Endovascular Thrombectomy for Acute Ischemic Stroke in Failed

Endovascular Thrombectomy for Acute Ischemic Stroke in
Failed Intravenous Tissue Plasminogen Activator Versus
Non–Intravenous Tissue Plasminogen Activator Patients
Revascularization and Outcomes Stratified by the Site of
Arterial Occlusions
Zhong-Song Shi, MD; Yince Loh, MD; Gary Walker, PhD; Gary R. Duckwiler, MD;
for the MERCI and Multi MERCI Investigators
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
Background and Purpose—Intracranial mechanical thrombectomy is a therapeutic option for acute ischemic stroke
patients failing intravenous tissue plasminogen activator (IV tPA). We compared patients treated by mechanical embolus
removal in cerebral ischemia (MERCI) thrombectomy after failed IV tPA with those treated with thrombectomy alone.
Methods—We pooled MERCI and Multi MERCI study patients, grouped them either as failed IV tPA or non–IV tPA, and
assessed revascularization rates, procedural complications, symptomatic hemorrhage rates, clinical outcomes, and
mortality. We also evaluated outcomes stratified by the occlusion site and final revascularization.
Results—Among 305 patients, 48 failed, and 257 were ineligible for IV tPA. Nonresponders to IV tPA trended toward a
higher revascularization rate (73% versus 63%) and less mortality (27.7% versus 40.1%) and had similar rates of
symptomatic hemorrhage and procedural complications. Favorable 90-day outcomes were similar in failed and non–IV
tPA patients (38% versus 31%), with no difference according to occlusion site. Among patients failing IV tPA, good
outcomes tended to occur more frequently in revascularized patients (47.1% versus 15.4%), although this relationship
was attributable solely to middle cerebral artery and not internal carotid artery occlusions, with no difference in
mortality. Among IV tPA–ineligible patients, revascularization correlated with good outcome (47.4% versus 4.4%) and
less mortality (28.5% versus 59.6%).
Conclusions—The risks of hemorrhage and procedure-related complications after mechanical thrombectomy do not differ
with respect to previous IV tPA administration. Thrombectomy after IV tPA achieves similar rates of good outcomes,
a tendency toward lower mortality, and similar revascularization rates when stratified by clot location. Good outcomes
correlate with successful revascularization except with internal carotid artery occlusions in tPA-nonresponders. (Stroke.
2010;41:1185-1192.)
Key Words: acute stroke 䡲 endovascular treatment 䡲 outcome 䡲 thrombectomy 䡲 thrombolysis
R
cally confirmed by transcranial Doppler ultrasonography
within the first hour,11 this may be an appropriate window
within which to consider rescue reperfusion therapies for IV
tPA nonresponders.
The Mechanical Embolus Removal in Cerebral Ischemia
(MERCI) and Multi MERCI trials were prospective, multicenter, endovascular mechanical thrombectomy trials for
acute ischemic stroke patients treated within 8 hours of
symptom onset who were either ineligible for or failed IV tPA
therapy, introducing Merci Retriever thrombectomy as an
option for acute ischemic stroke patients.12–15 The Multi
evascularization rates in acute ischemic stroke patients
with intravenous tissue plasminogen activator (IV tPA)
treatment may be as low as 6% for internal carotid artery
(ICA) terminus, 30% for middle cerebral artery (MCA) trunk,
and 30% for basilar occlusions.1,2 Nonresponse to IV tPA is
associated with poor clinical outcomes.3 Although the initial
IV tPA trials did not assess revascularization,4 – 6 failed IV
tPA patients have emerged as a subgroup with persistent
occlusions, confirmed by noninvasive or catheter angiography.7–10 The time window defining failed IV tPA has not been
established. Because revascularization after IV tPA is typi-
Received November 18, 2009; final revision received December 16, 2009; accepted December 18, 2009.
From the Division of Interventional Neuroradiology (G.R.D.), David Geffen School of Medicine at UCLA, Los Angeles, Calif; Concentric Medical,
Inc. (G.W.), Mountain View, Calif; the Department of Neurosurgery (Z.-.S.S.), The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R.
China; and the Neurovascular Service, Department of Medicine (Y.L.), Madigan Army Medical Center, Tacoma, Wash.
A list of the MERCI trial investigators appears in Appendix 1.
A list of the Multi MERCI trial investigators appears in Appendix 2.
Correspondence to Gary R. Duckwiler, MD, Division of Interventional Neuroradiology, David Geffen School of Medicine at UCLA, 757 Westwood
Plaza, Los Angeles, CA 90095-7437. E-mail [email protected]
© 2010 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org
DOI: 10.1161/STROKEAHA.109.568451
1185
1186
Stroke
June 2010
MERCI trial also showed that significant hemorrhage from
the combined use of IV tPA and thrombectomy (failed IV
tPA group) was not significantly higher than with thrombectomy alone (non–IV tPA group).14,15 However, it is possible
that the effect of nonresponse to IV tPA varies depending on
occlusion location and final revascularization. We pooled
data from these 2 trials and analyzed outcomes and revascularization rates in patients with failed IV tPA versus non–IV
tPA, stratified by vessel occlusion.
Methods
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
Pooled data from the previously reported MERCI and Multi MERCI
trials13,15 were analyzed retrospectively in this study. A family of
Merci Retrievers (Concentric Medical, Inc.) was used to extract clot
from intracranial vessels. The MERCI trial only enrolled patients
who were ineligible for IV tPA. In Multi MERCI, patients receiving
IV tPA (0.6 mg/kg or 0.9 mg/kg) within 3 hours of stroke onset were
included if persistent vessel occlusion was confirmed by angiography. Intra-arterial (IA) tPA was only allowed in cases of thrombectomy failure after 6 passes or to treat distal embolus after successful
proximal thrombectomy.
Patients were dichotomized into failed and non–IV tPA groups.
Clinical variables, revascularization rates, symptomatic hemorrhage
rates, clinical outcomes and mortality at 90 days, and clinically
significant procedural complications were compared. Clot locations
were confirmed by catheter angiography and were hierarchically
categorized based on the most proximal occlusion location: ICA,
MCA, or vertebro-basilar.
Successful revascularization was defined as achieving
thrombolysis in myocardial infarction II or III flow in all treatable
vessels (ICA, M1, M2, vertebral, and basilar) documented on final
post-thrombectomy angiogram. CT or MRI brain imaging was
performed at baseline, 24 hours, and at any time there was a decline
in patient neurological status. Symptomatic intracranial hemorrhage
was defined as a point increase of ⱖ4 in the National Institutes of
Health Stroke Scale (NIHSS) score within 24 hours with evidence of
any blood on 24-hour head CT/MRI scan or any intracranial
hemorrhage in which no additional NIHSS scores were available
followed by patient death. Intracerebral hemorrhages were further
categorized as hemorrhagic infarction type I and II, or parenchymal
hematoma types I and II, as described previously.5 Procedure-related
adverse events were adjudicated by an independent data safety
monitoring board and were defined as vascular perforation, intramural arterial dissection, or embolization of a previously uninvolved
territory, symptomatic hemorrhage, and access site complications
requiring surgery or transfusion. Clinically significant procedural
complications were defined as a procedure complication with decline
in NIHSS score of ⱖ4 points or death, groin complication requiring
surgery, or blood transfusion.
Neurological status was quantified by the NIHSS and modified
Rankin Scale (mRS) at 90 days. Good outcome at 90 days was
defined as mRS ⱕ2. Additional comparisons of revascularization,
procedural complications, good outcomes, and mortality were stratified by the occlusion site, and outcomes were further stratified by
final revascularization.
Categorical data were analyzed by the Fisher exact and ␹2 tests.
Continuous data were assessed for normality by the Kolmogorov–
Smirnov test; normally distributed continuous data were analyzed by
Student t test, and for unevenly distributed continuous data, the
Mann–Whitney U test was used. A P value ⬍0.05 was considered
statistically significant. No adjustment was made for multiplicity.
Statistical analyses were performed using SAS software (version 8.2;
SAS Institute Inc).
Results
Demographics
A total of 305 patients were enrolled in the 2 trials: 141
patients in MERCI and 164 patients in Multi MERCI.
Forty-eight (15.7%) failed IV tPA, and 257 (84.3%) were not
eligible to receive IV tPA before mechanical thrombectomy.
In the failed IV tPA group, the mean age was 67.8⫾12.7
years, and 56.3% (27 of 48) were women. Mean baseline
NIHSS score was 19.1⫾5.5. The mean IV tPA dose was
57⫾16 mg. In the non–IV tPA group, the mean age was
67.6⫾16.3 years, and 51.4% (132 of 257) were women. Mean
baseline NIHSS score was 19.8⫾6.7. Baseline characteristics
(Table 1) for these 2 populations were similar with the
exception of a higher distribution of comorbid dyslipidemia
in those failing IV tPA (46.8% versus 31.6%; P⬍0.05).
Patients with failed IV tPA tended to have a shorter time to
intervention and shorter procedure duration (4.0 versus 4.4
hours). Table 1 shows the distribution of occlusion locations,
categorized hierarchically by the most proximal occlusion.
The distribution of occlusion location was not different
between groups, with the MCA being the most common, then
the ICA, and then the vertebro-basilar system.
Revascularization Rates
The final revascularization rates were similar between groups
(72.9% versus 63.0%), with comparable intergroup IA tPA
use. In tPA-nonresponders, revascularization was achieved in
66.7% (12 of 18) of ICA, 74.1% (20 of 27) of MCA, and
100% (3 of 3) of vertebro-basilar occlusions (Table 2). In the
non–IV tPA patients, revascularization was achieved in
61.7% (50 of 81), 61.6% (93 of 151), and 76.0% (19 of 25),
respectively (Table 3). There was no intergroup difference.
Symptomatic Hemorrhage and Complications
Symptomatic hemorrhage was similar between groups
(10.4% versus 8.6%). The 2.1% rate of symptomatic parenchymal hematoma II in patients with failed IV tPA was
similar to the 1.9% rate in the non–IV tPA patients. Symptomatic hemorrhage rates by occlusion site were as follows
for the failed and non–IV tPA groups, respectively: ICA,
11.1% for both; MCA, 11.1% versus 5.3%; and vertebrobasilar, 0% versus 20.0% (Tables 2 and 3). Symptomatic
hemorrhage in ICA occlusions was similar between groups.
