 to obtain after a change of normalization the continuous q-Jacobi polynomials dened by (3.10.2) : q 12 npn x; q 21 ; q+ 21 ; q+ 12 ; q 21 q = Pn(;)(x; q): (q; q; q; q)n As was pointed out in section 0.6 these two q-analogues of the Jacobi polynomials are not really dierent, since they are connected by the quadratic transformation q)n qn P (;)(x; q): Pn(;)(xjq2) = ( q(+q;+1 n ; q)n 4.5 Askey-Wilson ! Continuous q-ultraspherical / Rogers If we set a = 21 , b = 21 q 12 , c = 21 and d = 12 q 12 in the denition (3.1.1) of the Askey-Wilson polynomials and change the normalization we obtain the continuous q-ultraspherical (or Rogers) polynomials dened by (3.10.15). In fact we have : ( 2 ; q)npn x; 21 ; 21 q 12 ; 12 ; 21 q 21 q = Cn(x; jq): (q 12 ; ; q 12 ; q; q)n 4.6 q -Racah ! Big q-Jacobi The big q-Jacobi polynomials dened by (3.5.1) can be obtained from the q-Racah polynomials by setting = 0 in the denition (3.2.1) : Rn((x); a; b; c; 0jq) = Pn(q x ; a; b; c; q): 4.7 q -Racah ! q-Hahn The q-Hahn polynomials follow from the q-Racah polynomials by the substitution = 0 and q = q N in the denition (3.2.1) of the q-Racah polynomials : Rn((x); ; ; q N 1; 0jq) = Qn (q x ; ; ; N jq): Another way to obtain the q-Hahn polynomials from the q-Racah polynomials is by setting = 0 and = 1 q N 1 in the denition (3.2.1) : Rn((x); ; ; 0; 1q N 1 jq) = Qn (q x ; ; ; N jq): And if we take q = q N , ! qN +1 and = 0 in the denition (3.2.1) of the q-Racah polynomials we nd the q-Hahn polynomials given by (3.6.1) in the following way : Rn((x); q N 1 ; qN +1 ; ; 0jq) = Qn(q x ; ; ; N jq): Note that (x) = q x in each case. 93 4.8 q 4.9 q -Racah ! Dual q-Hahn To obtain the dual q-Hahn polynomials from the q-Racah polynomials we have to take = 0 and q = q N in (3.2.1) : Rn((x); q N 1 ; 0; ; jq) = Rn((x); ; ; N jq); with (x) = q x + qx+1 : We may also take = 0 and = 1q N 1 in (3.2.1) to obtain the dual q-Hahn polynomials from the q-Racah polynomials : Rn((x); 0; 1q N 1; ; jq) = Rn((x); ; ; N jq); with (x) = q x + qx+1 : And if we take q = q N , ! qN +1 and = 0 in the denition (3.2.1) of the q-Racah polynomials we nd the dual q-Hahn polynomials given by (3.7.1) in the following way : Rn((x); ; 0; q N 1; qN +1 jq) = Rn((x); ; ; N jq); with (x) = q x + qx+1: -Racah ! q-Krawtchouk The q-Krawtchouk polynomials dened by (3.15.1) can be obtained from the q-Racah polynomials by setting q = q N , = pqN and = = 0 in the denition (3.2.1) of the q-Racah polynomials : Rn(q x ; q N 1; pqN ; 0; 0jq) = Kn (q x ; p; N ; q): Note that (x) = q x in this case. 4.10 q -Racah ! Dual q-Krawtchouk The dual q-Krawtchouk polynomials dened by (3.17.1) easily follow from the q-Racah polynomials given by (3.2.1) by using the substitutions = = 0, q = q N and = c : Rn ((x); 0; 0; q Note that N ; cjq) = Kn ((x); c; N jq): 1 (x) = (x) = q x + cqx N : 4.11 Continuous dual q-Hahn ! Al-Salam-Chihara The Al-Salam-Chihara polynomials dened by (3.8.1) simply follow from the continuous dual q-Hahn polynomials by taking c = 0 in the denition (3.3.1) of the continuous dual q-Hahn polynomials : pn(x; a; b; 0jq) = Qn(x; a; bjq): 94 4.12 Continuous q-Hahn ! q-Meixner-Pollaczek The q-Meixner-Pollaczek polynomials dened by (3.9.1) simply follow from the continuous q-Hahn polynomials if we set d = a and b = c = 0 in the denition (3.4.1) of the continuous q-Hahn polynomials : pn (cos( + ); a; 0; 0; a; q) = P (cos( + ); ajq): n (q; q) n 4.13 Big q-Jacobi ! Big q-Laguerre If we set b = 0 in the denition (3.5.1) of the big q-Jacobi polynomials we obtain the big q-Laguerre polynomials given by (3.11.1) : Pn(x; a; 0; c; q) = Pn(x; a; c; q): 4.14 Big q-Jacobi ! Little q-Jacobi The little q-Jacobi polynomials dened by (3.12.1) can be obtained from the big q-Jacobi polynomials by the substitution x ! cqx in the denition (3.5.1) and then by the limit c ! 1 : lim P (cqx; a; b; c; q) = pn(x; a; bjq): c!1 n 4.15 Big q-Jacobi ! q-Meixner If we take the limit a ! 1 in the denition (3.5.1) of the big q-Jacobi polynomials we simply obtain the q-Meixner polynomials dened by (3.13.1) : lim P (q x ; a; b; c; q) = Mn (q x ; c; b 1; q): a!1 n 4.16 q -Hahn ! Little q-Jacobi If we set x ! N x in the denition (3.6.1) of the q-Hahn polynomials and take the limit N ! 1 we nd the little q-Jacobi polynomials : lim Q (qx N ; ; ; N jq) = pn (qx ; ; jq); N !1 n where pn (qx ; ; jq) is dened by (3.12.1). 4.17 q 4.18 q -Hahn ! q-Meixner The q-Meixner polynomials dened by (3.13.1) can be obtained from the q-Hahn polynomials by setting = b and = b 1c 1 q N 1 in the denition (3.6.1) of the q-Hahn polynomials and letting N ! 1 : lim Q q x ; b; b 1c 1q N 1 ; N jq = Mn (q x ; b; c; q): N !1 n -Hahn ! Quantum q-Krawtchouk The quantum q-Krawtchouk polynomials dened by (3.14.1) simply follow from the q-Hahn polynomials by setting = p in the denition (3.6.1) of the q-Hahn polynomials and taking the limit !1: lim Q (q x ; ; p; N jq) = Knqtm (q x ; p; N ; q): !1 n 95 4.19 q 4.20 q -Hahn ! q-Krawtchouk If we set = 1 q 1p in the denition (3.6.1) of the q-Hahn polynomials and then let ! 0 we obtain the q-Krawtchouk polynomials dened by (3.15.1) : p ; N q = K (q x ; p; N ; q): x lim Q q ; ; n !0 n q -Hahn ! Ane q-Krawtchouk The ane q-Krawtchouk polynomials dened by (3.16.1) can be obtained from the q-Hahn polynomials by the substitution = p and = 0 in (3.6.1) : Qn(q x ; p; 0; N jq) = KnAff (q x ; p; N ; q): 4.21 Dual q-Hahn ! Ane q-Krawtchouk The ane q-Krawtchouk polynomials dened by (3.16.1) can be obtained from the dual q-Hahn polynomials by the substitution = p and = 0 in (3.7.1) : Rn((x); p; 0; N jq) = KnAff (q x ; p; N ; q): Note that (x) = q x in this case. 4.22 Dual q-Hahn ! Dual q-Krawtchouk The dual q-Krawtchouk polynomials dened by (3.17.1) can be obtained from the dual q-Hahn polynomials by setting = c 1 q N 1 in (3.7.1) and then letting ! 0 : c N 1 lim R ( x ); ; q n q = Kn ((x); c; N jq): !0 4.23 Al-Salam-Chihara ! Continuous big q-Hermite If we take the limit b ! 0 in the denition (3.8.1) of the Al-Salam-Chihara polynomials we simply obtain the continuous big q-Hermite polynomials given by (3.18.1) : lim Q (x; a; bjq) = Hn(x; ajq): b!0 n 4.24 Al-Salam-Chihara ! Continuous q-Laguerre The continuous q-Laguerre polynomials dened by (3.19.1) can be obtained from the Al-SalamChihara polynomials given by (3.8.1) by taking a = q 12 + 41 and b = q 21 + 43 : Qn x; q 21 + 14 ; q 21 + 34 q = ((12q; +q)41n)n Pn()(xjq): q 4.25 -Meixner-Pollaczek ! Continuous q-ultraspherical / Rogers q If we take = 0 and a = in the denition (3.9.1) of the q-Meixner-Pollaczek polynomials we obtain the continuous q-ultraspherical (or Rogers) polynomials given by (3.10.15) : Pn(cos ; jq) = Cn(cos ; jq): 96 4.26 Continuous q-Jacobi ! Continuous q-Laguerre The continuous q-Laguerre polynomials given by (3.19.1) and (3.19.2) follow simply from the continuous q-Jacobi polynomials dened by (3.10.1) and (3.10.2) respectively by taking the limit !1: lim P (;)(xjq) = Pn()(xjq) !1 n and Pn()(x; q) : (; ) lim P ( x ; q ) = !1 n ( q; q) n 4.27 Continuous q-ultraspherical / Rogers ! Continuous q -Hermite The continuous q-Hermite polynomials dened by (3.26.1) can be obtained from the continuous q-ultraspherical (or Rogers) polynomials given by (3.10.15) by taking the limit ! 0. In fact we have Hn(xjq) : lim C ( x ; j q ) = n !0 (q; q)n 4.28 Big q-Laguerre ! Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials dened by (3.20.1) can be obtained from the big q-Laguerre polynomials by taking x ! bqx in (3.11.1) and then letting b ! 1 : lim P (bqx; a; b; q) = pn (x; ajq): b!1 n 4.29 Big q-Laguerre ! Al-Salam-Carlitz I If we set x ! aqx and b ! ab in the denition (3.11.1) of the big q-Laguerre polynomials and take the limit a ! 0 we obtain the Al-Salam-Carlitz I polynomials given by (3.24.1) : lim Pn(aqxa;na; ab; q) = Un(b)(x; q): a!0 4.30 Little q-Jacobi ! Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials dened by (3.20.1) are little q-Jacobi polynomials with b = 0. So if we set b = 0 in the denition (3.12.1) of the little q-Jacobi polynomials we obtain the little q-Laguerre (or Wall) polynomials : pn(x; a; 0jq) = pn(x; ajq): 4.31 Little q-Jacobi ! q-Laguerre If we substitute a = q and x ! b 1 q 1 x in the denition (3.12.1) of the little q-Jacobi polynomials and then let b tend to innity we nd the q-Laguerre polynomials given by (3.21.1) : x ; q; b q = (q; q)n L() (x; q): lim p b!1 n bq (q+1 ; q)n n 97 4.32 Little q-Jacobi ! Alternative q-Charlier If we set b ! a 1 q 1 b in the denition (3.12.1) of the little q-Jacobi polynomials and then take the limit a ! 