Annales Mathematicae et Informaticae 41 (2013) pp. 41–55 Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications Institute of Mathematics and Informatics, Eszterházy Károly College Eger, Hungary, June 25–30, 2012 Identities in the spirit of Ramanujan’s amazing identity Curtis Cooper Department of Mathematics and Computer Science University of Central Missouri Warrensburg, MO 64093 U.S.A. [email protected] Abstract Motivated by an amazing identity by Ramanujan in his “lost notebook”, a proof of Ramanujan’s identity suggested by Hirschhorn using an algebraic identity, and an algorithm by Chen to find such an algebraic identity, we will establish several identities similar to Ramanujan’s amazing identity. For example, if X 9 + 3609x − 135x2 , an xn = 1 − 6888x + 6888x2 − x3 n≥0 X bn xn = 10 − 1478x + 172x2 , 1 − 6888x + 6888x2 − x3 cn xn = 12 + 1146x + 138x2 , 1 − 6888x + 6888x2 − x3 n≥0 X n≥0 then a3n + b3n = c3n + 1. Keywords: Ramanujan, identity MSC: 11A55 1. Introduction In his “lost notebook”, Ramanujan [4] stated the following amazing identity. If X n≥0 an xn = 1 + 53x + 9x2 , 1 − 82x − 82x2 + x3 41 42 C. Cooper X bn xn = 2 − 26x − 12x2 , 1 − 82x − 82x2 + x3 cn xn = 2 + 8x − 10x2 , 1 − 82x − 82x2 + x3 n≥0 X n≥0 then a3n + b3n = c3n + (−1)n . Hirschhorn [2] demonstrated that using the algebraic identity from the “lost notebook”, (x2 + 7xy − 9y 2 )3 + (2x2 − 4xy + 12y 2 )3 = (2x2 + 10y 2 )3 + (x2 − 9xy − y 2 )3 , (1.1) Ramanujan could have proved his identity. Chen [1] gave an algorithm to produce similar algebraic identities and Ramanujan-like identities. Our goal is to use this procedure to find explicit algebraic identities and Ramanujan-like identities. 2. Third power algebraic identity to Ramanujan-like identity The following algebraic identity was suggested by Chen [1] and the theorem and proof were suggested by Hirschhorn [2]. Theorem 2.1. Let (r1 x2 + s1 xy + t1 y 2 )3 + (r2 x2 + s2 xy + t2 y 2 )3 2 2 3 2 (2.1) 2 3 =(r3 x + s3 xy + t3 y ) + (x − s4 xy − t4 y ) , be an algebraic identity in variables x and y and integer constants r1 , r2 , r3 , s1 , s2 , s3 , s4 , t1 , t2 , t3 , and t4 . Then if X an xn = r1 + (s1 s4 + t1 − r1 t4 )x − t1 t4 x2 , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 bn xn = r2 + (s2 s4 + t2 − r2 t4 )x − t2 t4 x2 , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 cn xn = r3 + (s3 s4 + t3 − r3 t4 )x − t3 t4 x2 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 n≥0 X n≥0 X n≥0 then a3n + b3n = c3n + (−t4 )3n . Proof. Let w0 = 0, w1 = 1, and wn+2 = s4 wn+1 + t4 wn . Identities in the spirit of Ramanujan’s amazing identity The generating function for the sequence {wn } is given by w(x) = X wn xn = n≥0 x . 