Although all parenchymal hematoma II hemorrhages occurred with MCA occlusions in the failed IV tPA group, the
rates of all symptomatic hemorrhages for both MCA and
vertebro-basilar occlusions were similar to the non–IV tPA
group.
Hemorrhage by Revascularization Status
In tPA-nonresponders, symptomatic hemorrhage occurred
equally by revascularization status (8.6% [3 of 35] versus
15.4% [2 of 13]). In the non–IV tPA group, revascularized
patients had less symptomatic hemorrhage (4.3% [7 of 162]
versus 15.8% [15 of 95]; P⫽0.002).
Procedural Adverse Events
Both groups had a similar rate of clinically significant
procedural complications (4.2% versus 6.6%). In the failed
IV tPA group, procedural complications only occurred with
MCA occlusions, at a rate of 7.4%. In the non–IV tPA group,
clinically significant complication rates by occlusion site
were: ICA, 8.6%; MCA, 4.6%; and vertebro-basilar, 12.0%.
Shi et al
Table 1.
Failed IV tPA Vs Non-IV tPA With Thrombectomy
1187
Characteristics of Patients With Failed IV tPA Vs Non–IV tPA
Failed IV t-PA (n⫽48)
No IV t-PA (n⫽257)
Mean age, years⫾SD
67.8⫾12.7
67.6⫾16.3
0.93*
Female, %
27 (56.3%)
132 (51.4%)
0.64†
38 of 48 (79.2%)
181 of 256 (70.7%)
0.29†
9 of 47 (19.1%)
52 of 255 (20.4%)
0.85‡
Dyslipidemia
22 of 47 (46.8%)
73 of 231 (31.6%)
⬍0.05‡
Coronary artery disease
20 of 46 (43.5%)
102 of 250 (40.8%)
0.75†
0.55‡
Hypertension
Diabetes mellitus
Congestive heart failure
P Value
7 of 45 (15.6%)
49 of 254 (19.3%)
Smoking
11 of 47 (23.4%)
54 of 237 (22.8%)
0.93‡
Atrial fibrillation
22 of 48 (45.8%)
106 of 254 (41.7%)
0.64†
Baseline NIHSS score
19.1⫾5.5
19.8⫾6.7 (256)
0.51*
Symptom onset to IA access (hours)
3.95⫾1.16
4.43⫾1.84 (255)
0.08*
1 (2.1%)
27 (10.5%)
ICA-T
17 (35.4%)
54 (21.0%)
MCA M1
21 (43.8%)
129 (50.2%)
MCA M2
6 (12.5%)
22 (8.6%)
Vertebro-basilar
3 (6.3%)
25 (9.7%)
Time to treatment (hours)
3.95⫾1.16
4.43⫾1.84
0.08*
Mean procedure duration (hours)
1.68⫾0.78
1.93⫾0.91 (250)
0.08*
Attempts to remove clot, mean⫾SD
2.79⫾1.71
2.94⫾1.55
0.57*
IA lytic use, %
17 (35.4%)
80 (31.1%)
0.56‡
Final TIMI II/III flow
35 (72.9%)
162 (63.0%)
0.25†
Site of vascular occlusion, %
0.06‡
ICA
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
*P value is from the 2-sample t test; †P value is from the Fisher exact test; ‡P value is from the likelihood ratio
chi-square t test.
TIMI indicates thrombolysis in myocardial infarction.
Clinical Outcomes
The rates of good clinical outcomes (mRS, 0 to 2) at 90 days
were similar in the failed and non–IV tPA groups (38.3%
versus 31.3%). Good outcomes by occlusion site in the failed
and non–IV tPA groups were as follows, respectively (Tables
2 and 3): ICA, 29.4% (5 of 17) versus 28.8% (23 of 80);
MCA, 40.7% (11 of 27) versus 33.3% (46 of 138); and
vertebro-basilar, 66.7% (2 of 3) versus 28.0% (7 of 25). The
rate of good outcome at 90 days was similar between groups
for each occlusion location.
Outcomes by Postprocedure Revascularization Status
In both groups, good clinical outcomes at 90 days occurred
more frequently in subjects for whom revascularization was
successful (Figure 1). In the failed IV tPA group, 47.1% (16
Table 2.
of 34) of revascularized patients had a good neurological
outcome compared with 15.4% (2 of 13) of nonrevascularized
patients (P⫽0.09), powered by MCA (55% versus 0%) but
not ICA occlusions (27% versus 33%). In the non–IV tPA
group, 47.4% (72 of 152) of revascularized patients had a
good neurological outcome compared with 4.4% (4 of 91) of
nonrevascularized patients (P⬍0.001). When stratified by
occlusion site, a positive relationship existed between revascularization and good outcome, with the exception of ICA
occlusions failing IV tPA.
Across cohorts, revascularized patients had a similar rate of
good outcomes in both groups (47.1% versus 47.4%),
whereas nonrevascularized patients in the failed IV tPA
group trended toward better outcome than nonrevascularized
patients in the non–IV tPA group (15.4% versus 4.4%;
Revascularization Rates and Outcomes by Site of Vascular Occlusion in Failed IV tPA Patients
Final revascularization, n (%)
Overall (n⫽48)
ICA (n⫽18)
MCA (n⫽27)
Posterior (n⫽3)
P
35 (72.9%)
12 (66.7%)
20 (74.1%)
3 (100%)
0.32
5 (10.4%)
2 (11.1%)
3 (11.1%)
0 (0.0%)
0.71
Intracranial hemorrhage
Symptomatic, n (%)
17 (35.4%)
6 (33.3%)
10 (37.0%)
1 (33.3%)
0.97
Good outcome at 90 days, n (%)
Asymptomatic, n (%)
18 of 47 (38.3%)
5 of 17 (29.4%)
11 (40.7%)
2 (66.7%)
0.44
Mortality at 90 days, n (%)
13 of 47 (27.7%)
6 of 17 (35.3%)
6 (22.2%)
1 (33.3%)
0.63
2 (4.2%)
0 (0.0%)
2 (7.4%)
0 (0.0%)
0.31
Procedural complication, n (%)
P values are from the likelihood ratio chi-square test.
1188
Stroke
Table 3.
June 2010
Revascularization Rates and Outcomes by Site of Vascular Occlusion in Non–IV tPA Patients
Final revascularization, n (%)
Overall (n⫽257)
ICA (n⫽81)
MCA (n⫽151)
Posterior (n⫽25)
162 (63.0%)
50 (61.7%)
93 (61.6%)
19 (76.0%)
0.35
P
⬍0.05
Intracranial hemorrhage
Symptomatic, n (%)
22 (8.6%)
9 (11.1%)
8 (5.3%)
5 (20.0%)
Asymptomatic, n (%)
72 (28.0%)
21 (25.9%)
46 (30.5%)
5 (20.0%)
0.48
76 of 243 (31.3%)
23 of 80 (28.8%)
46 of 138 (33.3%)
7 (28.0%)
0.73
101 of 252 (40.1%)
41 (50.6%)
49 of 146 (33.6%)
11 (44.0%)
0.04
17 (6.6%)
7 (8.6%)
7 (4.6%)
3 (12.0%)
0.28
Good outcome at 90 days, n (%)
Mortality at 90 days, n (%)
Procedural complication, n (%)
P values are from the likelihood ratio chi-square test.
P⫽0.16). Figure 2 shows 90-day good outcomes stratified by
revascularization status, IV tPA status, and occlusion
location.
decreased mortality in the failed IV tPA cohort (38.5% versus
59.6%; P⫽0.23). Mortality results, stratified by revascularization status and site of vascular occlusion, are shown in
Figure 3.
Mortality
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
There was a trend toward less mortality at 90 days in the
failed IV tPA group (27.7% [13 of 47] versus 40.1% [101 of
252]; P⫽0.08). Mortality rates in patients failing and not
receiving IV tPA, by occlusion site, were as follows, respectively (Tables 2 and 3): ICA, 35.3% (6 of 17) versus 50.6%
(41 of 81); MCA, 22.2% (6 of 27) versus 33.6% (49 of 146);
and vertebro-basilar, 33.3% (1 of 3) versus 44.0% (11 of 25).
The rate of 90-day mortality was the same between groups for
each occlusion location.
Mortality by Postprocedure
Revascularization Status
Nonrevascularized patients had higher rates of mortality in
both the failed IV tPA and non–IV tPA groups (Figure 1).
Revascularized and nonrevascularized patients in the failed
IV tPA groups had similar mortality at 90 days (23.5% versus
38.5%). In contrast, the mortality in the revascularized
non–IV tPA group (28.5%) was lower than those not revascularized (59.6%; P⬍0.001).
Across cohorts, revascularized patients had a similar rate of
mortality in both groups (23.5% versus 28.5%), although
among nonrevascularized patients, there was trend toward
Discussion
The combination of IV tPA followed by mechanical thrombectomy achieves similar rates of good outcomes compared
with thrombectomy alone. Previous IV tPA use does not
increase symptomatic hemorrhage risk or procedure-related
complications after thrombectomy. Revascularization rates
are similar between the failed and non–IV tPA groups when
stratified by occlusion location. Revascularized patients have
better outcomes regardless of occlusion site.
Results from 2 different IV thrombolysis studies showed
that the ICA, MCA, and basilar artery occlusions respond
differently to thrombolytics, and revascularization was more
frequent in distal occlusions.1,2 Revascularization and good
outcomes may be improved by a combined multimodal
approach.7–10,16 –21 In a series of 69 patients (50 MCA, 18
ICA, and 1 basilar occlusion) treated by IA thrombolysis after
nonresponse to IV tPA,9 the revascularization rate was
72.5%, similar to the 75% rate in another series of 16 patients
with MCA and ICA occlusions.8
Two studies also demonstrated improved revascularization
with mechanical clot disruption after failed IV tPA. In 32
patients with persistent MCA or ICA occlusion after IA or IV
Figure 1. Ninety-day (90d) mRS by revascularization status in the cohort of failed IV tPA subjects
(A; n⫽47) and the cohort that did not receive IV
tPA (B; n⫽243). Brackets indicate the percentage
of subjects achieving a good mRS score of 0 to 2.
mRS scores of 3, 4 to 5, and 6 represent intermediate, poor neurological outcome, and death,
respectively.