0 we obtain the alternative q-Charlier polynomials given by (3.22.1) : b lim p x ; a; n a!0 aq q = Kn (x; b; q): 4.33 q 4.34 q 4.35 q -Meixner ! q-Laguerre The q-Laguerre polynomials dened by (3.21.1) can be obtained from the q-Meixner polynomials given by (3.13.1) by setting b = q and q x ! cq x in the denition (3.13.1) of the q-Meixner polynomials and then taking the limit c ! 1 : ; q)n L() (x; q): lim M (cq x; q; c; q) = (q(q+1 c!1 n ; q)n n -Meixner ! q-Charlier The q-Meixner polynomials and the q-Charlier polynomials dened by (3.13.1) and (3.23.1) respectively are simply related by the limit b ! 0 in the denition (3.13.1) of the q-Meixner polynomials. In fact we have Mn (x; 0; a; q) = Cn(x; a; q): -Meixner ! Al-Salam-Carlitz II The Al-Salam-Carlitz II polynomials dened by (3.25.1) can be obtained from the q-Meixner polynomials dened by (3.13.1) by setting b = c 1a in the denition (3.13.1) of the q-Meixner polynomials and then taking the limit c # 0 : a ; c; q = 1 n q(n2 ) V (a) (x; q): x ; lim M n n c# 0 c a 4.36 Quantum q-Krawtchouk ! Al-Salam-Carlitz II If we set p = a 1 q N 1 in the denition (3.14.1) of the quantum q-Krawtchouk polynomials and let N ! 1 we obtain the Al-Salam-Carlitz II polynomials given by (3.25.1). In fact we have 1 n q(n2 ) V (a) (x; q): qtm (x; a 1q N 1 ; N ; q) = lim K n N !1 n a 4.37 q 4.38 q -Krawtchouk ! Alternative q-Charlier If we set x ! N x in the denition (3.15.1) of the q-Krawtchouk polynomials and then take the limit N ! 1 we obtain the alternative q-Charlier polynomials dened by (3.22.1) : x N ; p; N ; q = Kn(qx ; p; q): lim K q n N !1 -Krawtchouk ! q-Charlier The q-Charlier polynomials given by (3.23.1) can be obtained from the q-Krawtchouk polynomials dened by (3.15.1) by setting p = a 1 q N in the denition (3.15.1) of the q-Krawtchouk polynomials and then taking the limit N ! 1 : x ; a 1q N ; N ; q = Cn(q x ; a; q): q lim K n N !1 98 4.39 Ane q-Krawtchouk ! Little q-Laguerre / Wall If we set x ! N x in the denition (3.16.1) of the ane q-Krawtchouk polynomials and take the limit N ! 1 we simply obtain the little q-Laguerre (or Wall) polynomials dened by (3.20.1) : lim K Aff (qx N ; p; N ; q) = pn(qx ; p; q): N !1 n 4.40 Dual q-Krawtchouk ! Al-Salam-Carlitz I If we set c = a 1 in the denition (3.17.1) of the dual q-Krawtchouk polynomials and take the limit N ! 1 we simply obtain the Al-Salam-Carlitz I polynomials given by (3.24.1) : 1 ; N q = 1 n q (n2 ) U (a) (qx ; q): K lim ( x ); n N !1 n a a Note that (x) = q x + a 1 qx N . 4.41 Continuous big q-Hermite ! Continuous q-Hermite The continuous q-Hermite polynomials dened by (3.26.1) can easily be obtained from the continuous big q-Hermite polynomials given by (3.18.1) by taking a = 0 : Hn(x; 0jq) = Hn(xjq): 4.42 Continuous q-Laguerre ! Continuous q-Hermite The continuous q-Hermite polynomials given by (3.26.1) can be obtained from the continuous q-Laguerre polynomials dened by (3.19.1) by taking the limit ! 1 in the following way : Pn()(xjq) = Hn(xjq) : lim !1 q( 21 + 14 )n (q; q)n 4.43 q -Laguerre ! Stieltjes-Wigert If we set x ! xq in the denition (3.21.1) of the q-Laguerre polynomials and take the limit ! 1 we simply obtain the Stieltjes-Wigert polynomials given by (3.27.1) : ; q = Sn (x; q): () xq lim L n !1 4.44 Alternative q-Charlier ! Stieltjes-Wigert The Stieltjes-Wigert polynomials dened by (3.27.1) can be obtained from the alternative qCharlier polynomials by setting x ! a 1x in the denition (3.22.1) of the alternative q-Charlier polynomials and then taking the limit a ! 1. In fact we have x lim K ; a ; q = (q; q)n Sn (x; q): n a!1 a 4.45 q -Charlier ! Stieltjes-Wigert If we set q x ! ax in the denition (3.23.1) of the q-Charlier polynomials and take the limit a ! 1 we obtain the Stieltjes-Wigert polynomials given by (3.27.1) in the following way : lim C (ax; a; q) = (q; q)n Sn (x; q): a!1 n 99 4.46 Al-Salam-Carlitz I ! Discrete q-Hermite I The discrete q-Hermite I polynomials dened by (3.28.1) can easily be obtained from the AlSalam-Carlitz I polynomials given by (3.24.1) by the substitution a = 1 : Un( 1) (x; q) = hn(x; q): 4.47 Al-Salam-Carlitz II ! Discrete q-Hermite II The discrete q-Hermite II polynomials dened by (3.29.1) follow from the Al-Salam-Carlitz II polynomials given by (3.25.1) by the substitution a = 1 in the following way : i nVn( 1)(ix; q) = h~ n (x; q): 100 Chapter 5 From basic to classical hypergeometric orthogonal polynomials 5.1 Askey-Wilson ! Wilson To nd the Wilson polynomials dened by (1.1.1) from the Askey-Wilson polynomials we set a ! qa , b ! qb, c ! qc, d ! qd and ei = qix (or = ln qx ) in the denition (3.1.1) and take the limit q " 1 : pn( 12 qix + q ix ; qa ; qb; qc; qd jq) = W (x2; a; b; c; d): lim n q "1 (1 q)3n 5.2 q -Racah ! Racah If we set ! q , ! q , ! q , ! q in the denition (3.2.1) of the q-Racah polynomials and let q " 1 we easily obtain the Racah polynomials dened by (1.2.1) : lim R ((x); q; q ; q ; q jq) = Rn((x); ; ; ; ); q "1 n where 8 < (x) = q x + qx+ ++1 : (x) = x(x + + + 1): 5.3 Continuous dual q-Hahn ! Continuous dual Hahn To nd the continuous dual Hahn polynomials dened by (1.3.1) from the continuous dual q-Hahn polynomials we set a ! qa , b ! qb , c ! qc and ei = qix (or = ln qx ) in the denition (3.3.1) and take the limit q " 1 : p n( 21 qix + q ix ; qa; qb ; qcjq) lim = Sn (x2; a; b; c): q "1 (1 q)2n 5.4 Continuous q-Hahn ! Continuous Hahn If we set a ! qa , b ! qb , c ! qc , d ! qd and e i = qix (or = ln q x ) in the denition (3.4.1) of the continuous q-Hahn polynomials and take the limit q " 1 we nd the continuous Hahn 101 polynomials given by (1.4.1) in the following way : pn(cos(ln q x + ); qa ; qb; qc; qd ; q) = ( 2 sin )np (x; a; b; c; d): lim n q "1 (1 q)n (q; q)n 5.5 Big q-Jacobi ! Jacobi If we set c = 0, a = q and b = q in the denition (3.5.1) of the big q-Jacobi polynomials and let q " 1 we nd the Jacobi polynomials given by (1.8.1) : Pn(;)(2x 1) : lim P ( x ; q ; q ; 0; q ) = q "1 n Pn(;)(1) If we take c = q for arbitrary real instead of c = 0 we nd (; ) ; q ; q ; q) = Pn (x) : lim P ( x ; q n q "1 Pn(;)(1) 5.5.1 Big q-Legendre ! Legendre / Spherical If we set c = 0 in the denition (3.5.7) of the big q-Legendre polynomials and let q " 1 we simply obtain the Legendre (or spherical) polynomials dened by (1.8.40) : lim P (x; 0; q) = Pn(2x 1): q "1 n If we take c = q for arbitrary real instead of c = 0 we nd lim P (x; q ; q) = Pn(x): q "1 n 5.6 q -Hahn ! Hahn The Hahn polynomials dened by (1.5.1) simply follow from the q-Hahn polynomials given by (3.6.1), after setting ! q and ! q , in the following way : lim Q (q x ; q; q ; N jq) = Qn(x; ; ; N ): q "1 n 5.7 Dual q-Hahn ! Dual Hahn The dual Hahn polynomials given by (1.6.1) follow from the dual q-Hahn polynomials by simply taking the limit q " 1 in the denition (3.7.1) of the dual q-Hahn polynomials after applying the substitution ! q and ! q : lim R ((x); q ; q ; N jq) = Rn((x); ; ; N ); q "1 n where 8 < (x) = q x + qx+ ++1 : (x) = x(x + + + 1): 5.8 Al-Salam-Chihara ! Meixner-Pollaczek If we set a = qe i , b = qei and ei = qix ei in the denition (3.8.1) of the Al-Salam-Chihara polynomials and take the limit q " 1 we obtain the Meixner-Pollaczek polynomials given by (1.7.1) in the following way : cos(ln qx + ); qei ; qe i jq Q n lim = Pn()(x; ): q "1 (q; q)n 102 5.9 q -Meixner-Pollaczek ! Meixner-Pollaczek To nd the Meixner-Pollaczek polynomials dened by (1.7.1) from the q-Meixner-Pollaczek polynomials we substitute a = q and ei = q ix (or = ln q x ) in the denition (3.9.1) of the q-Meixner-Pollaczek polynomials and take the limit q " 1 to nd : lim P (cos(ln q x + ); qjq) = Pn()(x; ): q "1 n 5.10 Continuous q-Jacobi ! Jacobi If we take the limit q " 1 in the denitions (3.10.1) and (3.10.2) of the continuous q-Jacobi polynomials we simply nd the Jacobi polynomials dened by (1.8.1) : lim P (;)(xjq) = Pn(;)(x) q "1 n and lim P (;)(x; q) = Pn(;)(x): q "1 n 5.10.1 Continuous q-ultraspherical / Rogers spherical ! Gegenbauer / Ultra- If we set = q in the denition (3.10.15) of the continuous q-ultraspherical (or