1 − s4 x − t4 x2 Now, if x = wn+1 and y = wn , then 2 x2 − s4 xy − t4 y 2 = wn+1 − s4 wn+1 wn − t4 wn2 2 = wn+1 − wn (s4 wn+1 + t4 wn ) 2 = wn+1 − wn wn+2 = (−t4 )n . The last equality can be proved by induction on n. Now, let 2 an = r1 x2 + s1 xy + t1 y 2 = r1 wn+1 + s1 wn+1 wn + t1 wn2 , 2 bn = r2 x2 + s2 xy + t2 y 2 = r2 wn+1 + s2 wn+1 wn + t2 wn2 , 2 cn = r3 x2 + s3 xy + t3 y 2 = r3 wn+1 + s3 wn+1 wn + t3 wn2 . We can show that a3n + b3n = c3n + (−t4 )3n . But, using generating function techniques, we can show that X wn2 xn = n≥0 X 2 wn+1 xn = n≥0 X wn wn+1 xn = n≥0 1− (s24 x − t 4 x2 , + t4 )x − (s24 t4 + t24 )x2 + t34 x3 1 − t4 x , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 s4 x . 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 Hence, X an xn = r1 + (s1 s4 + t1 − r1 t4 )x − t1 t4 x2 , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t4 x3 bn xn = r2 + (s2 s4 + t2 − r2 t4 )x − t2 t4 x2 , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 cn xn = r3 + (s3 s4 + t3 − r3 t4 )x − t3 t4 x2 , 1 − (s24 + t4 )x − (s24 t4 + t24 )x2 + t34 x3 n≥0 X n≥0 X n≥0 and the proof is complete. 43 44 C. Cooper 3. Search for third power algebraic identities We will attempt to find particular integer constants involving all the r’s, s’s, and t’s which satisfy equation (2.1) with the following procedure. Procedure to search for third power algebraic identities 1. Pick one particular set of integers r1 , r2 , and r3 such that r13 + r23 = r33 + 1. (3.1) 2. Select a collection of sets of integers t1 , t2 , t3 , and t4 such that t31 + t32 = t33 − t34 . (3.2) Also, select a range of integer values for s1 and s2 to search. a. For each t1 , t2 , t3 , t4 , s1 , and s2 , compute s3 and s4 using the equations s3 = s1 t21 + s2 t22 + r12 s1 t24 + r22 s2 t24 , r32 t24 + t23 s4 = r32 s3 − r12 s1 − r22 s2 . Make sure these constants can be computed and that they are integers. b. Check the following conditions. 3r1 t21 + 3s21 t1 + 3r2 t22 + 3s22 t2 = 3r3 t23 + 3s23 t3 + 3t24 − 3s24 t4 , 6r1 s1 t1 + s31 + 6r2 s2 t2 + s32 = 6r3 s3 t3 + s33 + 6s4 t4 − s34 , 3r12 t1 + 3r1 s21 + 3r22 t2 + 3r2 s22 = 3r32 t3 + 3r3 s23 − 3t4 + 3s24 . c. If all the above conditions are satisfied (every equation is true), the resulting collection of r’s, s’s, and t’s form an algebraic identity satisfying equation (2.1). To prove that the procedure above will produce an algebraic identity, cube the trinomials in (2.1) to obtain t31 y 6 + 3s1 t21 xy 5 + (3r1 t21 + 3s21 t1 )x2 y 4 + (6r1 s1 t1 + s31 )x3 y 3 + + t32 y 6 = t33 y 6 + + (3r12 t1 + 3r1 s21 )x4 y 2 + 3r12 s1 x5 y + r13 x6 3s2 t22 xy 5 + (3r2 t22 + 3s22 t2 )x2 y 4 + (6r2 s2 t2 (3r22 t2 + 3r2 s22 )x4 y 2 + 3r22 s2 x5 y + r23 x6 + s32 )x3 y 3 + 3s3 t23 xy 5 + (3r3 t23 + 3s23 t3 )x2 y 4 + (6r3 s3 t3 + s33 )x3 y 3 + (3r32 t3 + 3r3 s23 )x4 y 2 + 3r32 s3 x5 y + r33 x6 − t34 y 6 − 3s4 t24 xy 5 + (3t24 − 3s24 t4 )x2 y 4 + (6s4 t4 − s34 )x3 y 3 (3.3) Identities in the spirit of Ramanujan’s amazing identity 45 + (−3t4 + 3s24 )x4 y 2 − 3s4 x5 y + x6 . Collecting like terms in (3.3), we obtain the following equation. (t31 + t32 )y 6 + (3s1 t21 + 3s2 t22 )xy 5 + (3r1 t21 + 3s21 t1 + 3r2 t22 + 3s22 t2 )x2 y 4 + + = (t33 − + + (3.4) (6r1 s1 t1 + s31 + 6r2 s2 t2 + s32 )x3 y 3 + (3r12 t1 + 3r1 s21 + 3r22 t2 + 3r2 s22 )x4 y 2 (3r12 s1 + 3r22 s2 )x5 y + (r13 + r23 )x6 t34 )y 6 + (3s3 t23 − 3s4 t24 )xy 5 + (3r3 t23 + 3s23 t3 + 3t24 − 3s24 t4 )x2 y 4 (6r3 s3 t3 + s33 + 6s4 t4 − s34 )x3 y 3 + (3r32 t3 + 3r3 s23 − 3t4 + 3s24 )x4 y 2 (3r32 s3 − 3s4 )x5 y + (r33 + 1)x6 . Step 1 in the procedure insures that the coefficients of x6 in the algebraic identity are equal. In addition, we would like r1 , r2 , and r3 to be positive integers. For Ramanujan’s algebraic identity this condition is trivially true since 13 + 23 = 23 + 1. Other trivial values of r1 , r2 , and r3 which satisfy (3.1) are r1 = 1 and r2 = r3 = r, where r is a positive integer. Appendix I gives positive integer values of r1 , r2 , and r3 (r1 < r2 and r2 6= r3 ) which satisfy (3.1). These values were determined by a C++ program. In step 2, we select a collection of t’s satisfying (3.4) to try. This guarantees that the coefficients of y 6 in the algebraic identity are equal. In the spirit of Ramanujan, we assume t4 = ±1. To obtain nontrivial results, we also require that t1 6= t2 , t1 6= −t2 , t1 6= −1, and t2 6= −1. Otherwise, some of the t’s could be positive or negative integers and cancel each other. Appendix II contains some of the t’s which satisfy (3.2). Again, this appendix was constructed with the help of a C++ program. Also, in step 2 we search a range of integers s1 and s2 (via a C++ program). Some typical ranges for s1 and s2 were from −1500 to 1500. With the r’s, t’s, s1 , and s2 fixed, the constants left are s3 and s4 . For step 2a, we compute integers s3 and s4 . The formulas in step 2a are equivalent to the equations equating the coefficients in the xy 5 and x5 y terms in (3.4). These equations are 3s1 t21 + 3s2 t22 = 3s3 t23 − 3s4 t24 , 3r12 s1 + 3r22 s2 = 3r32 s3 − 3s4 . Step 2a merely solves them for s3 and s4 since they are linear equations in those two variables. We also require that s4 > 0. For step 2b, the conditions we check are the equations resulting from equating the coefficients of the terms x2 y 4 , x3 y 3 and x4 y 2 on each side of equation (3.4). In step 2c, if all of these conditions are satisfied, the constants determine an algebraic identity. 