Shi et al
Failed IV tPA Vs Non-IV tPA With Thrombectomy
1189
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
Figure 2. Ninety-day good outcomes (mRS ⱕ2) by revascularization and IV tPA status overall and by occlusion site. BA indicates basilar artery. The number above each bar indicates the number of patients in the cohort.
thrombolysis, aggressive mechanical clot disruption (angioplasty or stenting, catheter or wire clot maceration, and snare
device) achieved successful revascularization (thrombolysis
in myocardial infarction II/III) in 87.5% of MCA occlusions
and 62.5% of ICA occlusions.16 In 7 patients with basilar
occlusions treated by combined IV tPA and mechanical
thrombectomy (snares and suction devices) or IA tPA, 87.5%
of patients were revascularized.10
In our analysis, successful revascularization of ICA, MCA,
and basilar artery occlusions was achieved with the Merci
device in IV tPA nonresponders, with no difference in
complications. Revascularization rates in our cohort of
66.7%, 74.1%, and 100% of ICA, MCA, and basilar occlusions, respectively, were comparable to those of previous
combined approach cohorts.
We demonstrate no difference in the rates of symptomatic
hemorrhage between patients either failing or ineligible for
IV tPA who are subsequently treated with mechanical throm-
bectomy. The overall 10.4% rate of symptomatic hemorrhage
in the combined IV tPA and thrombectomy group is comparable to the 8.2% rate from the pooled data of IV tPA trials.22
Our observed rate is also lower than the 12.2% rate observed
in IA thrombolysis and 20% rate in IA plus IV thrombolysis
from one multicenter study23 but slightly higher than the 6.2%
and 5.8% rates from 2 other series of combined IA and IV
thrombolysis.8,9
In our study, an 11.1% rate of symptomatic hemorrhage was
found in patients with either ICA or MCA occlusions treated
with a combined approach, whereas rates of symptomatic
hemorrhage after thrombectomy alone were 11.1% in ICA, 5.3%
in MCA, and 20% in basilar artery occlusions. Our rates of
symptomatic hemorrhage in ICA occlusions in both groups were
lower than the 18.8% rate seen in 16 patients treated with
mechanical clot disruption after failed IV tPA.16
Patients in our study also experienced parenchymal hematoma II hemorrhage less frequently than described in Inter-
Figure 3. Ninety-day mortality by revascularization and IV tPA status overall and by occlusion site. BA indicates basilar artery. The
number above each bar indicates the number of patients in the cohort.
1190
Stroke
June 2010
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
ventional Management of Stroke studies I and II, which
occurred in 7.5% and 8.8% of patients, respectively.24,25 The
decreased incidence of parenchymal hematoma II hemorrhages with the Merci device may be associated with the
decreased use of thrombolytic drugs. Despite the theoretically
increased risk of symptomatic hemorrhage with mechanical
thrombectomy after failed IV tPA, there were numerically
fewer procedure-related complications and mortality in the
failed IV tPA group than the non–IV tPA group.
We found no difference in good outcomes and mortality
between patients undergoing mechanical thrombectomy after
failing or being ineligible for IV tPA. Similar rates of good
outcomes have been reported in previous combined approach
studies.7–10,16 –21,25 In one study, 33 patients treated endovascularly (IA thrombolysis, Merci device, snare, or angioplasty)
after IV tPA demonstrated lower mortality than 30 patients
treated with IV tPA alone.19 In our study, good outcomes and
mortality rates were similar in patients with MCA, ICA, and
basilar artery occlusions treated with the combined approach.
In patients undergoing thrombectomy alone, the rates of good
clinical outcomes were similar among the different sites of
occlusion, but there was a trend toward lower mortality in
patients with MCA occlusions than basilar or ICA occlusions.
The only group in this entire cohort with no notable relationship between good outcome and revascularization was in
tPA-nonresponders with ICA occlusions. The implications of
this finding are unclear at this time, although they may be a
result of an uneven distribution of pre-MERCI disability or
higher hemorrhage transformation rates after revascularization in this subgroup.
Previous endovascular studies have shown a strong association between successful revascularization and favorable
clinical outcomes,13,15,26 –28 and our analysis supports this
assertion. In the non–IV tPA group, revascularized patients
had a higher proportion of good outcomes and a lower rate of
mortality. In addition, patients with revascularized MCA or
basilar occlusions had better outcomes and less mortality than
the nonrevascularized patients in both treatment groups. With
ICA occlusions, good outcome was more frequent in revascularized patients in the non–IV tPA group but not in the
failed IV tPA group.
This study has several limitations. Although the MERCI
trial did not include failed IV tPA patients (by trial design),
they contributed a greater number of non–IV tPA subjects for
this analysis, facilitating a more meaningful comparison.
Since the MERCI study, there has been progress in the Merci
device, operator experience, and case selection, which may
favor the failed IV tPA group (all from Multi MERCI). In
addition, the failed IV tPA group presented earlier than the
non IV tPA group, and since time from symptom onset to tPA
bolus has also been shown to affect outcomes in the IV tPA
trials, this may have contributed to detected differences.
In conclusion, the risk of symptomatic hemorrhage and
procedural complication using the Merci Retriever after
failed IV tPA is the same as using thrombectomy alone.
Thrombectomy after IV tPA achieves similar rates of good
outcomes, a tendency toward lower mortality, and similar
revascularization rates when stratified by clot location. Good
outcomes correlate with successful revascularization except
with ICA occlusions in tPA-nonresponders.
Appendix 1
MERCI Trial Investigators
Wade S. Smith, MD, PhD, University of California, San Francisco
was the national principal investigator.
The data safety monitoring board included: chair, Gene Sung,
MD, University of Southern California; biostatistician, Phil Hormel,
MS; members, Tim W. Malisch, MD, University of Illinois at
Chicago, Steven L. Giannotta, MD, University of Southern California, Steven Rudolph, MD, Lenox Hill Hospital, and Fady T. Charbel,
MD, University of Illinois at Chicago.
The imaging core laboratory consisted of Paul Kim, MD, University of Southern California.
The writing committee included: Ronald Budzik, MD; Y. Pierre
Gobin, MD; Thomas Grobelny, MD; Randall T. Higashida, MD;
Chelsea Kidwell, MD; Helmi L. Lutsep, MD; Michael Marks, MD;
Gary Nesbit, MD; Marilyn M. Rymer, MD; Jeffrey Saver, MD; Isaac
E. Silverman, MD; Wade S. Smith, MD, PhD; Sidney Starkman,
MD; and Gene Sung, MD.
The site principal investigators, coinvestigators, and study coordinators in order of enrollment are as follows. University of
California at Los Angeles Medical Center (22): Sidney Starkman,
MD; Gary Duckwiler, MD; Megan Leary, MD; Chelsea Kidwell,
MD; Jeffrey Saver, MD; Fernando Vinuela, MD; Reza Jahan, MD;
Y. Pierre Gobin, MD; and Judy Guzy, RN. Oregon Health Science
University (22): Helmi Lutsep, MD; Stanley Barnwell, MD; Wayne
Clark, MD; Ted Lowenkopf, MD; Elizabeth North, MD; Joseph
Quinn, MD; Robert Egan, MD; Todd Kuether, MD; John Roll, MD;
George Luh, MD; Gary Nesbit, MD; and Barbara Dugan, RN. Saint
Luke’s Hospital (21): Thomas Grobelny, MD; Naveed Akhtar, MD;
Steven Arkin, MD; Irene Bettinger, MD; Marilyn Rymer, MD;
Charles Weinstein, MD; Michael Schwartzman, MD; Christine
Boutwell, MD; and Barbara Gruenenfelder, RN. Massachusetts
General Hospital (11): Walter Koroshetz, MD; Johnny Pryor, MD;
Neeraj Badjatia, MD; Ferdinando Buonarmo, MD; Lawrence Conrad, MD; David Greer, MD; Raul Nogueira, MD; James Rabinov,
MD; Guy Rordorf, MD; Jonathan Rosand, MD; Lee Schwamm, MD;
John Sims, MD; Eric Smith, MD; Brian Hoh, MD; Joshua Hirsch,
MD; Cenk Ayata, MD; Leigh Hochberg, MD; and Joanie Cacciola,
RN. NY Presbyterian Hospital–Columbia (11): John Pile-Spellman,
MD; Sean Lavine, MD; Sundeep Mangla, MD; Philip Meyers, MD;
and Leslie Schmidt, NP. The Stroke Center at Hartford Hospital (11):
Isaac Silverman, MD; Stephen Ohki, MD; Gary Speigel, MD;
Martha Ahlquist, LPN, CCRP; and Dawn Beland, MSN. NY
Presbyterian Hospital–Cornell (6): Alan Segal, MD; Ai-His Liu,
MD; Igor Ougrets, MD; Howard Riina, MD; Y. Pierre Gobin, MD;
and Kimberly Salvaggio, NP. University of California at San
Francisco Medical Center (6): Randall Higashida, MD; Christopher
Dowd, MD; Van Halbach, MD; Vineeta Singh, MD; Nerissa Ko,
MD; Jacob Elkins, MD; S. Claiborne Johnston, MD, PhD; J. Claude
Hemphill, MD, MSc; David C. Bonovich, MD; Sharon Filler, RN;
and Melissa Meighan, RN. Florida Hospital Neuroscience Institute
(5): Frank Huang-Hellinger, MD; and Susan Mitchell, RN. Riverside
Methodist Hospital (5): Ronald Budzik, MD; Geoffrey Eubank, MD;
Erik Arce, MD; Jim Fulop, MD; John Lippert, MD; Tom Davis, MD;
J. Kevin McGraw, MD; Peter Pema, MD; and Paula Meyers, RN.
Stanford University Medical Center (5): Michael Marks, MD; Huy
Do, MD; Gregory Albers, MD; Amie Hsia, MD; David Tong, MD;
Christine Wijamn, MD; and Mary Marcellus, RN. Carolina Neurosurgery and Spine (4): Joseph Bernard, MD; Gary DeFilipp, MD;
Richard Bellon, MD; Barry McGinnis, MD; Andrea Dietrich, MD;
Steve Putnam, MD; and Peggy Boltes, RN. Georgetown University
(2): Vance Watson, MD; John DeSimone, MD; Manual Yepes, MD;
and Theresa Kowal, RN. University of Maryland (2): Joanne
Stallmeyer, MD; Abraham Obuchowski, MD; Greg Zoarski, MD;
Marian LaMonte, MD; Marcella Wozniack, MD; and Deborah
Schofield, RN. University of Pennsylvania (2): David Liebeskind,
MD; Scott Kasner, MD; Brett Cucchiara, MD; Steven Messe, MD;
Shi et al
Failed IV tPA Vs Non-IV tPA With Thrombectomy
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
Robert Taylor, MD; Michael McGarvey, MD; Robert Hurst, MD;
Linda Bagley, MD; John Weigele, MD; Jessica Clarke, RN, BSN.