Rogers) polynomials and let q tend to one we obtain the Gegenbauer (or ultraspherical) polynomials given by (1.8.10) : lim C (x; qjq) = Cn() (x): q "1 n 5.10.2 Continuous q-Legendre ! Legendre / Spherical The Legendre (or spherical) polynomials dened by (1.8.40) easily follow from the continuous q-Legendre polynomials given by (3.10.25) by taking the limit q " 1 : lim P (x; q) = Pn(x): q "1 n Of course, we also have lim P (xjq) = Pn(x): q "1 n 5.11 Big q-Laguerre ! Laguerre The Laguerre polynomials dened by (1.11.1) can be obtained from the big q-Laguerre polynomials by the substitution a = q and b = (1 q) 1 q in the denition (3.11.1) of the big q-Laguerre polynomials and the limit q " 1 : () ; (1 q) 1 q ; q) = Ln (x 1) : lim P ( x ; q n q "1 L(n)(0) 5.12 Little q-Jacobi ! Jacobi The Jacobi polynomials dened by (1.8.1) simply follow from the little q-Jacobi polynomials dened by (3.12.1) in the following way : Pn(;)(1 2x) : lim p ( x ; q ; q j q ) = q "1 n Pn(;)(1) 103 5.12.1 Little q-Legendre ! Legendre / Spherical If we take the limit q " 1 in the denition (3.12.6) of the little q-Legendre polynomials we simply nd the Legendre (or spherical) polynomials given by (1.8.40) : lim p (xjq) = Pn(1 2x): q "1 n 5.12.2 Little q-Jacobi ! Laguerre If we take a = q, b = q for arbitrary real and x ! 21 (1 q)x in the denition (3.12.1) of the little q-Jacobi polynomials and then take the limit q " 1 we obtain the Laguerre polynomials given by (1.11.1) : 1 (1 q)x; q; q q = L(n) (x) : lim p q "1 n 2 L(n) (0) 5.13 q -Meixner ! Meixner To nd the Meixner polynomials dened by (1.9.1) from the q-Meixner polynomials given by (3.13.1) we set b = q 1 and c ! (1 c) 1 c and let q " 1 : c x 1 lim M q ; q ; 1 c ; q = Mn (x; ; c): q "1 n 5.14 Quantum q-Krawtchouk ! Krawtchouk The Krawtchouk polynomials given by (1.10.1) easily follow from the quantum q-Krawtchouk polynomials dened by (3.14.1) in the following way : lim K qtm (q x ; p; N ; q) = Kn (x; p 1; N ): q "1 n 5.15 q -Krawtchouk ! Krawtchouk If we take the limit q " 1 in the denition (3.15.1) of the q-Krawtchouk polynomials we simply nd the Krawtchouk polynomials given by (1.10.1) in the following way : 1 x lim K (q ; p; N ; q) = Kn x; p + 1 ; N : q "1 n 5.16 Ane q-Krawtchouk ! Krawtchouk If we let q " 1 in the denition (3.16.1) of the ane q-Krawtchouk polynomials we obtain : lim K Aff (q x ; p; N jq) = Kn (x; 1 p; N ); q "1 n where Kn (x; 1 p; N ) is the Krawtchouk polynomial dened by (1.10.1). 5.17 Dual q-Krawtchouk ! Krawtchouk If we set c = 1 p 1 in the denition (3.17.1) of the dual q-Krawtchouk polynomials and take the limit q " 1 we simply nd the Krawtchouk polynomials given by (1.10.1) : 1 lim K (x); 1 p ; N jq = Kn (x; p; N ): q "1 n 104 5.18 Continuous big q-Hermite ! Hermite q If we set a = 0 and x ! x 12 (1 q) in the denition (3.18.1) of the continuous big q-Hermite polynomials and let q tend to one, we obtain the Hermite polynomials given by (1.13.1) in the following way : 1 Hn x 1 2 q 2 ; 0 q lim = Hn(x): n 1 q 2 q "1 2 q p If we take a ! a 2(1 q) and x ! x 12 (1 q) in the denition (3.18.1) of the continuous big q-Hermite polynomials and take the limit q " 1 we nd the Hermite polynomials dened by (1.13.1) with shifted argument : lim q "1 Hn x 1 2 q 12 ; ap2(1 1 2 q n2 q) q = Hn(x a): 5.19 Continuous q-Laguerre ! Laguerre If we set x ! qx in the denitions (3.19.1) and (3.19.2) of the continuous q-Laguerre polynomials and take the limit q " 1 we nd the Laguerre polynomials dened by (1.11.1). In fact we have : lim P ()(qx jq) = L(n) (2x) q "1 n and lim P ()(qx ; q) = L(n) (x): q "1 n 5.20 Little q-Laguerre / Wall ! Laguerre If we set a = q and x ! (1 q)x in the denition (3.20.1) of the little q-Laguerre (or Wall) polynomials and let q tend to one, we obtain the Laguerre polynomials given by (1.11.1) : lim p ((1 q)x; qjq) = Ln()(x) : q "1 n Ln (0) ( ) 5.20.1 Little q-Laguerre / Wall ! Charlier If we set a ! (q 1)a and x ! qx in the denition (3.20.1) of the little q-Laguerre (or Wall) polynomials and take the limit q " 1 we obtain the Charlier polynomials given by (1.12.1) in the following way : pn(qx ; (q 1)ajq) = Cn (x; a) : lim q "1 (1 q)n an 5.21 q -Laguerre ! Laguerre If we set x ! (1 q)x in the denition (3.21.1) of the q-Laguerre polynomials and take the limit q " 1 we obtain the Laguerre polynomials given by (1.11.1) : lim L() ((1 q)x; q) = L(n)(x): q "1 n 105 5.21.1 q-Laguerre ! Charlier If we set x ! q x and q = a 1(q 1) 1 (or = (ln q) 1 ln(q 1)a) in the denition (3.21.1) of the q-Laguerre polynomials, multiply by (q; q)n , and take the limit q " 1 we obtain the Charlier polynomials given by (1.12.1) : lim (q; q)nLn() ( q x ; q) = Cn(x; a); q = a(q 1 1) or = ln(qln q 1)a : q "1 5.22 Alternative q-Charlier ! Charlier If we set x ! qx and a ! a(1 q) in the denition (3.22.1) of the alternative q-Charlier polynomials and take the limit q " 1 we nd the Charlier polynomials given by (1.12.1) : Kn(qx ; a(1 q); q) = anC (x; a): lim n q "1 (q 1)n 5.23 q -Charlier ! Charlier If we set a ! a(1 q) in the denition (3.23.1) of the q-Charlier polynomials and take the limit q " 1 we obtain the Charlier polynomials dened by (1.12.1) : lim C (q x ; a(1 q); q) = Cn(x; a): q "1 n 5.24 Al-Salam-Carlitz I ! Charlier If we set a ! a(q 1) and x ! qx in the denition (3.24.1) of the Al-Salam-Carlitz I polynomials and take the limit q " 1 after dividing by an (1 q)n we obtain the Charlier polynomials dened by (1.12.1) : Un(a(q 1))(qx ; q) = an C (x; a): lim n q "1 (1 q)n 5.24.1 Al-Salam-Carlitz Ip! Hermite p If we set x ! x 1 q2 and a !n a 1 q2 1 in the denition (3.24.1) of the Al-Salam-Carlitz I polynomials, divide by (1 q2 ) 2 , and let q tend to one we obtain the Hermite polynomials given by (1.13.1) with shifted argument. In fact we have p (a 1 U n lim q "1 q2 p (x 1 q2 ; q) = Hn(x a) : 2n (1 q2 ) n2 1) 5.25 Al-Salam-Carlitz II ! Charlier If we set a ! a(1 q) and x ! q x in the denition (3.25.1) of the Al-Salam-Carlitz II polynomials and taking the limit q " 1 we nd Vn(a(1 q)) (q x ; q) = anC (x; a): lim n q "1 (q 1)n 106 5.25.1 Al-Salam-Carlitz pII ! Hermite p If we set x ! x 1 q2 and a ! a 1 q2 +1 in the denition (3.25.1) of the Al-Salam-Carlitz II polynomials, divide by (1 q2 ) n2 , and let q tend to one we obtain the Hermite polynomials given by (1.13.1) with shifted argument. In fact we have (a lim Vn p1 q "1 q2 +1) p (x 1 q2 ; q) = Hn(x 2) : 2n (1 q2 ) n2 5.26 Continuous q-Hermite ! Hermite The Hermite polynomials dened by (1.13.1) q can be obtained from the continuous q-Hermite polynomials given by (3.26.1) by setting x ! x 12 (1 q). In fact we have lim q "1 Hn x 1 1 2 2 q 12 q q n2 = Hn(x): 5.27 Stieltjes-Wigert ! Hermite The Hermite polynomials dened by (1.13.1) p can be obtained from the Stieltjes-Wigert polynomials given by (3.27.1) by setting x ! q 1x 2(1 q) + 1 and taking the limit q " 1 in the following way : p 1 ( q ; q ) S ( q x 2(1 q) + 1; q) = ( 1)n H (x): n n lim n n 1 q 2 q "1 2 5.28 Discrete q-Hermite I ! Hermite The Hermite polynomials dened by (1.13.1) can be found from the discrete q-Hermite I polynomials given by (3.28.1) in the following way : p hn x 1 q2 ; q Hn(x) lim = 2n : q "1 (1 q2) n2 5.29 Discrete q-Hermite II ! Hermite The Hermite polynomials dened by (1.13.1) can also be found from the discrete q-Hermite II polynomials given by (3.29.1) in a similar way : p h~ n x 1 q2 ; q Hn(x) lim = 2n : q "1 (1 q2) n2 107 Bibliography [1] N. Abdul-Halim & W.A. Al-Salam : A characterization of the Laguerre polynomials. Seminario Matematico della Universita di Padova 34, 1964, 176-179. [2] M. Abramowitz & I.A. Stegun (eds.) : Handbook of mathematical functions (with formulas, graphs, and mathematical tables). Dover Publications, New York, 1970. [3] S. Ahmed, A. Laforgia & M.E. Muldoon : On the spacing of the zeros of some classical orthogonal polynomials. Journal of the London Mathematical Society (2) 25, 1982, 246-252. [4] S. Ahmed, M.E. Muldoon & R. Spigler : Inequalities and numerical bounds for zeros of ultraspherical polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1000-1007. [5] K. Alladi & M.L. Robinson : Legendre polynomials and irrationality. Journal fur die Reine und Angewandte Mathematik 318, 1980, 137-155. [6] W.R. Allaway : Some properties of the q-Hermite polynomials. Canadian Journal of Mathematics 32, 