QUESTION PAPER CODE 65/3/B
EXPECTED ANSWERS/VALUE POINTS
SECTION - A
Marks
1.
dy
y
2
dx
x log x
x
(Standard form)
½m
I.F. = log x
2.
3.
4.
½m
x=2, y=9
(½ for correct x or y)
1
x + y = 11
½m
order 3 , or degree 1
½m
Degree + order = 4
½m
using sin θ
ab
a b
½m
θ 0o
5.
6.
½m
ab0 x –6
½m
y 40 or 2 10
½m
a 2 sin 2 α a 2 sin 2 β a 2 sin 2 γ
½m
= 2 a2
½m
SECTION - B
7.
AB – 2î – 5k̂
AC î – 2ĵ – k̂
1m
AB AC – 10î – 7ˆj 4k̂
AB AC
1m
165
½m
26
AB AC
n̂
1m
AB AC
=
8.
– 10î – 7ĵ 4k̂ or 10î 7ĵ – 4k̂
165
½m
165
1
1
a 1 – î , b1 î ĵ – k̂
2
12
1
a 2 – 2ĵ k̂ , b 2 î ĵ k̂
6
1m
a 2 – a 1 î – 2ˆj k̂
½m
1
1
1
b1 b 2 î – ĵ k̂
6
4
2
½m
7
b1 b 2
12
1m
S.D. =
a 2 – a1 b1 b 2
b1 b 2
2
1m
OR
Foot of perpendicular are (0, b, c) & (a, 0, c)
Equ. of required plane
1m
x y z
0 b c 0
a 0 c
9.
2m
bcx + acy – abz = 0
1m
p (x = 2) = 9 . P(x = 3)
1m
3C2 p2 q 9 3C3 p3 q0
1m
3 p 2 (1 – p) 9 p3
1m
27
p
1
4
1m
OR
Let H1 be the event that red ball is drawn
H2 be the event that black ball is drawn
E be the event that both balls are red
P(H1) =
3
5
, P(H2) =
8
8
P(E/H1) =
5C 2
1m
3
2
, P(E/H ) = C 2 1
2
9
10 C2 15
10 C2
P(E) = P(H1) P(E/H1) + P(H2) . P(E/H2)
=
10.
3 2
5 1
1
8 9
8 15
8
x
1m
1m
y
log x – log (a b x)
x
x
1m
½m
dy
–y
1
b
dx
–
2
x
x
abx
1m
dy
ax
– y
dx
a b x ................................... (i)
1m
Differentiating again,
x
d2 y
a2
dx 2
a b x 2
2
1m
2
ax
d2 y
dy
x
x 2
– y (using (i))
dx
dx
a b x
3
28
½m
11.
1
du
2 cos –1x
u sec –1 2
dx
2x – 1
1– x2
v
dv
dx
1
2
x
π
12.
Let I
2
0
1½ m
1 – x2
–x
1m
1 – x2
2
4
x
1½ m
5 sin x 3 cos x
dx .................. (i)
sin x cos x
π
dv
dx
–2
I
2
0
5 cos x 3 sin x
dx ........ (ii)
cos x sin x
Adding (i) and (ii)
π
2I = 8
a
0
a
f(x) dx
f(a – x) dx
1½ m
0
1+1 m
2
1 dx
4π
½m
0
I 2π
OR
put log x = t x = et dx = et dt
e
t
e
t
1m
1
log t 2 dt
t
1 1
1
log t – t t t 2 dt
1½ m
1
e t log t – c
t
1m
1
x log log x –
c
log x
½m
29
13.
I
x cos x
1m
cos x x sin x dx
put cos x + x sin x = t
=
x cos x dx = dt
1m
dt
t
1m
= log cos x x sin x + c
14.
x 4 dx
x – 1 x 2 1
1m
1
x 1 x – 1 x
2
dx
1
1m
(using partial fractions)
1
15.
dx
=
x2
1
1
1
x log x – 1 – log x 2 1 – tan –1 x c
2
2
4
2
2
100
[15000 15000]
x
100
= [1800]
300 + 150x = 1800
x = 10%
cot –1 (x 1) sin –1
and tan –1 x cos –1
x 1
dx
2
1
x 1 dx 2 x – 1 – 2 x
1½ m
1½ m
2m
1m
yes : compassionate or any other relevant value
16.
1
=
1
1m
1½ m
1 (x 1) 2
1
1½ m
1 x2
30
1
sin sin –1
1 (x 1) 2
1
cos cos –1
1 x2
1 x 2 2x 1 1 x 2 x –
1
2
1m
OR
17.
2 sin –1
3
17
– tan –1
5
31
=
2 tan –1
3
17
– tan –1
4
31
1m
=
tan –1
24
17
– tan –1
7
31
1m
=
tan –1 1
π
4
1+1 m
C1 C1 C 2 C 3 ,
1 b c
(a + b + c)
1 c a 0
1 a b
1m
R 2 R 2 – R1 , R 3 R 3 – R1
1
b
c
0 c–b a –c 0
( a b c 0)
2m
0 a–b b–c
– a2 – b2 – c2 + ab + bc + ca = 0
–
a=b=c
½m
1
[(a – b) 2 + (b – c) 2 + (c – a) 2] = 0
2
31
½m
18.