Brigham and Women’s Hospital (1): Walter Koroshetz, MD; Kai
Frerichs, MD; Steven Feske, MD; Alexander Norbash, MD; Galen
Hendersen, MD; Farzanah Sorond, MD; John Baker, MD; Peng
Chen, MD; and Joanne O’Hara, RN. Latter-Day Saints Hospital (1):
John Jacobs, MD; Lisa Yananse, MD; Duane Blatter, MD; Albert
Lee Bahr, MD; Collen Harker MD; David Pisani, MD; and Kathy
Walker, RN. Louisiana State University at Shreveport (1): Claudio
Schonoholz, MD; Horacio D’Agostino, MD; Anil Nanda, MD;
Roger Kelley, MD; and Donna Singleton, RN. State University of
New York at Buffalo (1): L. Nelson Hopkins, MD; Lee Guterman,
MD; Elad Levy, MD; Jay Howington, MD; Mark Harrigan, MD;
Ricardo Hanel, MD; and Annemarie Crumlish. University of North
Carolina–Chapel Hill (1): Sten Solander, MD; Ana Felix, MD;
Souvik Sen, MD; David Huang, MD; Nydia Melendez, MD; and
Susan Wilson, MSN, FNP. Washoe Medical Center (1): Paul Katz,
MD; Bradley Glenn, MD; Timothy Koci, MD; Anthony Bruno, MD;
Mark Algood, MD; and Marta Heffner, RN. Baptist Memorial
Clinical Research Center: John Barr, MD; Paul Broadbent, MD;
Soren A. Singer, MD; Stephen D. Morris, MD; Sanat Dixit, MD; and
Grace Miller. Barrow Neurological Institute: James Frey, MD;
Cameron McDougall, MD; Felipe Albuquerque, MD; Mark Hekler,
MD; David Fiorella, MD; Seth Larson, MD; Shafeeq Ladha, MD;
Darin Okuda, MD; and Mary Harrigan, RN, MN. Baton Rouge
General Hospital: Albert Alexander, MD; Joseph Acosta, MD; Jon
Olson, MD; Kevin Callerame, MD; Rodney Hillis, MD; and Kimberly Hendricks, RN, MN. Emory University: Frank Tong, MD;
Jacques Dion, MD; Michael Frankel, MD; Barney Stern, MD; Owen
Samuels, MD; and Marc Chimowitz, MD. University of Texas,
Houston: Morgan Campbell, MD; John Choi, MD; Frank Yatsu,
MD; Marc Malkoff, MD; James Grotta, MD; Edwin Cacayorin, MD;
Christina Hall, MD; Lise Labiche, MD; Elizabeth Noser, MD; Joon
Song, MD; Ken Uchino, MD; and Doralene Smith.
Appendix 2
Multi MERCI Trial Investigators
Wade S. Smith, MD, PhD, University of California, San Francisco,
was the international principal investigator.
The data safety monitoring board included: chair, Gene Sung,
MD, MPH, University of Southern California; biostatistician, Phil
Hormel, MS; and members, Tim W. Malisch, MD, Alexian Brothers
Medical Center; Steven Rudolph, MD, Maimonides Medical Center;
and Arun Amar, MD, Stanford University.
The imaging core laboratory consisted of Paul Kim, MD, University of Southern California. The biostatistician was Phil Hormel, MS.
The writing committee included: Ronald Budzik, MD; Gary
Duckwiler, MD; Donald Frei, MD; Y. Pierre Gobin, MD; Thomas
Grobelny, MD; Randall T. Higashida; Frank Hellinger, MD; Dan
Huddle, MD, MD; Chelsea Kidwell, MD; Walter Koroshetz, MD;
David S. Liebeskind, MD; Helmi L. Lutsep, MD; Michael Marks,
MD; Gary Nesbit, MD; Marilyn M. Rymer, MD; Jeffrey Saver, MD;
Isaac E. Silverman, MD; Wade S. Smith, MD, PhD; Sidney
Starkman, MD; and Gene Sung, MD, MPH.
The site principal investigators, coinvestigators, and study coordinators in order of number of patients treated are as follows. St
Luke’s Hospital (50): Naveed Akhtar, MD, Thomas Grobelny, MD;
Annette Allen, RN; Steven Arkin, MD; Irene Bettinger, MD;
Christine Boutwell, MD; Charlene Grau, RN; Barbara Gruenenfelder, RN; Marilyn Rymer, MD; Michael Schwartzman, MD; and
Charles Weinstein, MD. Riverside Methodist Hospital (32): Ronald
Budzik, MD; Erik Arce, MD; Albert Berarducci, MD; Tom Davis,
MD; Mark Dean, MD; Eric Dolen; Geoffrey Eubank, MD; Jim
Fulop, MD; Xiamei Gao-Hickman, MD; John Lippert, MD; William
Mayr, MD; J. Kevin McGraw, MD; Paula Meyers, RN; Peter Pema,
MD; and Robert Wyatt, MD. Oregon Stroke Center (21): Helmi
Lutsep, MD; Stanley Barnwell, MD; Wayne Clark, MD; Barbara
Dugan, RN; Robert Egan, MD; Todd Kuether, MD; Ted Lowenkopf,
MD; Gary Nesbit, MD; Elizabeth North, MD; Bryan Peterson, MD;
John Roll, MD; and Lisa Yanase, MD. The Stroke Center at Hartford
1191
Hospital (14): Isaac Silverman, MD; Martha Ahlquist, LPN, CCRP;
Dawn Beland, MSN; Joao Gomes, MD; Stephen Ohki, MD; and
Gary Speigel, MD. University of California at Los Angeles Medical
Center (12): Sidney Starkman, MD; Latisha Ali; Brian Buck, MD;
Dennis Chute, MD; Gary Duckwiler, MD; Judy Guzy, RN; Reza
Jahan, MD; Doojin Kim, MD; David S. Liebeskind, MD; Victor
Marder, MD; Bruce Ovbiagele, MD; Venkatakrishna Rajajee, MD;
Lucas Restrepo, MD; Nerses Sanossian, MD; Jeffrey Saver, MD;
Scott Selco, MD; Samir Shah, MD; Maria Shukman, RN; Satoshi
Tateshima, MD; Amytis Towfighi, MD; Paul Vespa, MD; J. Pablo
Villablanca, MD; Harry Vinters, MD; and Fernando Vinuela, MD.
Swedish (Denver) Medical Center (9): Don Frei, MD; Dan Huddle,
MD; Richard Bellon, MD; Christopher Finale, MD; Carol Greenwald, MD; and Don Smith, MD. Florida Hospital Neuroscience
Institute (8): Frank Hellinger, MD; Laura Billanovic, RN; and Susan
Mitchell, RN. NY Presbyterian Hospital–Cornell (4): Alan Segal,
MD; Y. Pierre Gobin, MD; Jeffrey Katz, MD; Igor Ougrets, MD;
Howard Riina, MD; and Kimberly Salvaggio, NP. University of
Calgary, Foothills Hospital: (4) PI: Michael Hill, MD; Philip Barker,
MD; Andrew Demchuk, MD; Imanuel Dzialowski; Karyn Fischer,
RN, MD; William Hu; Mark Hudon, MD; Will Morrish, MD; Suresh
Subramanian, MD; Tim Watson, MD; and John Wong, MD. NY
Presbyterian Hospital–Columbia (3): John Pile-Spellman, MD; Sean
Lavine, MD; Philip Meyers, MD; and Leslie Schmidt, NP.
Georgetown University (3): Vance Watson, MD; John DeSimone,
MD; Timea Hodics, MD; Theresa Kowal, RN; Farid Parham, MD;
Susan Sutten, MPH; and Manual Yepes, MD. Stanford University
Medical Center (2): Michael Marks, MD; Gregory Albers, MD;
James Castle, MD; Huy Do, MD; Mahesh Jayerman, MD; Marten
Lansberg, MD; Mary Marcellus, RN; Chitra Venkatsubmaran, MD;
and Christine Wijman, MD. University of Alberta, Edmonton (2):
Ashfaq Shuaib, MD; Robert Ashforth, MD; Derek Emery, MD;
Faraz Al-Hussain, MD; Muhammad Hussain, MD; Thomas Jeerakathil, MD; Kurshid Khan, MD; Mikael Murtaoghu, MD; Nazir
Rizvi, MD; Maher Saqqur, MD; James Scozzafava, MD; Brenda
Scwindt, RN; Muzaffar Siddiqui, MD; and Khalida Tariq, MD.
Baptist Memorial Clinical Research Center: John Barr, MD; Paul
Broadbent, MD; Sanat Dixit, MD; Grace Miller; and Stephen D.
Morris, MD. University of Pittsburgh Medical Center: Tudor Jovin,
MD; Max Hammer, MD; Michael Horowitz, MD; Vivek Reddy,
MD; Tibetha Santucci, RN; Ken Uchino, MD; Nirav Vora, MD; and
Lawrence Wechsler, MD.
Acknowledgments
We thank Phil Hormel, MS, biostatistician, for his programming and
assistance of the analysis.
Disclosures
Gary R. Duckwiler is a scientific advisor and stockholder in Concentric
Medical, Inc. Gary Walker is an employee of Concentric Medical, Inc.
References
1. Saqqur M, Uchino K, Demchuk AM, Molina CA, Garami Z, Calleja S,
Akhtar N, Orouk FO, Salam A, Shuaib A, Alexandrov AV. Site of arterial
occlusion identified by transcranial Doppler predicts the response to
intravenous thrombolysis for stroke. Stroke. 2007;38:948 –954.
2. del Zoppo GJ, Poeck K, Pessin MS, Wolpert SM, Furlan AJ, Ferbert A,
Alberts MJ, Zivin JA, Wechsler L, Busse O, et al. Recombinant tissue
plasminogen activator in acute thrombotic and embolic stroke. Ann
Neurol. 1992;32:78 – 86.