46 C. Cooper 4. Third power results We found the following results. The constants in each row of the following table satisfy (2.1). We include the leading coefficient of 1 in the last trinomial. Recall that the form of the last trinomial is x2 − s4 xy − t4 y 2 . r1 , s1 , t1 1,556,-65601 1,61,-791 1,7,-9 1,-25,135 1,-227,11161 9,412,-11161 9,-126,3753 9,45,-135 9,-169,791 9,-1539,65601 3753,-126,9 11161,3481,-791 11161,412,-9 r2 , s2 , t2 2,-364,83802 2,-40,1010 2,-4,12 2,-32,138 2,-292,11468 10,-180,14258 10,236,-3230 10,-20,172 10,-180,812 10,-1640,67402 4528,200,-8 11468,-1300,1010 11468,-112,12 r3 , s3 , t3 2,-36,67402 2,-4,812 2,0,10 2,-36,172 2,-328,14258 12,112,11468 12,96,2676 12,12,138 12,-220,1010 12,-2004,83802 5262,84,6 14258,1292,812 14258,180,10 1, s4 , t4 1,756,1 1,83,-1 1,9,1 1,9,1 1,83,-1 1,756,1 1,430,-1 1,83,-1 1,9,1 1,83,-1 1,430,-1 1,6887,-1 1,756,1 The bounds on s1 and s2 varied depending on the speed of the search. Note that the third row is the algebraic identity discovered by Ramanujan. This gives Ramanujan’s amazing identity. The eighth row gives the algebraic identity (9x2 + 45xy − 135y 2 )3 + (10x2 − 20xy + 172y 2 )3 =(12x2 + 12xy + 138y 2 )3 + (x2 − 83xy + y 2 )3 . This produces the Ramanujan-like identity result found in the abstract. The seventh row gives the algebraic identity (9x2 − 126xy + 3753y 2 )3 + (10x2 + 236xy − 3230y 2 )3 =(12x2 + 96xy + 2676y 2 )3 + (x2 − 430y + y 2 )3 . This produces the following Ramanujan-like identity. If X an xn = 9 − 54172x + 3753x2 , 1 − 184899x + 184899x2 − x3 bn x n = 10 + 98260x − 3230x2 , 1 − 184899x + 184899x2 − x3 cn xn = 12 + 43968x + 2676x2 , 1 − 184899x + 184899x2 − x3 n≥0 X n≥0 X n≥0 then a3n + b3n = c3n + 1. 47 Identities in the spirit of Ramanujan’s amazing identity 5. Fourth power algebraic identities to Ramanujanlike identities McLaughlin [3] found ten sequences whose sums of their first through fifth powers are equal. We will not be so ambitious. The following identity was suggested by Chen [1] and the theorem and proof were suggested by Hirschhorn [2]. Theorem 5.1. Let (x2 + s1 xy + t1 y 2 )4 + (mx2 + s2 xy + t2 y 2 )4 + (nx2 + s3 xy + t3 y 2 )4 2 2 4 2 2 4 2 (5.1) 2 4 =(mx + s4 xy + t4 y ) + (nx + s5 xy + t5 y ) + (x − s6 xy − t6 y ) , be an algebraic identity in variables x and y and integer constants m, n, s1 , s2 , s3 , s4 , s5 , s6 , t1 , t2 , t3 , t4 , t5 , and t6 . Then if X an xn = 1 + (s1 s6 + t1 − t6 )x − t1 t6 x2 , 1 − (s26 + t6 )x − (s26 t6 + t26 )x2 + t36 x3 bn xn = m + (s2 s6 + t2 − mt6 )x − t2 t6 x2 , 1 − (s26 + t6 )x − (s26 t6 + t26 )x2 + t36 x3 cn xn = n + (s3 s6 + t3 − nt6 )x − t3 t6 x2 , 1 − (s26 + t6 )x − (s26 t6 + t26 )x2 + t36 x3 dn xn = m + (s4 s6 + t4 − mt6 )x − t4 t6 x2 , 1 − (s26 + t6 )x − (s26 t6 + t26 )x2 + t36 x3 en xn = n + (s5 s6 + t5 − nt6 )x − t5 t6 x2 1 − (s26 + t6 )x − (s26 t6 + t26 )x2 + t36 x3 n≥0 X n≥0 X n≥0 X n≥0 X n≥0 then a4n + b4n + c4n = d4n + e4n + (−t6 )4n . Proof. The proof of this theorem is similar to the proof of Theorem 2.1. 