1980, 686-694. [7] N.A. Al-Salam : Orthogonal polynomials of hypergeometric type. Duke Mathematical Journal 33, 1966, 109-121. [8] N.A. Al-Salam : On some q-operators with applications. Indagationes Mathematicae 51, 1989, 1-13. [9] W.A. Al-Salam : Operational representations for the Laguerre and other polynomials. Duke Mathematical Journal 31, 1964, 127-142. [10] W.A. Al-Salam : Characterization theorems for orthogonal polynomials. In : Orthogonal Polynomials : Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 1-24. [11] W. Al-Salam, W.R. Allaway & R. Askey : A characterization of the continuous qultraspherical polynomials. Canadian Mathematical Bulletin 27, 1984, 329-336. [12] W. Al-Salam, W.R. Allaway & R. Askey : Sieved ultraspherical polynomials. Transactions of the American Mathematical Society 284, 1984, 39-55. [13] W.A. Al-Salam & L. Carlitz : Some orthogonal q-polynomials. Mathematische Nachrichten 30, 1965, 47-61. [14] W.A. Al-Salam & T.S. Chihara : Another characterization of the classical orthogonal polynomials. SIAM Journal of Mathematical Analysis 3, 1972, 65-70. [15] W.A. Al-Salam & T.S. Chihara : Convolutions of orthogonal polynomials. SIAM Journal of Mathematical Analysis 7, 1976, 16-28. [16] W.A. Al-Salam & T.S. Chihara : q-Pollaczek polynomials and a conjecture of Andrews and Askey. SIAM Journal of Mathematical Analysis 18, 1987, 228-242. 108 [17] W.A. Al-Salam & M.E.H. Ismail : Polynomials orthogonal with respect to discrete convolution. Journal of Mathematical Analysis and Applications 55, 1976, 125-139. [18] W.A. Al-Salam & M.E.H. Ismail : Reproducing kernels for q-Jacobi polynomials. Proceedings of the American Mathematical Society 67, 1977, 105-110. [19] W.A. Al-Salam & M.E.H. Ismail : Orthogonal polynomials associated with the RogersRamanujan continued fraction. Pacic Journal of Mathematics 104, 1983, 269-283. [20] W.A. Al-Salam & M.E.H. Ismail : q-Beta integrals and the q-Hermite polynomials. Pacic Journal of Mathematics 135, 1988, 209-221. [21] W.A. Al-Salam & A. Verma : On an orthogonal polynomial set. Indagationes Mathematicae 44, 1982, 335-340. [22] W.A. Al-Salam & A. Verma : Some remarks on q-beta integral. Proceedings of the American Mathematical Society 85, 1982, 360-362. [23] W.A. Al-Salam & A. Verma : On the Geronimus polynomial sets. In : Orthogonal Polynomials and Their Applications (eds. M. Alfaro et al.). Lecture Notes in Mathematics 1329, Springer-Verlag, New York, 1988, 193-202. [24] G.E. Andrews & R. Askey : Enumeration of partitions : the role of Eulerian series and q-orthogonal polynomials. In : Higher Combinatorics (ed. M. Aigner), Reidel Publicatons, Boston, 1977, 3-26. [25] G.E. Andrews & R. Askey : Classical orthogonal polynomials. In : Polyn^omes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, 1985, Springer-Verlag, New York, 36-62. [26] R. Askey : Jacobi polynomials I. New proofs of Koornwinder's Laplace type integral representation and Bateman's bilinear sum. SIAM Journal on Mathematical Analysis 5, 1974, 119-124. [27] R. Askey : Orthogonal polynomials and special functions. CBMS Regional Conference Series, Volume 21. Society for Industrial and Applied Mathematics, Philadelphia, 1975. [28] R. Askey : Jacobi's generating function for Jacobi polynomials. Proceedings of the American Mathematical Society 71, 1978, 243-246. [29] R. Askey : Continuous Hahn polynomials. Journal of Physics A. Mathematical and General 18, 1985, L1017-L1019. [30] R. Askey : Limits of some q-Laguerre polynomials. Journal of Approximation Theory 46, 1986, 213-216. [31] R. Askey : Beta integrals and the associated orthogonal polynomials. In : Number Theory (ed. K. Alladi). Lecture Notes in Mathematics 1395, Springer-Verlag, New York, 1989, 84-121. [32] R. Askey : Continuous q-Hermite polynomials when q > 1. In : q-Series and Partitions (ed. D. Stanton). The IMA Volumes in Mathematics and Its Applications 18, Springer-Verlag, New York, 1989, 151-158. [33] R. Askey & J. Fitch : Integral representations for Jacobi polynomials and some applications. Journal of Mathematical Analysis and Applications 26, 1969, 411-437. [34] R. Askey & G. Gasper : Linearization of the product of Jacobi polynomials III. Canadian Journal of Mathematics 23, 1971, 332-338. 109 [35] R. Askey & G. Gasper : Positive Jacobi sums II. American Journal of Mathematics 98, 1976, 709-737. [36] R. Askey & M.E.H. Ismail : Permutation problems and special functions. Canadian Journal of Mathematics 28, 1976, 853-874. [37] R. Askey & M.E.H. Ismail : The Rogers q-ultraspherical polynomials. In : Approximation Theory III, Academic Press, New York, 1980, 175-182. [38] R. Askey & M.E.H. Ismail : A generalization of ultraspherical polynomials. In : Studies in Pure Mathematics (ed. P. Erdos), Birkhauser, Basel, 1983, 55-78. [39] R. Askey & M.E.H. Ismail : Recurrence relations, continued fractions and orthogonal polynomials. Memoirs of the American Mathematical Society 300, Providence, Rhode Island, 1984. [40] R. Askey, M.E.H. Ismail & T. Koornwinder : Weighted permutation problems and Laguerre polynomials. Journal of Combinatorial Theory A 25, 1978, 277-287. [41] R. Askey, T.H. Koornwinder & M. Rahman : An integral of products of ultraspherical functions and a q-extension. Journal of the London Mathematical Society (2) 33, 1986, 133-148. [42] R. Askey & S. Wainger : A convolution structure for Jacobi series. American Journal of Mathematics 91, 1969, 463-485. [43] R. Askey & J.A. Wilson : A set of orthogonal polynomials that generalize the Racah coecients or 6 j symbols. SIAM Journal on Mathematical Analysis 10, 1979, 1008-1016. [44] R. Askey & J.A. Wilson : A set of hypergeometric orthogonal polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 651-655. [45] R. Askey & J.A. Wilson : Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs of the American Mathematical Society 319, Providence, Rhode Island, 1985. [46] N.M. Atakishiyev & S.K. Suslov : The Hahn and Meixner polynomials of an imaginary argument and some of their applications. Journal of Physics A. Mathematical and General 18, 1985, 1583-1596. [47] N.M. Atakishiyev & S.K. Suslov : Continuous orthogonality property for some classical polynomials of a discrete variable. Revista Mexicana de Fisica 34, 1988, 541-563. [48] N.M. Atakishiyev & S.K. Suslov : On the Askey-Wilson polynomials. Constructive Approximation 8, 1992, 363-369. [49] R. Azor, J. Gillis & J.D. Victor : Combinatorial applications of Hermite polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 879-890. [50] W.N. Bailey : The generating function of Jacobi polynomials. Journal of the London Mathematical Society 13, 1938, 8-12. [51] E. Badertscher & T.H. Koornwinder : Continuous Hahn polynomials of dierential operator argument and analysis on Riemannian symmetric spaces of constant curvature. Canadian Journal of Mathematics 44, 1992, 750-773. [52] W.W. Barrett : An alternative approach to Laguerre polynomial identities in combinatorics. Canadian Journal of Mathematics 31, 1979, 312-319. 110 [53] B.R. Bhonsle : On a series of Rainville involving Legendre polynomials. Proceedings of the American Mathematical Society 8, 1957, 10-14. [54] G.G. Bilodeau : Gegenbauer polynomials and fractional derivatives. The American Mathematical Monthly 71, 1964, 1026-1028. [55] F. Brafman : Generating functions of Jacobi and related polynomials. Proceedings of the American Mathematical Society 2, 1951, 942-949. [56] F. Brafman : An ultraspherical generating function. Pacic Journal of Mathematics 7, 1957, 1319-1323. [57] F. Brafman : Some generating functions for Laguerre and Hermite polynomials. Canadian Journal of Mathematics 9, 1957, 180-187. [58] W.C. Brenke : On generating functions of polynomial systems. The American Mathematical Monthly 52, 1945, 297-301. [59] D.M. Bressoud : A simple proof of Mehler's formula for q-Hermite polynomials. Indiana University Mathematical Journal 29, 1980, 577-580. [60] D.M. Bressoud : Linearization and related formulas for q-ultraspherical polynomials. SIAM Journal on Mathematical Analysis 12, 1981, 161-168. [61] J.W. Brown : New generating functions for classical polynomials. Proceedings of the American Mathematical Society 21, 1969, 263-268. [62] J. Bustoz & M.E.H. Ismail : The associated ultraspherical polynomials and their qanalogues. Canadian