3. Rha JH, Saver JL. The impact of recanalization on ischemic stroke
outcome: a meta-analysis. Stroke. 2007;38:967–973.
4. Tissue plasminogen activator for acute ischemic stroke. The National
Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.
N Engl J Med. 1995;333:1581–1587.
5. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D,
Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E,
Trouillas P. Randomised double-blind placebo-controlled trial of
thrombolytic therapy with intravenous alteplase in acute ischaemic stroke
(ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998;352:1245–1251.
1192
Stroke
June 2010
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
6. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP,
Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase)
for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS
Study: a randomized controlled trial. Alteplase Thrombolysis for Acute
Noninterventional Therapy in Ischemic Stroke. J Am Med Assoc. 1999;
282:2019 –2026.
7. Lee KY, Kim DI, Kim SH, Lee SI, Chung HW, Shim YW, Kim SM, Heo
JH. Sequential combination of intravenous recombinant tissue plasminogen activator and intra-arterial urokinase in acute ischemic stroke. AJNR
Am J Neuroradiol. 2004;25:1470 –1475.
8. Sekoranja L, Loulidi J, Yilmaz H, Lovblad K, Temperli P, Comelli M,
Sztajzel RF. Intravenous versus combined (intravenous and intra-arterial)
thrombolysis in acute ischemic stroke: a transcranial color-coded duplex
sonography– guided pilot study. Stroke. 2006;37:1805–1809.
9. Shaltoni HM, Albright KC, Gonzales NR, Weir RU, Khaja AM, Sugg
RM, Campbell MS III, Cacayorin ED, Grotta JC, Noser EA. Is intra-arterial thrombolysis safe after full-dose intravenous recombinant tissue
plasminogen activator for acute ischemic stroke? Stroke. 2007;38:80 – 84.
10. Pfefferkorn T, Mayer TE, Opherk C, Peters N, Straube A, Pfister HW,
Holtmannspötter M, Müller-Schunk S, Wiesmann M, Dichgans M.
Staged escalation therapy in acute basilar artery occlusion: intravenous
thrombolysis and on-demand consecutive endovascular mechanical
thrombectomy: preliminary experience in 16 patients. Stroke. 2008;39:
1496 –1500.
11. Ribo M, Alvarez-Sabín J, Montaner J, Romero F, Delgado P, Rubiera M,
Delgado-Mederos R, Molina CA. Temporal profile of recanalization after
intravenous tissue plasminogen activator: selecting patients for rescue
reperfusion techniques. Stroke. 2006;37:1000 –1004.
12. Gobin YP, Starkman S, Duckwiler GR, Grobelny T, Kidwell CS, Jahan
R, Pile-Spellman J, Segal A, Viñuela F, Saver JL. MERCI 1: a phase 1
study of Mechanical Embolus Removal in Cerebral Ischemia. Stroke.
2004;35:2848 –2854.
13. Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep
HL, Nesbit GM, Grobelny T, Rymer MM, Silverman IE, Higashida RT,
Budzik RF, Marks MP. Safety and efficacy of mechanical embolectomy
in acute ischemic stroke: results of the MERCI trial. Stroke. 2005;36:
1432–1438.
14. Smith WS. Safety of mechanical thrombectomy and intravenous tissue
plasminogen activator in acute ischemic stroke. Results of the Multi
Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial, part
I. AJNR Am J Neuroradiol. 2006;27:1177–1182.
15. Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS,
Lutsep HL, Rymer MM, Higashida RT, Starkman S, Gobin YP, Frei D,
Grobelny T, Hellinger F, Huddle D, Kidwell C, Koroshetz W, Marks M,
Nesbit G, Silverman IE. Mechanical thrombectomy for acute ischemic
stroke: final results of the multi MERCI trial. Stroke. 2008;39:1205–1212.
16. Noser EA, Shaltoni HM, Hall CE, Alexandrov AV, Garami Z, Cacayorin
ED, Song JK, Grotta JC, Campbell MS III. Aggressive mechanical clot
disruption: a safe adjunct to thrombolytic therapy in acute stroke? Stroke.
2005;36:292–296.
17. Zaidat OO, Suarez JI, Santillan C, Sunshine JL, Tarr RW, Paras VH,
Selman WR, Landis DM. Response to intra-arterial and combined intravenous and intra-arterial thrombolytic therapy in patients with distal
internal carotid artery occlusion. Stroke. 2002;33:1821–1826.
18. Suarez JI, Zaidat OO, Sunshine JL, Tarr R, Selman WR, Landis DM.
Endovascular administration after intravenous infusion of thrombolytic
agents for the treatment of patients with acute ischemic strokes.
Neurosurgery. 2002;50:251–259.
19. Burns TC, Rodriguez GJ, Patel S, Hussein HM, Georgiadis AL, Lakshminarayan K, Qureshi AI. Endovascular interventions following intravenous thrombolysis may improve survival and recovery in patients with
acute ischemic stroke: a case-control study. AJNR Am J Neuroradiol.
2008;29:1918 –1924.
20. Qureshi AI, Siddiqui AM, Suri MF, Kim SH, Ali Z, Yahia AM, Lopes
DK, Boulos AS, Ringer AJ, Saad M, Guterman LR, Hopkins LN.
Aggressive mechanical clot disruption and low-dose intra-arterial thirdgeneration thrombolytic agent for ischemic stroke: a prospective study.
Neurosurgery. 2002;51:1319 –1327.
21. Nagel S, Schellinger PD, Hartmann M, Juettler E, Huttner HB, Ringleb P,
Schwab S, Köhrmann M. Therapy of acute basilar artery occlusion:
intraarterial thrombolysis alone vs bridging therapy. Stroke. 2009;40:
140 –146.
22. Thomalla G, Schwark C, Sobesky J, Bluhmki E, Fiebach JB, Fiehler J,
Zaro Weber O, Kucinski T, Juettler E, Ringleb PA, Zeumer H, Weiller C,
Hacke W, Schellinger PD, Röther J. Outcome and symptomatic bleeding
complications of intravenous thrombolysis within 6 hours in MRIselected stroke patients: comparison of a German multicenter study with
the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke.
2006;37:852– 858.
23. Singer OC, Berkefeld J, Lorenz MW, Fiehler J, Albers GW, Lansberg
MG, Kastrup A, Rovira A, Liebeskind DS, Gass A, Rosso C, Derex L,
Kim JS, Neumann-Haefelin T. MR Stroke Study Group Investigators.
Risk of symptomatic intracerebral hemorrhage in patients treated with
intra-arterial thrombolysis. Cerebrovasc Dis. 2009;27:368 –374.
24. IMS Study Investigators. Hemorrhage in the interventional management
of stroke study. Stroke. 2006;37:847– 851.
25. IMS II. Trial Investigators. The Interventional Management of Stroke
(IMS) II Study. Stroke. 2007;38:2127–2135.
26. Tomsick T, Broderick J, Carrozella J, Khatri P, Hill M, Palesch Y,
Khoury J. Revascularization results in the Interventional Management of
Stroke II trial. AJNR Am J Neuroradiol. 2008;29:582–587.
27. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin
M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial
pro-urokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism.
J Am Med Assoc. 1999;282:2003–2011.
28. Flint AC, Duckwiler GR, Budzik RF, Liebeskind DS, Smith WS.
Mechanical thrombectomy of intracranial internal carotid occlusion:
pooled results of the MERCI and Multi MERCI Part I trials. Stroke.
2007;38:1274 –1280.
Endovascular Thrombectomy for Acute Ischemic Stroke in Failed Intravenous Tissue
Plasminogen Activator Versus Non−Intravenous Tissue Plasminogen Activator Patients:
Revascularization and Outcomes Stratified by the Site of Arterial Occlusions
Zhong-Song Shi, Yince Loh, Gary Walker and Gary R. Duckwiler
for the MERCI and Multi MERCI Investigators
Downloaded from http://stroke.ahajournals.org/ by guest on June 17, 2017
Stroke. 2010;41:1185-1192; originally published online April 29, 2010;
doi: 10.1161/STROKEAHA.109.568451
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628
The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/41/6/1185
An erratum has been published regarding this article. Please see the attached page for:
/content/43/10/e111.full.pdf
Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/03/31/STROKEAHA.109.568451.DC1
Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.
Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints
Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Correction
The article, “Endovascular Thrombectomy for Acute Ischemic Stroke in Failed Intravenous Tissue
Plasminogen Activator Versus Non–Intravenous Tissue Plasminogen Activator Patients: Revascularization and Outcomes Stratified by the Site of Arterial Occlusions” by Shi et al (Stroke.
2010;41:1185–1192) included an error in Appendix 2. Dr Fawaz Al-hussain’s name and affiliation
were incorrect. The correct information appears below as well as in the current online version.
The investigator’s name should appear as Fawaz Al-hussain, MD, King Saud University.
(Stroke. 2012;43:e111.)
