SALSA: Full Stokes Polarization camera - Spatial inhomogeneity and field calibration Mathieu Vedel* – Nick Lechocinski – Sebastien Breungot Bossa Nova Technologies 11922 Jefferson Blvd Culver City, CA 90230,USA www.bossanovatech.com [email protected] Mathieu Vedel – Bossa Nova Technologies – March 2014 I) Bossa Nova Technologies overview II) SALSA Technology A. B. C. III) Division of time polarimeter Calibration Need for “field” calibration Full Stokes polarization imager A. B. C. Software Specifications Potential applications - Examples Mathieu Vedel – Bossa Nova Technologies – March 2014 Company Overview Located in Los Angeles (Culver City), CA, USA Founded in 2002 Small business of 7 people specialized in optics, electronics, imaging and software development Manufacturer of scientific and testing equipment : laser ultrasonic inspection equipment, polarization cameras and systems for the cosmetic testing Provides research for NASA, NSF, DoD and corporate clients Mathieu Vedel – Bossa Nova Technologies – March 2014 Polarization imaging products Bossa Nova Technologies provides products and services for non-destructive testing. 3 lines of products: • Polarization Imaging SAMBA, SALSA, RUMBA & POLKA • Cosmetic Testing Equipment (Hair & Face) • Laser Ultrasonics TEMPO, QUARTET LU Systems Mathieu Vedel – Bossa Nova Technologies – March 2014 Our Objective was to develop a camera that is: • COMPACT! Mathieu Vedel – Bossa Nova Technologies – March 2014 Our Objective was to develop a camera that is: • COMPACT! • Uses off the shelf components Mathieu Vedel – Bossa Nova Technologies – March 2014 Our Objective was to develop a camera that is: • COMPACT! • Uses off the shelf components • Turn-key system Mathieu Vedel – Bossa Nova Technologies – March 2014 Our Objective was to develop a camera that is: • COMPACT! • Uses off the shelf components • Turn-key system • At reasonable cost AND profitable! Mathieu Vedel – Bossa Nova Technologies – March 2014 Full Stokes Polarization Imager SALSA: Full Stokes Polarization camera Complete turn-key system: Camera C-mount lens ready Controller Laptop Software SDK (LabVIEW) Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Technology: 2 FLCs, 1 Analyser Iraw1 PSA: State 1 Raw images time Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Technology: 2 FLCs, 1 Analyser PSA: State 1 Iraw1 PSA: State 2 Iraw2 time Mathieu Vedel – Bossa Nova Technologies – March 2014 Raw images SALSA Technology Technology: 2 FLCs, 1 Analyser PSA: State 1 Iraw1 PSA: State 2 Iraw2 PSA: State 3 Iraw3 time Mathieu Vedel – Bossa Nova Technologies – March 2014 Raw images SALSA Technology Technology: 2 FLCs, 1 Analyser PSA: State 1 Iraw1 PSA: State 2 Iraw2 Processing PSA: State 3 Iraw3 PSA: State 4 Iraw3 time Mathieu Vedel – Bossa Nova Technologies – March 2014 Raw images SALSA Technology Technology -2 𝑰𝒓𝒂𝒘𝟏 𝑰 𝐗 = 𝒓𝒂𝒘𝟐 = 𝐂 ∙ 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Images acquired 𝑺𝟎,𝒊𝒏 𝑺𝟏,𝒊𝒏 𝑺𝟐,𝒊𝒏 𝑺𝟑,𝒊𝒏 Incident Stokes vector Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Technology -2 𝑰𝒓𝒂𝒘𝟏 𝑰 𝐗 = 𝒓𝒂𝒘𝟐 = 𝐂 ∙ 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Images acquired 𝑺𝟎,𝒊𝒏 𝑺𝟏,𝒊𝒏 𝑺𝟐,𝒊𝒏 𝑺𝟑,𝒊𝒏 Incident Stokes vector Mathieu Vedel – Bossa Nova Technologies – March 2014 𝑺𝒊𝒏 Incident Stokes vector estimate 𝑰𝒓𝒂𝒘𝟏 𝑰 = 𝑪−𝟏 ∙ 𝒓𝒂𝒘𝟐 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Calibration SALSA Technology Technology -2 𝑰𝒓𝒂𝒘𝟏 𝑰 𝐗 = 𝒓𝒂𝒘𝟐 = 𝐂 ∙ 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Images acquired S0 𝑺𝟎,𝒊𝒏 𝑺𝟏,𝒊𝒏 𝑺𝟐,𝒊𝒏 𝑺𝟑,𝒊𝒏 𝑺𝒊𝒏 𝑰𝒓𝒂𝒘𝟏 𝑰 = 𝑪−𝟏 ∙ 𝒓𝒂𝒘𝟐 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Incident Stokes vector Incident Stokes vector estimate Calibration S1 S2 S3 Deduction of the 4 Stokes parameters! Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Mathematical model Data Reduction Matrix (DRM) * 𝑰𝒓𝒂𝒘𝟏 𝑰 𝐗 = 𝒓𝒂𝒘𝟐 = 𝐂 ∙ 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 Images acquired 𝑺𝟎,𝒊𝒏 𝑺𝟏,𝒊𝒏 𝑺𝟐,𝒊𝒏 𝑺𝟑,𝒊𝒏 Incident Stokes vector 𝑺𝒊𝒏 Incident Stokes vector estimate 𝑰𝒓𝒂𝒘𝟏 𝑰 = 𝑪−𝟏 ∙ 𝒓𝒂𝒘𝟐 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 DRM Experimental determination of the DRM *R. A. Chipman, “Polarimetry,” in Handbook of Optics, Vol. 2, Chap. 22. Schott Tyo J. et al, "Review of passive imaging polarimetry for remote sensing applications", Applied Optics, Vol. 45, N22. Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Mathematical model PSA Mueller matrices 𝑺𝒊𝟎,𝒐𝒖𝒕 𝒊 𝑺𝒔𝒕𝒂𝒕𝒆 𝒐𝒖𝒕 = 𝑺𝒊𝟏,𝒐𝒖𝒕 𝑺𝒊𝟐,𝒐𝒖𝒕 𝑺𝒊𝟑,𝒐𝒖𝒕 Polarization State Analyzer in position i, i={0;1;2;3} Mathieu Vedel – Bossa Nova Technologies – March 2014 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟎 = 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝑺𝟎,𝒊𝒏 𝟎𝟑 𝒊 𝑺𝟏,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟑 ∙ 𝒊 𝑺𝟐,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟑 𝒊 𝑺𝟑,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟑 Mueller matrix for the ith state of the PSA SALSA Technology Mathematical model PSA Mueller matrices 𝑺𝒊𝟎,𝒐𝒖𝒕 𝒊 𝑺𝒔𝒕𝒂𝒕𝒆 𝒐𝒖𝒕 = 𝑺𝒊𝟏,𝒐𝒖𝒕 𝑺𝒊𝟐,𝒐𝒖𝒕 𝑺𝒊𝟑,𝒐𝒖𝒕 Polarization State Analyzer in position i, i={0;1;2;3} 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟎 = 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟏 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟐 Mueller matrix for the ith state of the PSA Detectors are only sensitive to the intensity of light 𝒊 𝒊 𝒊 𝒊 𝑺𝑷𝑺𝑨𝒊 𝟎,𝒐𝒖𝒕 = 𝒎𝟎𝟎 . 𝑆0,𝑖𝑛 + 𝒎𝟎𝟏 . 𝑆1,𝑖𝑛 + 𝒎𝟎𝟐 . 𝑆2,𝑖𝑛 + 𝒎𝟎𝟑 . 𝑆3,𝑖𝑛 Mathieu Vedel – Bossa Nova Technologies – March 2014 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝑺𝟎,𝒊𝒏 𝟎𝟑 𝒊 𝑺𝟏,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟏𝟑 ∙ 𝒊 𝑺𝟐,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟐𝟑 𝒊 𝑺𝟑,𝒊𝒏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟑𝟑 SALSA Technology Experimental setup 𝜗𝑝𝑜𝑙 𝜗𝜆/4 CCD Unpolarized light PSG: Linear polarizer + 𝜆/4 Known polarization state 𝑺𝒊𝒏 𝑺𝟎𝟎,𝒊𝒏 𝑺𝟎𝟏,𝒊𝒏 𝑺𝟎𝟐,𝒊𝒏 𝑺𝟎𝟑,𝒊𝒏 𝑺𝟏𝟎,𝒐𝒖𝒕 = 𝑺𝟏𝟎,𝒊𝒏 ⋮ ⋮ 𝑵 𝑵 𝑺𝟎,𝒐𝒖𝒕 𝑖 𝑺𝟎,𝒊𝒏 𝑺𝟏𝟏,𝒊𝒏 ⋮ 𝑵 𝑺𝟏,𝒊𝒏 𝑺𝟏𝟐,𝒊𝒏 ⋮ 𝑵 𝑺𝟐,𝒊𝒏 𝑺𝟏𝟑,𝒊𝒏 ⋮ 𝑵 𝑺𝟑,𝒊𝒏 𝑺𝟎𝟎,𝒐𝒖𝒕 PSA Lens 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 ∙ 𝒔𝒕𝒂𝒕𝒆 𝒊 𝒎𝟎𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 N Linear equations: possible estimation of the 𝒎𝒊𝟎,𝒍 parameters Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Data Reduction Matrix State i={0;1;2;3} 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 = 𝒔𝒕𝒂𝒕𝒆 𝒊 𝒎𝟎𝟐 𝒊 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 𝑺𝟎𝟎,𝒐𝒖𝒕 𝑺𝒊𝒏 𝑻 + 𝟏 ∙ 𝑺𝟎,𝒐𝒖𝒕 ⋮ 𝑵 𝑺𝟎,𝒐𝒖𝒕 Pseudo inversion Global 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝑰𝒓𝒂𝒘𝟏 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝑰𝒓𝒂𝒘𝟐 𝟎𝟎 = 𝟑 𝑰𝒓𝒂𝒘𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝑰𝒓𝒂𝒘𝟒 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 ∙ 𝑺𝒊𝒏 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 PSA matrix Mathieu Vedel – Bossa Nova Technologies – March 2014 12 SALSA Technology Data Reduction Matrix 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝑰𝒓𝒂𝒘𝟏 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝑰𝒓𝒂𝒘𝟐 𝟎𝟎 = 𝟑 𝑰𝒓𝒂𝒘𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝑰𝒓𝒂𝒘𝟒 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟎 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟏 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟐 𝟏 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 𝟐 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 ∙ 𝑺𝒊𝒏 𝟑 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 𝟒 𝒎𝒔𝒕𝒂𝒕𝒆 𝟎𝟑 Numerical inversion 𝑺𝒊𝒏 Incident Stokes vector estimate Mathieu Vedel – Bossa Nova Technologies – March 2014 𝑰𝒓𝒂𝒘𝟏 𝑰 = 𝑪−𝟏 ∙ 𝒓𝒂𝒘𝟐 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 DRM Measured intensities 13 SALSA Technology Optimization of Condition Number? 