Journal of Mathematics 34, 1982, 718-736. [63] J. Bustoz & M.E.H. Ismail : Turan inequalities for ultraspherical and continuous qultraspherical polynomials. SIAM Journal on Mathematical Analysis 14, 1983, 807-818. [64] J. Bustoz & M.E.H. Ismail : A positive trigonometric sum. SIAM Journal on Mathematical Analysis 20, 1989, 176-181. [65] J. Bustoz & N. Savage : Inequalities for ultraspherical and Laguerre polynomials. SIAM Journal on Mathematical Analysis 10, 1979, 902-912. [66] J. Bustoz & N. Savage : Inequalities for ultraspherical and Laguerre polynomials II. SIAM Journal on Mathematical Analysis 11, 1980, 876-884. [67] L. Carlitz : A note on the Laguerre polynomials. The Michigan Mathematical Journal 7, 1960, 219-223. [68] L. Carlitz : Some generating functions of Weisner. Duke Mathematical Journal 28, 1961, 523-529. [69] L. Carlitz : The generating function for the Jacobi polynomial. Rendiconti del Seminario Matematico della Universita di Padova 38, 1967, 86-88. [70] L. Carlitz : Some generating functions for Laguerre polynomials. Duke Mathematical Journal 35, 1968, 825-827. [71] L. Carlitz & H.M. Srivastava : Some new generating functions for the Hermite polynomials. Journal of Mathematical Analysis and Applications 149, 1990, 513-520. [72] J.A. Charris & M.E.H. Ismail : On sieved orthogonal polynomials. V : sieved Pollaczek polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1177-1218. 111 [73] L. Chihara : On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM Journal on Mathematical Analysis 18, 1987, 191-207. [74] T.S. Chihara : On indeterminate Hamburger moment problems. Pacic Journal of Mathematics 27, 1968, 475-484. [75] T.S. Chihara : Orthogonal polynomials with Brenke type generating functions. Duke Mathematical Journal 35, 1968, 505-517. [76] T.S. Chihara : A characterization and a class of distribution functions for the StieltjesWigert polynomials. Canadian Mathematical Bulletin 13, 1970, 529-532. [77] T.S. Chihara : An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978. [78] T.S. Chihara : On generalized Stieltjes-Wigert and related orthogonal polynomials. Journal of Computational and Applied Mathematics 5, 1979, 291-297. [79] T.S. Chihara & M.E.H. Ismail : Extremal measures for a system of orthogonal polynomials. Constructive Approximation 9, 1993, 111-119. [80] Z. Ciesielski : Explicit formula relating the Jacobi, Hahn and Bernstein polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1573-1575. [81] M.E. Cohen : Some classes of generating functions for the Laguerre and Hermite polynomials. Mathematics of Computation 31, 1977, 511-518. [82] R.D. Cooper, M.R. Hoare & M. Rahman : Stochastic processes and special functions : On the probabilistic origin of some positive kernels associated with classical orthogonal polynomials. Journal of Mathematical Analysis and Applications 61, 1977, 262-291. [83] A.E. Danese : Some identities and inequalities involving ultraspherical polynomials. Duke Mathematical Journal 26, 1959, 349-359. [84] J.S. Dehesa : On a general system of orthogonal q-polynomials. Journal of Computational and Applied Mathematics 5, 1979, 37-45. [85] P. Delsarte : Association schemes and t-designs in regular semilattices. Journal of Combinatorial Theory A 20, 1976, 230-243. [86] P. Delsarte & J.M. Goethals : Alternating bilinear forms over GF (q). Journal of Combinatorial Theory A 19, 1975, 26-50. [87] C.F. Dunkl : A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana University Mathematics Journal 25, 1976, 335-358. [88] C.F. Dunkl : An addition theorem for some q-Hahn polynomials. Monatshefte fur Mathematik 85, 1977, 5-37. [89] C.F. Dunkl : An addition theorem for Hahn polynomials : the spherical functions. SIAM Journal on Mathematical Analysis 9, 1978, 627-637. [90] C.F. Dunkl : Orthogonal polynomials with symmetry of order three. Canadian Journal of Mathematics 36, 1984, 685-717. [91] C.F. Dunkl & D.E. Ramirez : Krawtchouk polynomials and the symmetrization of hypergroups. SIAM Journal on Mathematical Analysis 5, 1974, 351-366. [92] A. Elbert & A. Laforgia : A note on the paper of Ahmed, Muldoon and Spigler. SIAM Journal on Mathematical Analysis 17, 1986, 1008-1009. 112 [93] A. Elbert & A. Laforgia : New properties of the zeros of a Jacobi polynomial in relation to their centroid. SIAM Journal on Mathematical Analysis 18, 1987, 1563-1572. [94] A. Erdelyi et al. : Higher transcendental functions. Volume II of the Bateman Manuscript Project. McGraw-Hill Book Company, New York, 1953. [95] A. Erdelyi : Asymptotic forms for Laguerre polynomials. Journal of the Indian Mathematical Society 24, 1960, 235-250. [96] H. Exton : Basic Laguerre polynomials. Pure and Applied Mathematika Sciencses 5, 1977, 19-24. [97] D. Foata & J. Labelle : Modeles combinatoires pour les polyn^omes de Meixner. European Journal of Combinatorics 4, 1983, 305-311. [98] D. Foata & P. Leroux : Polyn^omes de Jacobi, interpretation combinatoire et fonction generatrice. Proceedings of the American Mathematical Society 87, 1983, 47-53. [99] G. Gasper : Linearization of the product of Jacobi polynomials I. Canadian Journal of Mathematics 22, 1970, 171-175. [100] G. Gasper : Linearization of the product of Jacobi polynomials II. Canadian Journal of Mathematics 22, 1970, 582-593. [101] G. Gasper : On the extension of Turan's inequality to Jacobi polynomials. Duke Mathematical Journal 38, 1971, 415-428. [102] G. Gasper : Positivity and the convolution structure for Jacobi series. Annals of Mathematics 93, 1971, 112-118. [103] G. Gasper : Banach algebras for Jacobi series and positivity of a kernel. Annals of Mathematics 95, 1972, 261-280. [104] G. Gasper : Nonnegativity of a discrete Poisson kernel for the Hahn polynomials. Journal of Mathematical Analysis and Applications 42, 1973, 438-451. [105] G. Gasper : Projection formulas for orthogonal polynomials of a discrete variable. Journal of Mathematical Analysis and Applications 45, 1974, 176-198. [106] G. Gasper : Positive sums of the classical orthogonal polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 423-447. [107] G. Gasper : Orthogonality of certain functions with respect to complex valued weights. Canadian Journal of Mathematics 33, 1981, 1261-1270. [108] G. Gasper : Roger's linearization formula for the continuous q-ultraspherical polynomials and quadratic transformation formulas. SIAM Journal on Mathematical Analysis 16, 1985, 1061-1071. [109] G. Gasper : q-Extensions of Clausen's formula and of the inequalities used by De Branges in his proof of the Bieberbach, Robertson, and Milin conjectures. SIAM Journal on Mathematical Analysis 20, 1989, 1019-1034. [110] G. Gasper & M. Rahman : Positivity of the Poisson kernel for the continuous qultraspherical polynomials. SIAM Journal on Mathematical Analysis 14, 1983, 409-420. [111] G. Gasper & M. Rahman : Product formulas of Watson, Bailey and Bateman types and positivity of the Poisson kernel for q-Racah polynomials. SIAM Journal on Mathematical Analysis 15, 1984, 768-789. 113 [112] G. Gasper & M. Rahman : Positivity of the Poisson kernel for the continuous q-Jacobi polynomials and some quadratic transformation formulas for basic hypergeometric series. [113] [114] [115] [116] SIAM Journal on Mathematical Analysis 17, 1986, 970-999. G. Gasper & M. Rahman : A nonterminating q-Clausen formula and some related product formulas. SIAM Journal on Mathematical Analysis 20, 1989, 1270-1282. G. Gasper & M. Rahman : Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35, Cambridge University Press, Cambridge, 1990. L. Gatteschi : New inequalities for the zeros of Jacobi polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1549-1562. J. Gillis : Integrals of products of Laguerre polynomials. SIAM Journal on Mathematical Analysis 6, 1975, 318-339. [117] J. Gillis, M.E.H. Ismail & T. Offer : An asymptotic problem in derangement theory. SIAM Journal on Mathematical Analysis 21, 1990, 262-269. [118] J. Gillis, J. Jedwab & D. Zeilberger : A combinatorial interpretation of the integral of the products of Legendre polynomials. SIAM Journal on Mathematical Analysis 19, 1988, 1455-1461. [119] I.S. Gradshteyn & I.M. Ryzhik : Table of integrals, series, and products. Corrected and enlarged edition. Academic Press, Orlando, Florida, 1980. [120] D.P. Gupta, M.E.H. Ismail & D.R. Masson : Associated continuous Hahn polynomials. Canadian Journal of Mathematics 43, 1991, 1263-1280. Orthogonalpolynome, die q-Dierenzengleichungen genugen. Mathematis[121] W. Hahn : Uber che Nachrichten 2, 1949, 4-34. [122] R. Horton : Jacobi polynomials IV. A family of variation diminishing kernels. SIAM Journal on Mathematical Analysis 6, 1975, 544-550. [123] M.E.H. Ismail : On obtaining generating functions of Boas and Buck type for orthogonal polynomials. SIAM Journal on Mathematical Analysis 5, 1974, 202-208. [124] M.E.H. Ismail : Connection relations and bilinear formulas for the classical orthogonal polynomials. Journal of Mathematical Analysis and Applications 57, 1977, 487-496. [125] M.E.H. Ismail : A queueing model and a set of orthogonal polynomials. Journal of Mathematical Analysis and Applications 108, 1985, 575-594. [126] M.E.H. Ismail : On sieved orthogonal polynomials, I : Symmetric Pollaczek analogues. SIAM Journal on Mathematical Analysis 16, 1985, 1093-1113. [127] M.E.H. Ismail : Asymptotics of the Askey-Wilson and q-Jacobi polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1475-1482. [128] M.E.H. Ismail : On sieved orthogonal polynomials, IV : Generating functions. Journal of Approximation Theory 46, 1986, 284-296. [129] M.E.H. Ismail, J. Letessier & G. Valent : Linear birth and death models and associated Laguerre and Meixner polynomials. Journal of Approximation Theory 55, 1988, 337-348. [130] M.E.H. Ismail, J. Letessier & G. Valent : Quadratic birth and death processes and associated continuous dual Hahn polynomials. SIAM Journal on Mathematical Analysis 20, 1989, 727-737. 114 [131] M.E.H. Ismail, J. Letessier, D.R. Masson & G. Valent : Birth and death processes and orthogonal polynomials. In : Orthogonal Polynomials : Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 229-255. [132] M.E.H. Ismail, J. Letessier, G. Valent & J. Wimp : Two families of associated Wilson polynomials. Canadian Journal of Mathematics 42, 1990, 659-695. [133] M.E.H. Ismail, J. Letessier, G. Valent & J. Wimp : Some results on associated Wilson polynomials. In : Orthogonal Polynomials and their Applications (eds. C. Brezinski, L. Gori & A. Ronveaux). Volume 9 of IMACS Annals on Computing and Applied Mathematics, J.C. Baltzer Scientic Publishing Company, Basel, 1991, 293-298. [134] M.E.H. Ismail, D.R. Masson & M. Rahman : Complex weight functions for classical orthogonal polynomials. Canadian Journal of Mathematics 43, 1991, 1294-1308. [135] M.E.H. Ismail & M.E. Muldoon : A discrete approach to monotonicity of zeros of orthogonal polynomials. Transactions of the American Mathematical Society 323, 1991, 6578. [136] M.E.H. Ismail & M. Rahman : The associated Askey-Wilson polynomials. Transactions of the American Mathematical Society 328, 1991, 201-237. [137] M.E.H. Ismail & D. Stanton : On the Askey-Wilson and Rogers polynomials. Canadian Journal of Mathematics 40, 1988, 1025-1045. [138] M.E.H. Ismail, D. Stanton & G. Viennot : The combinatorics of q-Hermite polynomials and the Askey-Wilson integral. European Journal of Combinatorics 8, 1987, 379-392. [139] M.E.H. Ismail & M.V. Tamhankar : A combinatorial approach to some positivity problems. SIAM Journal on Mathematical Analysis 10, 1979, 478-485. [140] M.E.H. Ismail & J.A. Wilson : Asymptotic and generating relations for the q-Jacobi and 4 3 polynomials. Journal of Approximation Theory 36, 1982, 43-54. [141] D.M. Jackson : Laguerre polynomials and derangements. Mathematical Proceedings of the Cambridge Philosophical Society 80, 1976, 213-214. [142] E.G. Kalnins & W. Miller Jr. : q-Series and orthogonal polynomials associated with Barnes' rst lemma. SIAM Journal on Mathematical Analysis 19, 1988, 1216-1231. [143] S. Karlin & J. McGregor : Linear growth ; birth and death processes. Journal of Mathematics and Mechanics 7, 1958, 643-662. [144] S. Karlin & J.L. McGregor : The Hahn polynomials, formulas and an application. Scripta Mathematicae 26, 1961, 33-46. [145] H.T. Koelink & T.H. Koornwinder : The Clebsch-Gordan coecients for the quantum group S U (2) and q-Hahn polynomials. Indagationes Mathematicae 51, 1989, 443-456. [146] T.H. Koornwinder : The addition formula for Jacobi polynomials I. Summary of results. Indagationes Mathematicae 34, 1972, 188-191. [147] T.H. Koornwinder : The addition formula for Jacobi polynomials and spherical harmonics. SIAM Journal on Applied Mathematics 25, 1973, 236-246. [148] T. Koornwinder : Jacobi polynomials II. An analytic proof of the product formula. SIAM Journal on Mathematical Analysis 5, 1974, 125-137. [149] T. Koornwinder : Jacobi polynomials III. An analytic proof of the addition formula. SIAM Journal on Mathematical Analysis 6, 1975, 533-543. 115 [150] T. Koornwinder : The addition formula for Laguerre polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 535-540. [151] T.H. Koornwinder : Yet another proof of the addition formula for Jacobi polynomials. Journal of Mathematical Analysis and Applications 61, 1977, 136-141. [152] T.H. Koornwinder : Positivity proofs for linearization and connection coecients of orthogonal polynomials satisfying an addition formula. Journal of the London Mathematical Society (2) 18, 1978, 101-114. [153] T.H. Koornwinder : Clebsch-Gordan coecients for SU (2) and Hahn polynomials. Nieuw Archief voor Wiskunde 29, 1981, 140-155. [154] T.H. Koornwinder : Krawtchouk polynomials, a unication of two dierent group theoretic interpretations. SIAM Journal on Mathematical Analysis 13, 1982, 1011-1023. [155] T.H. Koornwinder : Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform. In : Polyn^omes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, 1985, Springer-Verlag, New York, 174-183. [156] T.H. Koornwinder : Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials. In : Orthogonal Polynomials and Their Applications (eds. M. Alfaro et al.). Lecture Notes in Mathematics 1329, Springer-Verlag, New York, 1988, 46-72. [157] T.H. Koornwinder : Continuous q-Legendre polynomials as spherical matrix elements of irreducible representations of the quantum SU (2) group. C.W.I. Quarterly 2, 1989, 171-173. [158] T.H. Koornwinder : Representations of the twisted SU (2) quantum group and some qhypergeometric orthogonal polynomials. Indagationes Mathematicae 51, 1989, 97-117. [159] T.H. Koornwinder : Jacobi functions as limit cases of q-ultraspherical polynomials. Journal of Mathematical Analysis and Applications 148, 1990, 44-54. [160] T.H. Koornwinder : Orthogonal polynomials in connection with quantum groups. In : Orthogonal Polynomials : Theory and Practice (ed. P. Nevai), Kluwer, Dordrecht, 1990, 257-292. [161] T.H. Koornwinder : The addition formula for little q-Legendre polynomials and the SU (2) quantum group. SIAM Journal on Mathematical Analysis 22, 1991, 295-301. [162] T.H. Koornwinder : Askey-Wilson polynomials for root systems of type BC. Contemporary Mathematics 138, 1992, 189-204. [163] T.H. Koornwinder : Askey-Wilson polynomials as zonal spherical functions on the SU (2) quantum group. SIAM Journal on Mathematical Analysis 24, 1993, 795-813. [164] A. Laforgia : A monotonic property for the zeros of ultraspherical polynomials. Proceedings of the American Mathematical Society 83, 1981, 757-758. [165] T.P. Laine : Projection formulas and a new proof of the addition formula for the Jacobi polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 324-330. [166] D.A. Leonard : Orthogonal polynomials, duality and association schemes. SIAM Journal on Mathematical Analysis 13, 1982, 656-663. Polynomsysteme, die Sturm-Liouvilleschen Dierenzengleichungen genu[167] P. Lesky : Uber gen. Mathematische Zeitschrift 78, 1962, 439-445. [168] J. Letessier & G. Valent : The generating function method for quadratic asymptotically symmetric birth and death processes. SIAM Journal on Applied Mathematics 44, 1984,773783. 