© 2012 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org
DOI: 10.1161/STR.0b013e318273db6f
e111
Stroke
May 2010
Original Contributions
大脑中动脉主干闭塞与第二段闭塞机械取栓术的临床结局 :
脑缺血机械取栓 (MERCI) 和多中心 MERCI 试验的汇总分析
Clinical Outcomes in Middle Cerebral Artery Trunk Occlusions Versus Secondary
Division Occlusions After Mechanical Thrombectomy:
Pooled Analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI)
and Multi MERCI Trials
Zhong-Song Shi, MD; Yince Loh, MD; Gary Walker, PhD; Gary R. Duckwiler, MD; for the MERCI
and Multi-MERCI Investigators
背景和目的:血管内血管再通术对急性缺血性卒中患者有益,但其益处是否在大脑中动脉(MCA)第二段(M2)
闭塞与MCA主干(M1)闭塞存在差异尚不清楚。本文对由血管造影术确定的MCA M1闭塞患者与单独M2闭塞患
者,用Merci Retriever装置进行机械取栓后的血管再通状态和临床结局进行了比较。
方法:回顾性分析了脑缺血机械取栓(MERCI)和多中心MERCI试验中MCA卒中患者的汇总数据。患者分成两
组:MCA M1闭塞和单独M2闭塞,评价了两组的基线特征、血管再通率、出血率、并发症、结局和死亡率。
结果:MERCI和多中心MERCI试验中的178例MCA闭塞患者,84.3%为M1闭塞,15.7%为单独M2闭塞。单独
M2闭塞患者与M1闭塞患者相比有更高的血管再通率,更少的平均机械疏通次数,且具有更短平均操作时间
的趋势。尽管在所有患者中,M2的结局从数字上看是优于M1,但M2与M1组之间在症状性出血、有临床意义
的操作不良反应、90天良好结局或90天的死亡率等方面无统计学差异。在多因素分析中,最终的血管再通是
90天良好结局最强的预测因素。
结论:MCA M1闭塞和单独M2闭塞的患者在接受机械取栓后可以达到相对高的血管再通率和良好的临床结
局。而事实上,与M1闭塞的患者相比,单独M2闭塞患者具有更高的血管再通率,需要更少的机械疏通次数
且没有增加并发症。
关键词:急性脑卒中 血管内治疗 大脑中动脉 结局 取栓术
(Stroke.2010;41;953-960. 林森 译 曾进胜 校)
颅内大动脉闭塞引起的急性缺血性卒中患者对
溶栓治疗的反应不尽相同,可能取决于动脉闭塞的
位置不同。在美国神经疾病与卒中研究所、欧洲急
性卒中协作研究 (ECASS) 以及阿替普酶静脉注射
(IV) 非介入治疗急性缺血性卒中的临床试验中,使
用组织型纤溶酶原激活剂 (tPA) 静脉溶栓,由于缺乏
对血栓的准确定位,动脉闭塞类型既不影响血管再
通状态也不影响临床结局 [1–4]。大脑中动脉 (MCA)
供血区的卒中在缺血性卒中的所占比例最大。然而,
IV 和动脉内 (IA) 溶栓治疗则很少报道血管再通状态
和临床结局在 MCA 主干 (M1) 闭塞和单独第二段 (M2)
闭塞中的差别 [1–8]。最近应用经颅多普勒超声和 / 或
CT 血管成像的研究发现在 IV tPA 治疗后,MCA M2
闭塞的血管再通状态优于 MCA M1 闭塞 [9,10]。 具有
良好临床结局的 MCA M2 闭塞患者约两倍于 MCA
M1 闭塞患者 [9]。
急性脑血栓栓塞溶栓试验Ⅱ (PROACT II) 研究
纳入的 MCA M1 闭塞患者占患者总数的 61.7%,其
余 大 多 是 单 独 MCA M2 闭 塞 ;然 而, 根 据 M1 与
M2 闭塞分层比较临床结局的研究罕有报告 [5]。 最近
的尿激酶 IA 溶栓治疗的研究显示 MCA M1 闭塞的
血管再通状态要优于单独 M2 闭塞,但却没有描述
不同闭塞部位与临床结局的关系 [11,12]。
对于起病 8 小时内 IV tPA 治疗不适用或失败的
急性缺血性卒中患者,应用 Merci 器械进行机械取
栓是一种很有前景的替代疗法 [13-17]。脑缺血机械取
From the Division of Interventional Neuroradiology (Z.S.S., Y.L., G.R.D.), David Geffen School of Medicine at UCLA, Los Angeles, Calif; and Concentric Medical, Inc (G.W.),
Mountain View, Calif.
Current affiliation for Z.S.S.: Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R.China.
Current affiliation for Y.L.: Neurovascular Service, Department of Medicine, Madigan Army Medical Center, Tacoma, Wash.
Correspondence to Gary R. Duckwiler, MD, Division of Interventional Neuroradiology, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA
90095-7437. E-mail [email protected]
© 2010 American Heart Association, Inc.
22
Shi et al
栓 (MERCI) 和多中心 MERCI 第一部分试验的汇总
分析已经证明,颈内动脉闭塞的患者可以达到相对
较高的血管再通率 [17]。 然而,它并没有评估 MCA
M2 闭 塞 与 MCA M1 闭 塞 的 机 械 性 血 管 再 通 的 结
局差异。本研究的目的是评价经过血管造影确定的
MCA M1 闭塞与单独 M2 闭塞的急性缺血性卒中患
者使用 Merci Retriever 装置进行机械取栓术是否会
影响其血管再通状态。同时本研究也旨在通过血管
再通状态比较不同组 (M1 vs. M2) 中所有 MCA 闭塞
患者使用机械取栓术的安全性和有效性。
方法
MERCI 与多中心 MERCI 试验的汇总数据对确
定的急性 MCA 卒中进行了回顾分析。汇总数据包
括总共 305 例缺血性卒中患者,其中 141 例来自于
MERCI 试 验,164 例 来 自 于 多 中 心 MERCI 试 验。
这两个试验的详细计划书在之前的研究中已经作了
描述 [13-17]。简单来说,纳入试验的患者不是不适合
进行 IV tPA 治疗,就是经过导管法血管造影确认接
受 IV tPA 治疗后闭塞的血管未再通。试验使用一类
X 系 列 和 L5 Merci Retriever 装 置 (Concentric Medical, Inc, Mountain View, Calif) 从管腔取出血栓试图
来使闭塞的颅内血管再通。第一代装置 (X4、X5 和
X6 Retriever) 在两个试验中都有应用,而第二代装
置 (L5 Retriever 装置 ) 只用在多中心 MERCI 试验中。
IA tPA 被允许在治疗中装置 6 次疏通依然失败或成
功施行近端血栓去除术后,溶解装置无法靠近的远
端血栓时应用。两个研究方案中,任何部位的闭塞
都不允许使用血管成形术或支架。
本研究纳入经数字减影血管造影确定的单独
MCA M1 和 / 或 M2 闭塞的患者。分析中排除了那
些 ICA/MCA 串联闭塞或 ICA-T 闭塞的患者。患者
分为 MCA M1 闭塞组和单独 MCA M2 闭塞组。成功
的血管再通定义为经数字减影血管造影所确认的所
有应治疗的血管经治疗后达到心肌梗塞溶栓 (TIMI)
血流分级的 II 级或 III 级。CT 或 MRI 扫描在基线、
24 小时以及患者神经状态下降的任何时间进行。根
据 ECASS 试验的分类,大脑内出血分为出血性梗
死 I 和 II 型或脑实质血肿 I 和 II 型。症状性出血是
指 24 小 时 内 NIHSS 分 数 增 加 ≧ 4 分, 且 24 小 时
内头部 CT/MRI 扫描发现有出血的证据,或在除和
之外无更多合适的 NIHSS 分数比基线线时没变化,
但患者死亡有的任何颅内出血。操作相关的不良事
件由独立的数据安全与监督委员会裁定,且被定义
为血管穿孔、动脉壁内夹层、或之前未受累区域栓
塞、症状性出血,以及需要外科手术或输血处理的
操作区并发症。临床上操作相关的严重并发症是指
Outcomes in MCA Occlusions With the Merci Retriever
NIHSS 降低≧ 4 分的操作并发症或死亡、需要外科
手术或输血处理的腹股沟区并发症。
神经状态由 NIHSS 和 30 及 90 天的改良 Rankin
评分 (mRS) 来评定。各闭塞组患者的评估内容包括血
管再通率、出血转化率、临床上严重的操作相关并发
症、90 天临床结局及死亡率。90 天良好的结局被定义
为 mRS ≤ 2。由于单独 M2 闭塞样本较小,M1 和 M2
闭塞的数据被汇总起来并进行多元 logistic 回归分析
以此来确定 90 天良好结局的独立预测变量。对血管
再通状态分层后进行临床特点、并发症和结局的比较。
组与组之间差异的比较采用 95% CI。如果这
个区间不包含 0,组之间的差异在 P=0.05 时被认为
是有意义的。虽然这是一个回顾性的亚组分析,但
所考虑的两个组的样本大小应该是在两组间结局比
较上至少具有 80% 的效能检出 28% 的绝对差异和
50% 的效能检出 20% 的绝对差异。单因素分析确定
90 天的良好结局的独立预测变量,其中所有 Wald
χ 2 P<0.2 变量都将纳入多元 logistic 回归模型去确定
90 天良好结局的预测变量。该模型按前进 / 后退逐
步回归的方法来建立,且基于 χ 2 的统计值,变量为
0.05 时进入模型而在 0.10 时离开该模型。在主要效
用的模型建立后,任何有意义的双向交互条件存在
的假设使用似然比 χ 2(G2) 统计进行检测。最终的模
型由 Hosmer 和 Lemeshow 检验进行拟合度的检测。
P<0.05 认为有统计学意义。本文中的统计分析是使
用 SAS 软件来完成的。(8.2 版本 ;SAS 公司 )
结果
MCA卒中患者的人口学特征
在 MERCI 和 多 中 心 MERCI 试 验 中, 对 178
例 经 血 管 造 影 确 定 为 MCA 闭 塞 的 患 者 进 行 了 治
疗。 其 中 80 例 患 者 来 自 MERCI 试 验,98 例 来 自
多 中 心 MERCI 试 验。 平 均 年 龄 69.0 岁 (SD 15.7),
103(57.9%) 为 女 性 患 者。 平 均 基 线 NIHSS 分 数