6. Search for fourth power algebraic identities We will attempt to find particular integer constants involving m, n, and all the s’s and t’s which satisfy equation (5.1) with the following procedure. Procedure to search for fourth power algebraic identities 1. Pick one particular set of integers m and n. 2. Select a collection of sets of integers t1 , t2 , t3 , t4 , t5 , and t6 = ±1 such that t41 + t42 + t43 = t44 + t45 + 1. Also, select a range of integer values for s1 , s2 , s3 , and s4 to search. 48 C. Cooper a. For each t1 , t2 , t3 , t4 , t5 , t6 , s1 , s2 , s3 , and s4 , compute s5 and s6 using the equations s5 = s1 t31 + s2 t32 + s3 t33 − s4 t34 − s1 t36 − m3 s2 t36 − n3 s3 t36 + m3 s4 t36 , n3 t36 + t35 s6 = −s1 − m3 s2 − n3 s3 + m3 s4 + n3 s5 . Make sure these constants can be computed and that they are integers. b. Check the following conditions. 4t31 + 6s21 t21 + 4mt32 + 6s22 t22 + 4nt33 + 6s23 t23 = 4mt34 + 6s24 t24 + 4nt35 + 6s25 t25 − 4t36 + 6s26 t26 , 12s1 t21 + 4s31 t1 + 12ms2 t22 + 4s32 t2 + 12ns3 t23 + 4s33 t3 = 12ms4 t24 + 4s34 t4 + 12ns5 t25 + 4s35 t5 − 12s6 t26 + 4s36 t6 , 6t21 + 12s21 t1 + s41 + 6m2 t22 + 12ms22 t2 + s42 + 6n2 t23 + 12ns23 t3 + s43 = 6m2 t24 + 12ms24 t4 + s44 + 6n2 t25 + 12ns25 t5 + s45 + 6t26 − 12s26 t6 + s46 , 12s1 t1 + 4s31 + 12m2 s2 t2 + 4ms32 + 12n2 s3 t3 + 4ns33 = 12m2 s4 t4 + 4ms34 + 12n2 s5 t5 + 4ns35 + 12s6 t6 − 4s36 , 4t1 + 6s21 + 4m3 t2 + 6m2 s22 + 4n3 t3 + 6n2 s23 = 4m3 t4 + 6m2 s24 + 4n3 t5 + 6n2 s25 − 4t6 + 6s26 . c. If all the above conditions are satisfied (every equation is true), the resulting collection of m, n, s’s, and t’s form an algebraic identity satisfying equation (5.1). The proof that this procedure yields an algebraic identity is similar to the previous procedure. We need to make a couple of remarks. First of all, we pick positive integers m and n with m < n. Again, in the spirit of Ramanujan, we assume t6 = ±1. We first note that once a solution is found, we have many other similar solutions since every one of the t’s could be positive or negative. We list out the nontrivial values of the t’s (1 < t1 < t2 < t3 and t1 ≤ t4 ) in Appendix III. This appendix was constructed with the help of a C++ program. Some typical ranges for s1 , s2 , s3 , and s4 were from −20 to 20. Finally, we require that s6 > 0. 