116 [169] J. Letessier & G. Valent : Dual birth and death processes and orthogonal polynomials. SIAM Journal on Applied Mathematics 46, 1986, 393-405. [170] Y.L. Luke : The special functions and their approximations. Volume 1. Mathematics in Science and Engineering, Volume 53. Academic Press, New York, 1969. [171] D.R. Masson : Associated Wilson polynomials. Constructive Approximation 7, 1991, 521534. [172] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi & K. Ueno : Representations of the quantum group SUq (2) and the little q-Jacobi polynomials. Journal of Functional Analysis 99, 1991, 357-386. [173] H.G. Meijer : Asymptotic expansion of Jacobi polynomials. In : Polyn^omes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, 1985, SpringerVerlag, New York, 380-389. [174] J. Meixner : Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. Journal of the London Mathematical Society 9, 1934, 6-13. [175] W. Miller Jr. : A note on Wilson polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1221-1226. [176] W. Miller Jr. : Symmetry techniques and orthogonality for q-series. In : q-Series and Partitions (ed. D. Stanton). The IMA Volumes in Mathematics and Its Applications, Volume 18, Springer-Verlag, New York, 1989, 191-212. [177] D.S. Moak : The q-analogue of the Laguerre polynomials. Journal of Mathematical Analysis and Applications 81, 1981, 20-47. [178] D.S. Moak, E.B. Saff & R.S. Varga : On the zeros of Jacobi polynomials Pn(n ;n ) (x). Transactions of the American Mathematical Society 249, 1979, 159-162. [179] B. Nassrallah & M. Rahman : Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials. SIAM Journal on Mathematical Analysis 16, 1985, 186-197. [180] A.F. Nikiforov, S.K. Suslov & V.B. Uvarov : Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics, Springer-Verlag, New York, 1991. [181] M. Noumi & K. Mimachi : Roger's q-ultraspherical polynomials on a quantum 2-sphere. Duke Mathematical Journal 63, 1991, 65-80. [182] F.W.J. Olver : Asymptotics and special functions. Computer Science and Applied Mathematics, Academic Press, New York, 1974. [183] M. Perlstadt : A property of orthogonal polynomial families with polynomial duals. SIAM Journal on Mathematical Analysis 15, 1984, 1043-1054. [184] J. Prasad & H. Hayashi : On the uniform approximation of smooth functions by Jacobi polynomials. Canadian Journal of Mathematics 25, 1973, 216-223. [185] M. Rahman : Construction of a family of positive kernels from Jacobi polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 92-116. [186] M. Rahman : A ve-parameter family of positive kernels from Jacobi polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 386-413. 117 [187] M. Rahman : Some positive kernels and bilinear sums for Hahn polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 414-435. [188] M. Rahman : On a generalization of the Poisson kernel for Jacobi polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 1014-1031. [189] M. Rahman : A generalization of Gasper's kernel for Hahn polynomials : application to Pollaczek polynomials. Canadian Journal of Mathematics 30, 1978, 133-146. [190] M. Rahman : A positive kernel for Hahn-Eberlein polynomials. SIAM Journal on Mathematical Analysis 9, 1978, 891-905. [191] M. Rahman : An elementary proof of Dunkl's addition theorem for Krawtchouk polynomials. SIAM Journal on Mathematical Analysis 10, 1979, 438-445. [192] M. Rahman : A product formula and a non-negative Poisson kernel for Racah-Wilson polynomials. Canadian Journal of Mathematics 32, 1980, 1501-1517. [193] M. Rahman : A non-negative representation of the linearization coecients of the product of Jacobi polynomials. Canadian Journal of Mathematics 33, 1981, 915-928. [194] M. Rahman : A stochastic matrix and bilinear sums for Racah-Wilson polynomials. SIAM Journal on Mathematical Analysis 12, 1981, 145-160. [195] M. Rahman : Families of biorthogonal rational functions in a discrete variable. SIAM Journal on Mathematical Analysis 12, 1981, 355-367. [196] M. Rahman : The linearization of the product of continuous q-Jacobi polynomials. Canadian Journal of Mathematics 33, 1981, 961-987. [197] M. Rahman : Reproducing kernels and bilinear sums for q-Racah and q-Wilson polynomials. Transactions of the American Mathematical Society 273, 1982, 483-508. [198] M. Rahman : A q-extension of Feldheim's bilinear sum for Jacobi polynomials and some applications. Canadian Journal of Mathematics 37, 1985, 551-578. [199] M. Rahman : A product formula for the continuous q-Jacobi polynomials. Journal of Mathematical Analysis and Applications 118, 1986, 309-322. [200] M. Rahman : q-Wilson functions of the second kind. SIAM Journal on Mathematical Analysis 17, 1986, 1280-1286. [201] M. Rahman : A simple proof of Koornwinder's addition formula for the little q-Legendre polynomials. Proceedings of the American Mathematical Society 107, 1989, 373-381. [202] M. Rahman : Askey-Wilson functions of the rst and second kinds : series and integral representations of Cn2 (x; jq) + Dn2 (x; jq). Journal of Mathematical Analysis and Applications 164, 1992, 263-284. [203] M. Rahman & M.J. Shah : An innite series with products of Jacobi polynomials and Jacobi functions of the second kind. SIAM Journal on Mathematical Analysis 16, 1985, 859-875. [204] M. Rahman & A. Verma : Product and addition formulas for the continuous q-ultraspherical polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1461-1474. [205] E.D. Rainville : Special functions. The Macmillan Company, New York, 1960. [206] T.J. Rivlin : The Chebyshev polynomials. Pure and Applied Mathematics. A Wiley Interscience series of Texts, Monographs and Tracts. John Wiley and Sons, New York, 1974. 118 [207] L.J. Rogers : On the exansion of some innite products. Proceedings of the London Mathematical Society 24, 1893, 337-352. [208] L.J. Rogers : Second memoir on the expansion of certain innite products. Proceedings of the London Mathematical Society 25, 1894, 318-343. [209] L.J. Rogers : Third memoir on the expansion of certain innite products. Proceedings of the London Mathematical Society 26, 1895, 15-32. [210] M. de Sainte-Catherine & G. Viennot : Combinatorial interpretation of integrals of products of Hermite, Laguerre and Tchebyche polynomials. In : Polyn^omes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, 1985, SpringerVerlag, New York, 120-128. [211] H.M. Srivastava : Generating functions for Jacobi and Laguerre polynomials. Proceedings of the American Mathematical Society 23, 1969, 590-595. [212] H.M. Srivastava & V.K. Jain : Some formulas involving q-Jacobi and related polynomials. Annali di Matematica Pura ed Applicata (4) 157, 1990, 63-75. [213] H.M. Srivastava & J.P. Singhal : New generating functions for Jacobi and related polynomials. Journal of Mathematical Analysis and Applications 41, 1973, 748-752. [214] D. Stanton : A short proof of a generating function for Jacobi polynomials. Proceedings of the American Mathematical Society 80, 1980, 398-400. [215] D. Stanton : Product formulas for q-Hahn polynomials. SIAM Journal on Mathematical Analysis 11, 1980, 100-107. [216] D. Stanton : Some q-Krawtchouk polynomials on Chevalley groups. American Journal of Mathematics 102, 1980, 625-662. [217] D. Stanton : Orthogonal polynomials and Chevalley groups. In : Special Functions : Group Theoretical Aspects and Applications (eds. R.A. Askey et al.). D. Reidel Publishing Company, Dordrecht, 1984, 87-128. [218] D. Stanton : An introduction to group representations and orthogonal polynomials. In : Orthogonal Polynomials : Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 419-433. [219] T.J. Stieltjes : Recherches sur les fractions continues. Annales de la Faculte des Sciences de Toulouse 8, 1894, J1-122 ; 9, 1895, A1-47 ; uvres Completes, Volume 2, 398-566. [220] G. Szego : Orthogonal polynomials. American Mathematical Society, Colloquium Publications 23, Providence, Rhode Island, Fourth edition, 1975. [221] W. Van Assche & T.H. Koornwinder : Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials. SIAM Journal on Mathematical Analysis 22, 1991, 302-311. [222] G. Viennot : A combinatorial theory for general orthogonal polynomials with extensions and applications. In : Polyn^omes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, 1985, Springer-Verlag, New York, 139-157. [223] B. Viswanathan : Generating functions for ultraspherical functions. Canadian Journal of Mathematics 20, 1968, 120-134. [224] H.S. Wall : A continued fraction related to some partition formulas of Euler. The American Mathematical Monthly 48, 1941, 102-108. 