1 –1 0
1 0 0
2 5 3 0 1 0 A
0 2 1
0 0 1
1m
R 2 R 2 – 2 R1 ,
1 –1 0
1 0 0
0 7 3 – 2 1 0 A
0 2 1
0 0 1
R2 R2 – 3 R3
1 –1 0
1 0 0
0 1 0 – 2 1 – 3 A
0 2 1
0 0 1
R1 R 1 R 2 , R 3 R 3 – 2 R 2
1 0 0
–1 1 – 3
0 1 0 – 2 1 – 3 A
0 0 1
4 – 2 7
A
19.
–1
(2 marks for all operations)
– 1 1 – 3
– 2 1 – 3
4 –2 7
f (x) = x – x – x
2
1m
2x – x 2
x – x (1 – x) 0
x2
, –1 x 0
,
x 0
,
1m
0 x 1
f (x) being a polynomial is continuous on – 1, 0 0, 1
lt – f(x) lt – (2x – x 2 ) 0
½m
lt f(x) lt x 2 0
½m
x 0
x 0
x 0
x0
Also, f(0) = 0
lim– f(x) f(0) lim f(x)
x0
1m
There is no point of discontinuity on [– 1, 1]
1m
x 0
32
SECTION - C
20.
1m
Required Area
2
=
2
2
4 – x dx –
0
2 – x dx
x 4 – x2 4
sin –1
=
2
2
=
21.
π – 2
2m
0
2
2
x
x2
– 2 x –
2
2 0
0
sq. units
1+1 m
1m
dy
xy
2
dx
x y2
put y = v x
dy
dv
vx
dx
dx
1 v2
dx
–
3
v
x
1m
1m
Integrating both sides
–
1
log v – log x c
2 v2
1m
33
–
x2
log y c
2y 2
when x = 1, y = 1 c = –
log y
1
2
1m
x 2 – y2
2y 2
when x = x0, y = e
x0
½m
1½ m
3e
OR
I F = e tan x dx e log sec x sec x
1m
d
(y sec x) 3x 2 sec x x 3 sec x tan x
dx
y sec x
y = x3 + c cos x
when x
3x
2
sec x dx x 3 sec x –
3x
1m
2
sec x dx c
π
– 2π 3
, y 0 ; we get c
3
27
1m
2π 3
y x –
cos x
27
3
22.
2m
1m
Let us consider the man invested on x
electronic and y manually operated machines
Maximise P = 220 x + 180 y ............................... (i)
1m
subject to
x + y < 20
3600 x + 2400 y < 57600
3x + 2y < 48
1½ m
x, y > 0
(1 mark for
34
plotting each
line) = 2 m
(½ to find the vertices
of feasible
region)
P
P
P
23.
3520 Rs.
A (16, 0)
B (8, 12 )
3920 Rs.
3600 Rs.
C (0, 20 )
Maximum profit is Rs. 3920 at x = 8, y = 12
1m
x–3
y–4
z –1
2
–3
5
1m
Equation of line is
Equation of plane is
x – 2 y –1 z – 2
1
2
0
–3
–2
–1
0
1m
2x + y + z – 7 = 0 ..................................... (i)
1m
general point on given line (2 λ 3, – 3 λ 4, 5 λ 1) lies on (i)
2 (2 λ 3) (–3 λ 4) (5 λ 1) – 7 0 λ –
7
5
Point of intersection , 6, –
3
3
24.
Let
1m
2
3
1m
1m
H1 : be the event 1, 2 appears
H2 : be the event 3, 4, 5, 6 appears
1m
E3 : be the event that head appears
35
P(H1) =
2 1
4 2
, P(H2) =
6 3
6 3
P(E/H1) =
P(H2/E) =
=
1m
3
1
P(E/H2) =
8
2
1m
P (H 2 ) P (E/H 2 )
P (H1 ) P (E/H1 ) P (H 2 ) P (E/H 2 )
1m
8
11
2m
OR
Let
H1 : be the event that 4 occurs
H2 : be the event that 4 does not occurs
1m
E : be the event that man reports 4 occurs
on a throw of dice
P(H1) =
1
,
6
P(E/H1) =
P(H1/E) =
=
25.
P(H2) =
3
5
5
6
1m
P(E/H2) = 1 –
3 2
5 5
1m
P (H1 ) P (E/H1 )
P (H1 ) P (E/H1 ) P (H 2 ) P (E/H 2 )
1m
3
13
2m
*
0
1
2
3
4
5
6
0
0
1
2
3
4
5
6
1
1
2
3
4
5
6
0
2
2
3
4
5
6
0
1
3
3
4
5
6
0
1
2
4
4
5
6
0
1
2
3
5
5
6
0
1
2
3
4
6
6
0
1
2
3
4
5
36
4m
a {0, 1, 2, 3, 4, 5, 6}
a * 0 = a = 0 * a 0 is identity
1m
a {1, 2, 3, 4, 5, 6}
a* b = 0=b*a
26.
a * (7 – a) = 0 = (7 – a) * a
(7 – a) is inverse of a
1m
A = y (x + 4)
x 2 y2
1
16 9
9
9
(16 – x 2 ) (x 4) 2 y 2
(16 – x 2 ) .......... (i)
16
16
1m
9
(4 – x) (4 x) 3
16
1m
dz
9
(4 x) 2 (8 – 4x)
dx
16
1m
dz
0 x 2
dx
1m
2
Let z = A
d2z
9
9
– (4 x) 2 (4 x) (8 – 4x)
2
dx
4
8
d2z
dx 2
0
1m
x2
Maximum value of A = 9 3 sq. units
37
1m
© Copyright 2025 Paperzz