是 18.8 分 (SD 5.8), 范 围 为 9 至 40 分。 队 列 中
27(15.2%) 例患者接受了 IV tPA 治疗并在进行机械
取栓前均未再通 ;剩余的 151 例患者则不适合接受
IV tPA 治疗。患者从卒中起病至器械进入动脉的平
均时间为 4.3 小时 (SD 1.6),范围为 0.7 至 10.8 小时。
178 例患者中,84.3%(n=150) 表现为单独 MCA
M1 闭 塞 或 M1/M2 合 并 的 闭 塞,15.7%(n=28) 表 现
为 单 独 MCA M2 闭 塞。 在 150 例 MCA M1 闭 塞 患
者 中,73 例 来 自 MERCI 试 验,77 例 来 自 多 中 心
MERCI 试验。在 28 例 MCA M2 闭塞患者中,7 例
来自 MERCI 试验,21 例来自多中心 MERCI 试验。
各组患者的基线特征 ( 年龄、性别、NIHSS 分数、
起病至进入动脉的时间以及联合 tPA 的使用 ) 均没
23
Stroke
May 2010
表 1 不同闭塞位置患者的特征
总数
(n=178)
73.0(60.0-80.0)(178)
年龄中位数,年 (IQR)
57.9%(103/178)
女性
77.5%(138/178)
高血压
24.8%(44/177)
糖尿病
34.8%(57/164)
血脂异常
39.7%(69/174)
冠状动脉病
21.6%(38/176)
充血性心力衰竭 18.4%(30/163)
吸烟
44.1%(78/177)
房颤
6.3%(11/174)
血液系统疾病
12.1%(21/173)
周围血管疾病
134.2±51.4(176)
血糖,mg/dL
13.4±4.4(170)
凝血酶原时间,秒
30.1±17.8(160)
活化部分凝血激酶时间,秒
1.21±0.49(174)
国际标准化比值
240.4±77.2(175)
血小板 ( 计数 )
150.0(131-165)(176)
收缩压中位数,mmHg(IQR)
75.5(64-85)(176)
舒张压中位数,mmHg(IQR)
18.0(14-23)(178)
基线 NIHSS,中位数 (IQR)
50.6%(90/178)
左侧 MCA 闭塞
4.3(3.2-5.4)(177)
起病至腹股沟穿刺时间中位数,小时 (IQR)
Merci 前静脉 tPA 失败
15.2%(27/178)
32.0%(57/178)
动脉溶栓治疗
41.6%(74/178)
静脉或动脉溶栓治疗
5.6%(10/178)
静脉和动脉溶栓治疗
84.8%(151/178)
白种人
*P 值 :连续变量采用两样本 Wilcoxon 检验,分类变量采用 Fisher 精确检验计算。
IQR :四分位数间距。
有统计学差异。MCA M1 闭塞患者可能更易患冠状
动脉病,且凝血酶原时间更短,收缩压更低 ( 表 1)。
在 M1 组中,最常使用 X6 和 L5 装置 ( 均为 44.7%),
X5(34.0%) 和 X4(6.7%) 的使用则较少。在 M2 组中,
最常用的是 L5 装置 (53.6%),紧接着是 X6(28.6%),
之后是 X5(25.0%),未使用 X4。两组中,7% 的患
者在评定其基线 NIHSS 分数时应用了镇静剂。尽管
与 M1 组 (52.5%) 相比,M2 组 (73.1%) 患者存在明
显更高比例的严重或完全性失语,但两组中 NIHSS
的运动评分部分无统计学差异。
血管再通率
经 Merci 治疗后的即时血管再通率 (TIMI II/III
血 流 分 级 ) 在 MCA M1 组 与 单 独 M2 组 中 分 别 为
46.0% 和 71.4%( 表 2)。包括接受联合治疗的患者在
内,单独 MCA M2 组的最终血管再通率高于 MCA
M1 组 (82.1% vs. 60.0%)。
另外,
相对于 MCA M1 闭塞,
单独 MCA M2 闭塞所需的疏通次数更少 (2.1 vs. 3.1)
并具有平均操作时间更短的趋势 (1.6 vs. 1.8 小时 )。
良好结局和死亡率
尽管单独 MCA M2 闭塞组的良好结局与 MCA
24
MCA M1
(n=150)
73.0(60.0-80.0)(150)
56.0%(84/150)
77.3%(116/150)
25.0%(37/149)
34.1%(47/138)
43.2%(63/146)
22.3%(33/148)
19.6%(27/138)
41.6%(62/149)
6.2%(9/146)
13.1%(19/145)
134.6±51.8(149)
13.1±3.2(143)
30.2±19.1(134)
1.18±0.42(148)
238.4±77.5(148)
147.0(130-163)(149)
74.0(62-84)(149)
18.0(15-23)(150)
47.3%(71/150)
4.3(3.2-5.5)(149)
14.0%(21/150)
30.7%(46/150)
40.0%(60/150)
4.7%(7/150)
82.7%(121/150)
MCA M2
(n=28)
71.5(61.5-81.0)(28)
67.9%(19/28)
78.6%(22/28)
24.9%(7/28)
38.5%(10/26)
21.4%(6/28)
17.9%(5/28)
12.0%(3/25)
57.1%(16/28)
7.1%(2/28)
7.1%(2/28)
132.1±49.9(27)
15.1±8.1 (27)
29.3±8.6(26)
1.34±0.8(26)
251.4±75.4(27)
157.0(132-176)(27)
80.0(68-91)(27)
17.0(14-22)(28)
67.9%(19/28)
4.7(3.7-5.3)(28)
21.4%(6/28)
39.3%(11/28)
50.0%(14/28)
10.7%(3/28)
96.4%(27/28)
P*
0.94
0.30
>0.99
0.99
0.67
0.04
0.59
0.35
0.15
0.85
0.35
0.82
0.03
0.8
0.13
0.42
0.08
0.09
0.56
0.06
0.35
0.33
0.38
0.33
0.19
0.05
M1 闭塞组相比,从数字上看具有较高的比例 (40.7%
vs. 33.3%),但两组 90 天良好临床结局 (mRS ≦ 2) 并
无统计学差异 ( 表 2)。一般来说,远端动脉闭塞预
期有更好的结局,但在本系列中,左侧 M2 闭塞占
67.9% 而左侧的 M1 闭塞只有 47.3%( 有认为左侧大脑
半球梗死患者长期预后差,
而本组M2闭塞左侧更多)。
两组 90 天的死亡率也无统计学差异,然而,从
数字上看,单独 MCA M2 闭塞组比 MCA M1 闭塞
组低 (25.9% vs. 32.9% ;表 2)。
出血并发症
两组颅内出血率无统计学差异 (M1 组 36.7% vs.
M2 组 42.9%)。同样,两组的症状性出血率也无统
计学差异 (M2 组 3.6% vs. M1 组 6.7%)。从数字上看,
M2 闭塞患者的有临床上严重操作相关不良反应比
M1 闭塞更低 (3.6% vs. 5.3%)。
多元Logistic回归分析
与先前的 MERCI 试验分析相似,年龄、基线
NIHSS 和操作后的血管再通状态均为 90 天良好临床
结局的预测因素。具体结果见表 3。最终的血管再通
状态是良好结局最强的独立预测因素 (OR 为 30.91)。
Shi et al
表 2 不同闭塞位置的血管再通和临床结局
Outcomes in MCA Occlusions With the Merci Retriever
MCA M1
总数
(n=178)
(n=150)
1.6(0.3-4.7)(173)
1.7(0.3-4.7)(149)
操作持续时间中位数,小时 (IQR)
2.96±1.56
3.12±1.55
移除凝块尝试次数
50.0%(89/178)
46.0%(69/150)
取回装置后 TIMI II/III 级血流
63.5%(113/178)
60.0%(90/150)
最终 TIMI II/III 级血流
5.1%(9/178)
5.3%(8/150)
临床上操作相关的严重不良反应
24 小时 NIHSS 提高≥ 10 分
20.4%(33/162)
19.9%(27/136)
90 天 mRS ≤ 2 34.5%(57/165)
33.3%(46/138)
90 天死亡
31.8%(55/173)
32.9%(48/146)
37.6%(67/178)
36.7%(55/150)
颅内出血
31.5%(56/178)
30.0%(45/150)
无症状性出血
6.2%(11/178)
6.7%(10/150)
症状性出血
*P 值 :连续变量采用两样本 Wilcoxon 检验,分类变量采用 Fisher 精确检验计算。
IQR :四分位数间距。
血管再通与血管未再通患者的比较
在所有 MCA 闭塞的患者中,血管再通的比未
再通的患者具有更高比例的 90 天良好结局、更低的
死亡率和症状性出血、疏通次数更少和操作时间更
短 ( 表 4)。年龄、NIHSS 分数、危险因素和入院时
实验室检查结果等基线特征在最终血管再通与未再
通患者之间是相似的。
讨论
本研究结果表明应用 Merci 装置进行机械取栓
后,MCA M1 闭塞或单独 M2 闭塞患者能达到较高的
血管再通率和良好的临床结局。单独 M2 闭塞患者的
血管再通率更高,并具有平均操作时间更短的趋势。
越来越多的证据显示血管再通率和良好临床
结局受血管闭塞位置的显著影响。IV 和 IA 溶栓的
研究发现,溶栓治疗对 MCA 闭塞比对 ICA 和基底
动脉 闭塞更 有效果 [9,11]。 与先 前 的 MERCI 和多 中
心 MERCI 试验分析相比,经机械取栓术治疗后的
MCA M1 组 60% 的血管再通率与 ICA 闭塞组 63%
的血管再通率相似,低于椎基底动脉闭塞组 78% 的
血管再通率 [17,18]。而单独 MCA M2 闭塞 82% 的血管
再通率则明显高于其他位置的闭塞。
本研究中机械取栓治疗 MCA 闭塞后,63.5% 的
血管再通率高于其他试验中只用 IV 溶栓治疗的患
表 3 90 天 良 好 结 局 (mRS 0-2) 的 多 变 量 预 测 因 素 (M1 和
M2 汇总 )
OR
P*
变量
分类比较
[95% CI]
30.91[7.82->99.99]
<0.0001
最终血管再通
是 vs. 否
0.83[0.75-0.91]
<0.0001
基线 NIHSS 分数
连续
0.96[0.93-0.99]
0.0073
年龄,年
连续
0.31[0.12-0.81]
0.0145
出血
是 vs. 否
似然比 χ 2 检验 :P=0.09( 结论 :不能拒绝双向交互条件系数为 0 的
假设 )。Hosmer and Lemeshow 拟合度检验 :P=0.83( 结论 :不能拒
绝数据与模型相配的假设 )。
MCA M2
(n=28)
1.5(0.8-2.8)(28)
2.11±1.31
71.4%(20/28)
82.1%(23/28)
3.6%(1/28)
23.1%(6/26)
40.7%(11/27)
25.9%(7/27)