119 [225] L. Weisner : Generating functions for Hermite functions. Canadian Journal of Mathematics 11, 1959, 141-147. [226] S. Wigert : Sur les polynomes orthogonaux et l'approximation des fonctions continues. Arkiv for Matematik, Astronomi och Fysik 17, 1923, 1-15. [227] J.A. Wilson : Some hypergeometric orthogonal polynomials. SIAM Journal on Mathematical Analysis 11, 1980, 690-701. [228] J.A. Wilson : Asymptotics for the 4 F3 polynomials. Journal of Approximation Theory 66, 1991, 58-71. [229] J. Wimp : Explicit formulas for the associated Jacobi polynomials and some applications. Canadian Journal of Mathematics 39, 1987, 983-1000. [230] J. Wimp : Pollaczek polynomials and Pade approximants : some closed-form expressions. Journal of Computational and Applied Mathematics 32, 1990, 301-310. [231] M. Wyman : The asymptotic behaviour of the Hermite polynomials. Canadian Journal of Mathematics 15, 1963, 332-349. [232] A.I. Zayed : Jacobi polynomials as generalized Faber polynomials. Transactions of the American Mathematical Society 321, 1990, 363-378. [233] J. Zeng : Linearisation de produits de polyn^omes de Meixner, Krawtchouk, et Charlier. SIAM Journal on Mathematical Analysis 21, 1990, 1349-1368. 120 Index Ane q-Krawtchouk polynomials, 78, 96, 99, 104 Al-Salam-Carlitz I polynomials, 87, 97, 99, 100, 106 Al-Salam-Carlitz II polynomials, 88, 98, 100, 106, 107 Al-Salam-Chihara polynomials, 62, 94, 96, 102 Alternative q-Charlier polynomials, 85, 98, 99, 106 Askey-scheme, 22 Askey-Wilson polynomials, 50, 92, 93, 101 Big q-Jacobi polynomials, 57, 92, 93, 95, 102 Big q-Laguerre polynomials, 72, 95, 97, 103 Big q-Legendre polynomials, 58, 102 Charlier polynomials, 40, 46, 47, 105, 106 Chebyshev polynomials, 35 Continuous q-Hahn polynomials, 55, 92, 95, 101 Continuous q-Hermite polynomials, 89, 97, 99, 107 Continuous q-Jacobi polynomials, 65, 92, 97, 103 Continuous q-Laguerre polynomials, 82, 96, 97, 99, 105 Continuous q-Legendre polynomials, 70, 103 Continuous q-ultraspherical polynomials, 68, 93, 96, 97, 103 Continuous big q-Hermite polynomials, 80, 96, 99, 105 Continuous dual q-Hahn polynomials, 54, 92, 94, 101 Continuous dual Hahn polynomials, 27, 43, 44, 101 Continuous Hahn polynomials, 28, 43, 44, 101 Discrete q-Hermite I polynomials, 90, 100, 107 Discrete q-Hermite II polynomials, 91, 100, 107 Dual q-Hahn polynomials, 60, 94, 96, 102 Dual q-Krawtchouk polynomials, 79, 94, 96, 99, 104 Dual Hahn polynomials, 31, 44, 45, 102 Gegenbauer polynomials, 34, 103 Hahn polynomials, 29, 43, 45, 102 Hermite polynomials, 41, 45{47, 105{107 Jacobi polynomials, 33, 43{46, 102, 103 Krawtchouk polynomials, 38, 45, 46, 104 Laguerre polynomials, 39, 45{47, 103{105 Legendre polynomials, 37, 102{104 Little q-Jacobi polynomials, 73, 95, 97, 98, 103, 104 Little q-Laguerre polynomials, 84, 97, 99, 105 Little q-Legendre polynomials, 74, 104 Meixner polynomials, 38, 45, 46, 104 Meixner-Pollaczek polynomials, 32, 44, 45, 102, 103 q-Charlier polynomials, 87, 98, 99, 106 q-Hahn polynomials, 59, 93, 95, 96, 102 q-Krawtchouk polynomials, 77, 94, 96, 98, 104 q-Laguerre polynomials, 84, 97{99, 105, 106 q-Meixner polynomials, 75, 95, 98, 104 q-Meixner-Pollaczek polynomials, 64, 95, 96, 103 q-Racah polynomials, 52, 93, 94, 101 q-Scheme, 48, 49 Quantum q-Krawtchouk polynomials, 76, 95, 98, 104 Racah polynomials, 25, 43, 44, 101 Rogers polynomials, 68, 93, 96, 97, 103 Spherical polynomials, 37, 102{104 Stieltjes-Wigert polynomials, 90, 99, 107 Ultraspherical polynomials, 34, 103 Wall polynomials, 84, 97, 99, 105 Wilson polynomials, 23, 43, 101 121 The Askey-scheme of hypergeometric orthogonal polynomials and its q -analogue Roelof Koekoek Rene F. Swarttouw February 20, 1996 List of errata in report no. 94-05 Page 7, line 1. Replace "all sets" by "all known sets". Page 7, line -1. Replace "positive denite" by "positive". Page 12, line -2. This should read lim q "1 r s qa1 ; : : : ; qar q; (q qb1 ; : : : ; qbs 1) 1+ s rz = r Fs a1 ; : : : ; ar z : b1; : : : ; bs Page 28, formula (1.4.2). The right-hand side should read (n + a + c) (n + a + d) (n + b + c) (n + b + d) (2n + a + b + c + d 1) (n + a + b + c + d 1)n! mn : Page 51, formula (3.1.5). This should read (1 h q)2 Dq w~(x; aq 2 ; bq 2 ; cq 2 ; dq 2 jq)Dq y(x) where 1 1 w~(x; a; b; c; djq) := Page 55, formula (3.3.5). This should read (1 h 1 1 w(x; a; b; c; djq) p 2 : 1 x + 4q n+1(1 1 w~(x; a; b; cjq) := (1 h i + qn )w~ (x; a; b; cjq)y(x) = 0; y(x) = pn (x; a; b; cjq); Page 56, formula (3.4.4). This should read where 1 q)2 Dq w~ (x; aq 2 ; bq 2 ; cq 2 jq)Dq y(x) where i + + nw~(x; a; b; c; djq)y(x) = 0; y(x) = pn(x; a; b; c; djq); 1 w(x; a; b; cjq) p 2 : 1 x q)2 Dq w~(x; aq 2 ; bq 2 ; cq 2 ; dq 2 ; q)Dq y(x) i + + nw~(x; a; b; c; d; q)y(x) = 0; y(x) = pn(x; a; b; c; d; q); 1 1 1 w~(x; a; b; c; d; q) := 1 1 w(x; a; b; c; d; q) p 2 : 1 x Page 57, formula (3.5.2). Replace ( ac) n by ( acq2 )n . Page 58, line 9. The weight function should read (c qx; d 1qx; q)1 (ac 1 qx; bd 1qx; q)1 dq x: 1 Page 58, formula (3.5.8). Replace ( c) n by ( Page 63, formula (3.8.5). This should read (1 h q)2 Dq w~(x; aq 2 ; bq 2 jq)Dq y(x) 1 1 + 4q n+1(1 where cq2 )n . i + qn)w~(x; a; bjq)y(x) = 0; y(x) = Qn(x; a; bjq); w~ (x; a; bjq) := w(x; a; bjq) p 2 : 1 x Page 64, formula (3.9.4). This should read (1 h q)2 Dq w~ (x; aq 2 jq)Dq y(x) 1 i where + 4q n+1(1 w~(x; ajq) := qn)w~(x; ajq)y(x) = 0; y(x) = Pn (x; ajq); w(x; ajq) p 2: 1 x Page 66, formula (3.10.7). This should read (1 h q)2 Dq w~ (x; q+ 2 ; q+ 2 jq)Dq y(x) 1 1 where i + n w~(x; q; q jq)y(x) = 0; y(x) = Pn(;)(xjq); w~(x; q; q jq) := w(x; q; q jq) p 2 : 1 x Page 66, fomula (3.10.8). This should read (1 h q)2Dq w~(x; q+ 2 ; q+ 2 ; q)Dq y(x) 1 1 where i + n w~ (x; q; q ; q)y(x) = 0; y(x) = Pn(;)(x; q); w~(x; q; q ; q) := w(x; q; q ; q) p 2 : 1 x Page 68, formula (3.10.18). This should read (1 h q)2 Dq w~(x; q 2 jq)Dq y(x) 1 where i + n w~(x; jq)y(x) = 0; y(x) = Cn (x; jq); w~(x; jq) := w(x; jq) p 2: 1 x Page 70, formula (3.10.27). This can be written as 2(1 q2n+1)xPn(x; q) = q 1 2 (1 q2n+2)Pn+1 (x; q) + q 2 (1 1 2 q2n)Pn 1 (x; q): Page 70, formula (3.10.28). This should read (1 q)2 Dq [w~(x; q; q)Dq y(x)] + nw~(x; q 2 ; q)y(x) = 0; y(x) = Pn(x; q); 1 where w(x; a; q) p 2: 1 x w~(x; a; q) := Page 71, formula (3.11.2). Replace ( ab) n by ( Page 80, formula (3.18.5). This should read h i q)2 Dq w~ (x; aq 2 jq)Dq y(x) (1 1 where + 4q n+1(1 abq2 )n. qn)w~(x; ajq)y(x) = 0; y(x) = Hn (x; ajq); w(x; ajq) p 2: 1 x w~(x; ajq) := Page 82, formula (3.19.5). This can also be written as 2xPn()(xjq) = q 21 14 (1 qn+1)Pn(+1) (xjq) + + qn+ 12 + 41 (1 + q 12 )Pn()(xjq) + q 21 + 14 (1 qn+)Pn()1(xjq): Page 82, formula (3.19.6). This can also be written as 2xPn()(x; q) = q 12 (1 q2n+2)Pn(+1) (x; q) + + q2n++ 21 (1 + q)Pn() (x; q) + q 21 (1 q2n+2)Pn()1(x; q): Page 82, formula (3.19.7). This should read h q)2 Dq w~(x; q+ 2 jq)Dq y(x) (1 1 where i + 4q n+1 (1 w~(x; qjq) := Page 82, formula (3.19.8). This should read (1 h q)2 Dq w~ (x; q+ 2 ; q)Dq y(x) 1 where i w(x; qjq) p 2: 1 x + 4q n+1(1 w~(x; q; q) := Page 87, formula (3.24.4). This should read (1 qn )w~ (x; qjq)y(x) = 0; y(x) = Pn()(xjq); qn )x2y(x) = aqn 1y(qx) + qn (1 x)(a qn)w~(x; q; q)y(x) = 0; y(x) = Pn()(x; q); w(x; q; q) p 2 : 1 x aqn + qn (1 x)(a x) y(x) + x)y(q 1 x); y(x) = Un(a) (x; q): 1 Page 87, formula (3.25.4). This should read (1 qn )x2y(x) = (1 x)(a x)y(qx) [(1 x)(a + aqy(q 1 x); y(x) = Vn(a) (x; q): Page 88, formula (3.26.2). Replace d by dx. 3 x) + aq] y(x) + Page 88, formula (3.26.4). This should read (1 q)2 Dq [w~(x)Dq y(x)] + 4q n+1(1 where w~(x) := qn)w~(x)y(x) = 0; y(x) = Hn(xjq); pw(x) 2 : 1 x Page 90, formula (3.28.4). This should read q n+1 x2 y(x) = y(qx) (1 + q)y(x) + q(1 x2 )y(q 1 x); y(x) = hn (x; q): Page 90, formula (3.29.1). This should read h~ n (x; q) = i nVn( 1) (ix; q) = = i nq xn21 (n2 ) 2 0 q n ; ix q n ; q n+1 0 n q; q q2 : x2 2 q ; Page 90, formula (3.29.2). This can be written as 1 h X i ~ m ( cqk ; q)~hn( cqk ; q) w(cqk )qk h~ m (cqk ; q)~hn(cqk ; q) + h = where k= 1 2 2 2 2 2 ((qq;; cc2;q; c c2q2q;;qq2))1 (qq;nq2)n mn ; c > 0; 1 1 (ix; q)1 ( ix; q)1 = ( Page 90, formula (3.29.4). This should read w(x) = (1 qn)x2 y(x) = (1 + x2)y(qx) 1 x2; q2)1 (1 + x2 + q)y(x) + qy(q : 1 x); y(x) = ~hn(x; q): Page 109. Reference [40] : "bf A 25" should read A 25. Acknowledgement We thank G. Gasper, J. Koekoek, H.T. Koelink, and T.H. Koornwinder for pointing us to some of these errata. 4
© Copyright 2026 Paperzz