7. Fourth power results We found the following results. The constants in each row of the following table satisfy (5.1). Again, we include the leading coefficient of 1 in the last trinomial. Recall that the form of the last trinomial is x2 − s6 xy − t6 y 2 . 49 Identities in the spirit of Ramanujan’s amazing identity m = 1 and n = 2 1, s1 , t1 1,-4,4 1,-3,4 1,-1,4 1,-4,5 1,0,5 1,-4,5 1,-5,6 1,-4,6 1,0,6 1,-6,7 1,-4,7 1,-4,7 1,-7,8 1,-5,8 1,-3,8 1,-6,8 1, s2 , t2 1,-6,9 1.-8,9 1,-2,9 1,-6,6 1,-2,6 1,-5,6 1,-10,23 1,-12,23 1,-4,23 1,-7,14 1,-12,14 1,0,14 1,-6,11 1,-10,11 1,0,11 1,-6,11 2, s3 , t3 2,-10,13 2,-11,13 2,-3,13 2,-10,11 2,-2,11 2,-9,11 2,-15,29 2,-16,29 2,-4,29 2,-13,21 2,-16,21 2,-4,21 2,-13,19 2,-15,19 2,-3,19 2,-12,19 1, s4 , t4 1,-7,11 1,-9,12 1,7,-12 1,-7,9 1,7,-9 1,-7,10 1,-11,26 1,-13,27 1,11,-27 1,-9,18 1,-13,19 1,9,-19 1,-9,16 1,-11,16 1,9,-16 1,-9,17 2, s5 , t5 2,-10,12 2,-11,11 2,-3,-11 2,-10,10 2,-2,-10 2,-9,9 2,-15,27 2,-16,26 2,-4,-26 2,-13,19 2,-16,18 2,-4,-18 2,-13,17 2,-15,17 2,-3,-17 2,-12,16 1, s6 , t6 1,3,-1 1,2,1 1,10,-1 1,3,-1 1,9,1 1,2,1 1,4,-1 1,3,1 1,15,-1 1,4,-1 1,3,1 1,13,-1 1,4,-1 1,4,-1 1,12,1 1,3,1 m = 2 and n = 3 1, s1 , t1 1,-1,7 1,-8,8 1,0,8 1,-7,8 1,-8,10 1,-4,10 1,-3,11 1,0,11 1,-8,13 1,4,-13 1,-1,14 1,-8,15 1,-5,16 1,-6,19 1,-2,21 1,14,-116 2, s2 , t2 2,-2,14 2,-10,11 2,-2,11 2,-9,11 2,-12,19 2,0,19 2,0,16 2,-4,39 2,-10,13 2,0,-13 2,-3,41 2,-12,19 2,-1,55 2,0,57 2,-6,64 2,0,-155 3, s3 , t3 3,-3,21 3,-18,19 3,-2,19 3,-16,19 3,-20,29 3,-4,29 3,-3,27 3,-4,50 3,-18,26 3,4,-26 3,-4,55 3,-20,34 3,-6,71 3,-6,76 3,10,-113 3,14,-271 2, s4 , t4 2,10,-19 2,-14,16 2,10,-16 2,-13,17 2,-16,26 2,12,-26 2,12,-23 2,16,-46 2,-14,22 2,4,-22 2,17,-49 2,-16,30 2,19,-65 2,20,-68 2,10,-112 2,12,-236 3, s5 , t5 3,-6,-18 3,-17,17 3,-5,-17 3,-15,16 3,-19,25 3,-7,-25 3,-6,-24 3,-9,-45 3,-17,23 3,3,-23 3,-9,-50 3,-19,29 3,-11,-64 3,-11,-69 3,6,-69 3,11,-235 1, s6 , t6 1,16,-1 1,3,-1 1,15,1 1,2,1 1,3,1 1,19,-1 1,18,1 1,25,-1 1,3,-1 1,1,1 1,26,1 1,3,1 1,30,-1 1,31,1 1,22,-1 1,1,-1 m = 3 and n = 5 1, s1 , t1 1,-2,21 3, s2 , t2 3,-4,41 5, s3 , t3 5,6,-71 3, s4 , t4 3,6,-69 5, s5 , t5 5,4,-49 1, s6 , t6 1,22,-1 50 C. Cooper The bounds on s1 , s2 , s3 , and s4 varied depending on the speed of the search. The first row of the table for m = 1 and n = 2 gives the algebraic identity (x2 − 4xy + 4y 2 )4 + (x2 − 6xy + 9y 2 )4 + (2x2 − 10xy + 13y 2 )4 = (x2 − 7xy + 11y 2 )4 + (2x2 − 10xy + 12y 2 )4 + (x2 − 3xy + y 2 )4 . This produces the following Ramanujan-like identity. If X an xn = 1 − 7x + 4x2 , 1 − 8x + 8x2 − x3 bn x n = 1 − 8x + 9x2 , 1 − 8x + 8x2 − x3 cn x n = 2 − 15x + 13x2 , 1 − 8x + 8x2 − x3 dn xn = 1 − 9x + 11x2 , 1 − 8x + 8x2 − x3 en xn = 2 − 16x + 12x2 , 1 − 8x + 