NAME 5-2 DATE PERIOD Study Guide and Intervention Medians and Altitudes of Triangles Medians A median is a line segment that connects a vertex of a triangle to the midpoint of the opposite side. The three medians of a triangle intersect at the centroid of the triangle. The centroid is located two thirds of the distance from a vertex to the midpoint of the side opposite the vertex on a median. Example In ABC, U is the centroid and " BU = 16. Find UK and BK. 2 BK BU = − 3 2 16 = − BK 3 3 , 6 24 = BK # $ 4 Lesson 5-2 BU + UK = BK 16 + UK = 24 UK = 8 Exercises Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. In ABC, AU = 16, BU = 12, and CF = 18. Find each measure. 1. UD $ 2. EU & % # 12 6 16 ' 3. CU 4. AD 5. UF 6. BE " & In CDE, U is the centroid, UK = 12, EM = 21, and UD = 9. Find each measure. 7. CU + 6 8. MU . 10. JU 11. EU 12. JD Chapter 5 11 , 9 $ 9. CK 12 % Glencoe Geometry NAME DATE 5-2 Study Guide and Intervention PERIOD (continued) Medians and Altitudes of Triangles Altitudes An altitude of a triangle is a segment from a vertex to the line containing the opposite side meeting at a right angle. Every triangle has three altitudes which meet at a point called the orthocenter. y # (7, 7) Example The vertices of ABC are A(1, 3), B(7, 7) and C(9, 3). Find the coordinates of the orthocenter of ABC. Find the point where two of the three altitudes intersect. " (9, 3) $ (1, 3) x 0 Find the equation of the altitude from −−− A to BC. −−− If BC has a slope of −2, then the altitude 1 has a slope of − . 2 −− C to AB. −− 2 , then the altitude has a If AB has a slope of − 3 3 slope of - −. 2 y - y1 = m(x – x1) y - y1 = m(x - x1) Point-slope form 1 y-3=− (x – 1) 1 m=− , (x1, y1) = A(1, 3) 2 Distributive Property Simplify. 3 y - 3 = -− (x - 9) 2 3 27 y - 3 = -− x+− 2 2 33 3 y = - −x + − 2 2 3 m = -− , (x1, y1) = C(9, 3) 2 Distributive Property Simplify. Solve the system of equations and find where the altitudes meet. 5 1 y=− x+− 2 33 3 y = -− x+− 2 2 2 5 33 3 1 − x+− =-− x+− 2 2 2 5 33 − = −2x + − 2 2 2 2 2 2 2 2 33 Subtract − from each side. 2 −14 = −2x 7=x 5 5 7 5 1 1 y = − x + − = − (7) + − =− +− =6 2 1 Subtract − x from each side. Divide both sides by -2. 2 The coordinates of the orthocenter of ABC is (6, 7). Exercises COORDINATE GEOMETRY Find the coordinates of the orthocenter of each triangle. 1. J(1, 0), H(6, 0), I(3, 6) Chapter 5 2. S(1, 0), T(4, 7), U(8, −3) 12 Glencoe Geometry Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. 2 1 1 y-3=− x–− 2 2 5 1 y = −x + − 2 2 Point-slope form
© Copyright 2026 Paperzz