𝑺𝒊𝒏 𝑰𝒓𝒂𝒘𝟏 𝑰 = 𝑪−𝟏 ∙ 𝒓𝒂𝒘𝟐 𝑰𝒓𝒂𝒘𝟑 𝑰𝒓𝒂𝒘𝟒 FLC1 FLC2 Linear polarizer CN needs to be minimal • Fixed Retardance • Fixed Orientations Adjustable orientation! Optimization possible by adjusting the polarizer’s orientation => α Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Optimization of Condition Number? FLC1 FLC2 Linear polarizer Calibration Mathieu Vedel – Bossa Nova Technologies – March 2014 CNα ≤ 2 SALSA Technology Optimization of Condition Number? FLC1 FLC2 Linear polarizer Calibration λ1 Mathieu Vedel – Bossa Nova Technologies – March 2014 CNα ≤ 2 SALSA Technology Other wavelengths? FLC1 FLC2 Linear polarizer Calibration CNα>50! Calibration CNα >50! λ2 λ3 α is not optimum for all wavelengths Mathieu Vedel – Bossa Nova Technologies – March 2014 SALSA Technology Multi-Optimization of Condition Number? 1. Characterization/model of our FLCs for each wavelength 2. Simulation of calibration procedure for each wavelength of interest 3. Optimization of polarizer orientation for each wavelength 4. Compromise angle αλ1, λ2, …! 5. Actual calibration at αλ1, λ2, … 6. Testing 7… λ=[450nm…650nm] Mathieu Vedel – Bossa Nova Technologies – March 2014 CN ≤ 6 SALSA Technology Typical Calibration accuracy S1 S 2 DOLP S0 2 2 Mathieu Vedel – Bossa Nova Technologies – March 2014 Error peak-to-valley (PV): 3% FLCs spatial inhomogeneity FLC between crossed polarizers Mathieu Vedel – Bossa Nova Technologies – March 2014 Contrast +50% FLCs spatial inhomogeneity • Very little data from manufacturers • Variations up to 2% from one area to another accounts for up to +/5% variation of DOP • Pixel/pixel calibration not realistic for live measurement/display of polarization parameters • Need to develop a field calibration of the FLCs Contrast +50% Mathieu Vedel – Bossa Nova Technologies – March 2014 • Several approaches are being considered from basic grid decomposition to “smarter” segmentation Full Stokes Polarization Imager Example -1 Mechanical Stress on a plastic CD case Stress S0 Mathieu Vedel – Bossa Nova Technologies – March 2014 DOLP DOCP Full Stokes Polarization Imager Example -1 Mechanical Stress on a plastic CD case Stress ZOOM S0 Mathieu Vedel – Bossa Nova Technologies – March 2014 ZOOM DOLP ZOOM DOCP Full Stokes Polarization Imager Example -1 Mechanical Stress on a plastic CD case HSL Fusion Images 90° 45° 0° -45° -90° Linear polarization DOLP=0% DOLP=100% Circular polarization Possible to perform retardance/stress mapping! Mathieu Vedel – Bossa Nova Technologies – March 2014 Full Stokes Polarization Imager Potential applications – Example -2 Biology measurements Circular polarization reflected on a beetle scarab’s carapace Non polarized illumination (integrated sphere) S0 S1 S2 ALMOST NO LINEAR POLARIZATION REFLECTED Mathieu Vedel – Bossa Nova Technologies – March 2014 Full Stokes Polarization Imager Potential applications – Example -2 Biology measurements Circular polarization reflected on a beetle scarab’s carapace Non polarized illumination (integrated sphere) S0 S3 Ellipticity The specular reflection is elliptically polarized – left handed, DOCP≈40%, ε≈20° Mathieu Vedel – Bossa Nova Technologies – March 2014 Thank you! Mathieu Vedel – Bossa Nova Technologies – March 2014
© Copyright 2026 Paperzz