8x2 − x3 n≥0 X n≥0 X n≥0 X n≥0 X n≥0 then a4n + b4n + c4n = d4n + e4n + 1. The row in the table for m = 3 and n = 5 gives the algebraic identity (x2 − 2xy + 21y 2 )4 + (3x2 − 4xy + 41y 2 )4 + (5x2 + 6xy − 71y 2 )4 = (3x2 + 6xy − 69y 2 )4 + (5x2 + 4xy − 49y 2 )4 + (x2 − 22xy + y 2 )4 . This produces the following Ramanujan-like identity. If X an xn = 1 − 22x + 21x2 , 1 − 483x + 483x2 − x3 bn x n = 3 − 44x + 41x2 , 1 − 483x + 483x2 − x3 cn xn = 5 + 66x + 71x2 , 1 − 483x + 483x2 − x3 dn xn = 3 + 66x + 69x2 , 1 − 483x + 483x2 − x3 en xn = 5 + 44x + 49x2 , 1 − 483x + 483x2 − x3 n≥0 X n≥0 X n≥0 X n≥0 X n≥0 Identities in the spirit of Ramanujan’s amazing identity then 51 a4n + b4n + c4n = d4n + e4n + 1. 8. Questions The previous data suggests several questions. 1. In the third power case, we were unable to find any nontrivial algebraic identities like (2.1) with r1 = 1 and r2 = r3 = r where r ≥ 3. We would like to know if any exist and if so, what are they? 2. We were unable to find any fourth power algebraic identities of the form (r1 x2 + s1 xy + t1 y 2 )4 + (r2 x2 + s2 xy + t2 y 2 )4 + (r3 x2 + s3 xy + t3 y 2 )4 = (r4 x2 + s4 xy + t4 y 2 )4 + (x2 − s5 xy − t5 y 2 )4 , where the r’s are positive integers and the s’s and t’s are nontrivial. Do such identities exist? 3. In the fourth power case, we found algebraic identities for every pair we tried where m if a positive integer and n = m + 1. Is this always true? In addition, is there any other algebraic identity where n 6= m + 1 other than the one we found where m = 3 and n = 5? 52 C. Cooper Appendix I: r13 + r23 = r33 + 1 r1 9 64 73 135 244 334 368 577 1010 1033 1126 1945 3088 3097 3753 3987 4083 4609 5700 5856 6562 7364 9001 10876 11161 11767 11980 13294 15553 16617 r2 10 94 144 235 729 438 1537 2304 1897 1738 5625 11664 21609 3518 4528 9735 8343 36864 38782 9036 59049 83692 90000 31180 11468 41167 131769 19386 186624 35442 r3 12 103 150 249 738 495 1544 2316 1988 1852 5640 11682 21630 4184 5262 9953 8657 36888 38823 9791 59076 83711 90030 31615 14258 41485 131802 21279 186660 36620 r1 19774 20848 24697 26914 27238 27784 27835 30376 35131 36865 38305 39892 44218 49193 50313 59728 65601 99457 107258 135097 158967 190243 191709 198550 243876 294121 336820 372106 434905 590896 r2 257049 152953 345744 44521 33412 35385 72629 455625 76903 589824 51762 151118 751689 50920 80020 182458 67402 222574 278722 439312 312915 219589 579621 713337 547705 325842 583918 444297 780232 734217 r3 257088 153082 345786 47584 38599 40362 73967 455670 79273 589872 57978 152039 751740 63086 86166 184567 83802 229006 283919 443530 326033 259495 586529 718428 563370 391572 619111 518292 822898 844422 53 Identities in the spirit of Ramanujan’s amazing identity Appendix II: t31 + t32 = t33 − t34 t1 -9 6 -9 8 -8 -6 -8 9 -6 9 6 8 -12 9 -12 10 -10 -9 -10 12 -9 12 9 10 -103 64 -103 94 -94 -64 -94 103 -64 103 64 94 t2 6 -9 8 -9 -6 -8 9 -8 9 -6 8 6 9 -12 10 -12 -9 -10 12 -10 12 -9 10 9 64 -103 94 -103 -64 -94 103 -94 103 -64 94 64 t3 -8 -8 -6 -6 -9 -9 6 6 8 8 9 9 -10 -10 -9 -9 -12 -12 9 9 10 10 12 12 -94 -94 -64 -64 -103 -103 64 64 94 94 103 103 t4 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 t1 -144 71 -144 138 -138 -71 -138 144 -71 144 71 138 -150 73 -150 144 -144 -73 -144 150 -73 150 73 144 -172 135 -172 138 -138 -135 -138 172 -135 172 135 138 t2 71 -144 138 -144 -71 -138 144 -138 144 -71 138 71 73 -150 144 -150 -73 -144 150 -144 150 -73 144 73 135 -172 138 -172 -135 -138 172 -138 172 -135 138 135 t3 -138 -138 -71 -71 -144 -144 71 71 138 138 144 144 -144 -144 -73 -73 -150 -150 73 73 144 144 150 150 -138 -138 -135 -135 -172 -172 135 135 138 138 172 172 t4 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 54 C. Cooper Appendix III: t41 + t42 + t43 = t44 + t45 + 1 t1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6 t2 31 31 35 35 47 47 148 148 6 6 7 7 7 7 21 21 24 24 9 9 18 18 41 41 49 49 76 76 83 83 6 6 14 14 19 19 23 23 t3 47 47 47 47 173 173 191 191 21 21 8 8 44 44 36 36 111 111 13 13 19 19 103 103 75 75 105 105 100 100 11 11 37 37 31 31 29 29 t4 14 49 19 50 71 172 56 206 16 19 2 9 24 43 2 37 77 104 11 12 6 22 58 101 25 78 54 110 32 110 9 10 22 36 9 32 26 27 t5 49 14 50 19 172 71 206 56 19 16 9 2 43 24 37 2 104 77 12 11 22 6 101 58 78 25 110 54 110 32 10 9 36 22 32 9 27 26 t1 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 t2 25 25 29 29 31 31 47 47 138 138 14 14 27 27 57 57 76 76 109 109 11 11 43 43 109 109 25 25 34 34 197 197 14 14 19 19 39 39 t3 29 29 47 47 41 41 71 71 165 165 21 21 157 157 73 73 107 107 148 148 19 19 51 51 132 132 34 34 193 193 200 200 103 103 29 29 41 41 t4 15 32 23 48 24 43 43 72 100 178 18 19 109 147 9 79 83 104 121 142 16 17 47 48 62 144 30 31 152 171 45 236 80 92 25 26 32 45 t5 32 15 48 23 43 24 72 43 178 100 19 18 147 109 79 9 104 83 142 121 17 16 48 47 144 62 31 30 171 152 236 45 92 80 26 25 45 32 Identities in the spirit of Ramanujan’s amazing identity 55 References [1] Chen, K.-W., Extensions of an amazing identity of Ramanujan, The Fibonacci Quarterly, Vol. 50 (2012), 227–230. [2] Hirschhorn, M. D., An amazing identity of Ramanujan, Mathematics Magazine, Vol. 68 (1995), 199–201. [3] McLaughlin, J., An identity motivated by an amazing identity of Ramanujan, The Fibonacci Quarterly, Vol. 48 (2010), 34–38. [4] Ramanujan, S., The Lost Notebook and Other Unpublished Papers, New Delhi, Narosa, 1988, p. 341.
© Copyright 2026 Paperzz