42.9%(12/28)
39.3%(11/28)
3.6%(1/28)
P*
0.19
0.001
0.02
0.03
>0.99
0.79
0.51
0.65
0.53
0.38
>0.99
者。有研究报告,起病 6 小时内 18% 的 MCA 心源
性栓塞患者可出现由经颅多普勒超声确定的自发再
通 [19]。在 PROACT II 研究中,卒中起病后 6 到 8 小
时,大约 18% 的接受静脉肝素治疗后的急性 MCA
闭塞安慰剂组患者,可发生经血管造影确定的自发
再通 [5]。另一项基于 82 例 MCA 主干闭塞患者的研究,
采用 TIMI 血流分级和 MR 血管造影确定自发血管再
通,其结果显示起病后 24 小时,IV 溶栓组比未溶
栓组具有更高的自发血管再通率 [20]。IV 溶栓组和未
溶栓组的局部和全部血管再通率 (TIMI II 级和 III 级 )
分别为 38.5% 和 24%[20]。
尽管在已发表的 IV 溶栓试验数据中,MCA M1
与单独 M2 闭塞的血管再通状态差异未予报道,但
本研究中单独 MCA M2 闭塞的血管再通优于 M1 闭
塞,与最近两篇 IV 溶栓研究一致 [9,10]。根据经颅多普
勒超声标准,MCA M2 与 M1 闭塞患者接受 IV tPA
治疗后,2 小时的完全再通率分别为 44.2%(50/113)
和 30%(49/163)[9]。另一项采用 CT 血管造影和 / 或
经颅多普勒超声监测的研究,IV tPA 24 小时后 53%
的 M1 闭塞患者 (n=32) 和 68% 的 M2 闭塞患者 (n=19)
达到完全再通 [10]。 对 IV tPA 后进行取栓治疗与只
进行取栓治疗的血管再通率比较超出了我们目前研
究的范围。取栓前的 IV tPA 治疗会软化凝块,促进
Merci 装置穿透凝块和取回。对不同位置动脉闭塞采
用 IV tPA 后再行机械取栓治疗,这种疗法产生的潜
在血管再通的益处应在以后的研究中进行探讨。
与 PROACT II 研 究 中 接 受 治 疗 的 121 例 患 者
相比,本研究的中位基线 NIHSS 和平均年龄均高
于 PROACT II( 基 线 NIHSS :18 vs. 17 ;年 龄 :69
岁 vs. 64 岁 ),但本组患者与其有相似的血管再通
率 (MERCI/ 多 中 心 MERCI 63.5% vs. PROACT II
66%),
90 天良好结局 (34.5% vs. 40%) 和死亡率 (31.8%
vs. 25%),以及更低的症状性出血 (6.2% vs. 10.0%)[5]。
最近的一项研究全面比较了 MERCI/ 多中心 MERCI
25
Stroke
May 2010
表 4 血管再通与未再通患者的比较
血管再通
(n=113)
73.0(62.0-81.0)(113)
年龄中位数,年 (IQR)
54.9%(62/1113)
女性
75.2%(85/113)
高血压
28.6%(32/112)
糖尿病
34.6%(37/107)
血脂异常
45.5%(51/112)
冠状动脉病
21.6%(24/111)
充血性心力衰竭 17.9%(19/106)
吸烟
40.7%(46/113)
房颤
6.4%(7/110)
血液系统疾病
11.8%(13/110)
周围血管疾病
119.0(105-146)(113)
血糖中位数,mg/dL(IQR)
143.0(130-166)(112)
收缩压中位数,mmHg(IQR)
74.0(63-82)(112)
舒张压中位数,mmHg(IQR)
17.0(14-22)(113)
基线 NIHSS 中位数 (IQR)
52.2%(59/113)
左侧 MCA 闭塞
4.1(3.1-5.3)
起病至腹股沟穿刺时间中位数,小时 (IQR)
Merci 前静脉 tPA 失败
17.7%(20/113)
37.2%(42/113)
动脉溶栓治疗
46.9%(53/113)
静脉或动脉溶栓治疗
85.8%(97/113)
白种人
1.6(1.0-2.1)
操作持续时间中位数,小时 (IQR)
2.0(1-3)
移除凝块尝试次数中位数 (IQR)
8.0%(9/113)
操作并发症
2.7%(3/113)
临床上操作相关的严重不良反应
90 天 mRS ≤ 2 51.9%(54/104)
90 天死亡
22.0%(24/109)
2.7%(3/113)
症状性出血
*P 值 :连续变量采用两样本 Wilcoxon 检验,分类变量采用 Fisher 精确检验计算。
IQR :四分位数间距。
和 PROACT 的数据 [21]。在对 MCA 闭塞患者使用尿
激酶 IA 溶栓治疗的研究中,血管造影显示有 57 例
患 者 为 MCA M1 闭 塞,21 例 为 M2 闭 塞,22 例 为
M3 或 M4 闭塞。与我们的研究相比,该研究报告
了更高的血管再通率 (76%),更好的 90 天良好结局
(68%),更低的死亡率 (10%) 以及相似的症状性出血
(7%)。该研究还显示良好的结局与入院时低的卒中
评分 ( 中位基线 NIHSS,14) 和更小的年龄 ( 平均年龄,
61 岁 ) 相关。
IA 溶栓研究中,MCA 卒中患者血管再通情况
由 血 管 造 影 记 录 ;然 而,由 MCA M1 闭 塞 对 单 独
M2 闭塞分层的血管再通状态和临床结局并未在这些
随机临床试验中报告 [5,8]。在一个对卒中患者使用尿
激酶 IA 溶栓治疗的研究中,147 例 MCA M1 闭塞和
57 例 M2 闭塞患者的血管再通率 (TIMI II 级和 III 级 )
分别为 77.6% 和 63.2%[11]。在该研究中,单独 M2 闭
塞与 M1 闭塞相比,具有更低的血管再通率,这与
我们研究的结果不同。目前尚不清楚这个差异是否
与 IA 溶栓和机械取栓不同的血管内治疗方式相关。
本研究也进一步证实了成功的血管再通与取栓
术后 90 天时得到良好的临床结局相关。我们发现,
26
血管未再通
(n=65)
72.0(59-80.0)(65)
63.1%(41/65)
81.5%(53/65)
18.5%(12/65)
35.1%(20/57)
29.0%(18/62)
21.5%(14/65)
19.3%(11/57)
50.0%(32/64)
6.3%(4/64)
12.7%(8/63)
118.0(103-143)(63)
152.5(138-164)(64)
77.0(65-89)(64)
19.0(15-23)(65)
47.7%(31/65)
4.5(3.5-5.6)
10.8%(7/65)
23.1%(15/65)
32.3%(21/65)
83.1%(54/65)
1.8(1.5-2.6)
4.0(3-5)
16.9%(11/65)
9.2%(6/65)
4.9%(3/61)
48.4%(31/64)
12.3%(8/65)
P*
0.47
0.34
0.36
0.15
>0.99
0.04
>0.99
0.84
0.27
>0.99
>0.99
0.56
0.21
0.23
0.18
0.64
0.19
0.28
0.07
0.06
0.67
0.002
<0.001
0.09
0.08
<0.001
<0.001
0.02
在 M1 闭塞和单独 M2 闭塞中,成功的血管再通与
更高的效益风险比相关。单独 M2 闭塞患者比 M1
闭塞患者有更好临床结局的倾向。单独 M2 闭塞的
这些有益作用也被一项 IV tPA 溶栓治疗患者的经颅
多普勒超声研究证实 [9]。卒中介入治疗试验 I 和 II
的汇总数据显示单独 M2 闭塞患者其良好的临床结
局独立于血管再通状态之外,因为尽管存在不完全
的再通和再灌注,部分 M2 闭塞患者的仍获得良好
的临床结局 [6,7,23]。尚不清楚单独 M2 闭塞患者其良
好的临床结局倾向是否与更高的血管再通率或更小
的 缺血 区 域 相 关联。 可 以 推 测 M2 与 M1 闭塞中,
更多的侧支循环是某一既定病人达到良好临床结局
的可能潜在因素。尽管 M2 组相比 M1 组,存在具
有更好结局的倾向,但这个差异可能因更高的左侧
M2 闭塞频率而抵消 (67.9% vs. 47.3%)。研究的纳入
标准要求必须具有高的基线 NIHSS 分数,因此优势
半球的 M2 闭塞更可能入组。
个例报告提出如果闭塞的 M2 分支无法经 IA 溶
栓开放,则可以用 microsnare 或 Attrater-18 装置进
行机械治疗而重新打开它们 [24,25]。然而,如今并不
推荐使用这些装置进行颅内大动脉血流的恢复。最
Shi et al
近,另一个可从缺血性卒中患者颅内大动脉中移出
凝块的治疗工具 -Penumbra 系统,已经获美国食品药
物监督管理局批准通过 [26]。这个血管内的血管再通
治疗也对卒中患者有益,但是它对于单独 M2 卒中及
M1 卒中的效果还未明确报道。另外,颅内放置自胀式
支架是对急性 MCA M1 闭塞的血管再通所做的替代选
择,但其在单独 MCA M2 卒中中的应用却很有限 [27]。
本研究存在一些局限。回顾性收集两个无对照
试验的研究数据并由此进行事后分析。纳入两个试
验的 M2 闭塞患者的样本量小于 M1 闭塞患者。由
于大部分 M2 闭塞患者来自于多中心 MERCI 试验,
因此 M2 闭塞组更好的结局可能是因为操作者从不
断增加的经验中所得知识的以及多中心 MERCI 中应
用的新一代 Merci Retriever 装置的合并的结果。病
例的选择可能存在偏倚。两组基线卒中的严重度是
类似的,这表明只有严重神经功能缺陷的 MCA M2
闭塞患者才能被纳入这两个试验。MCA M2 闭塞组
可能纳入的患者有 :基线时即有大面积缺血性病灶
的患者 ;已接受 IV tPA 治疗或伴无效再灌注自发诱
导再通的早期 MCA M1 或曾有过 ICA/MCA 串联状
或 ICA 终端闭塞的患者。这可能解释了类似的 3 月
临床结局而不只是组与组之间卒中的不平衡。最后,
不能从 MERCI 或多中心 MERCI 中获取基线抗血栓
的应用分布,也不能进行分析。
总之,MERCI 和多中心 MERCI 试验的汇总数
据回顾分析结果显示,单独 MCA M2 闭塞患者与
MCA M1 闭塞患者相比,可以从更高的血管再通率
中获益,而且对 Merci Retriever 装置进行再通要求
更少的疏通次数。此外,基于 MCA 闭塞患者汇总
数据的多变量分析,证明了最终的血管再通是操作
后 90 天良好结局最强的预测因素。
Outcomes in MCA Occlusions With the Merci Retriever
6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 参考文献
1. Tissue plasminogen activator for acute ischemic stroke. The National Institute
of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med.
1995;333:1581–1587.
2. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P. Randomised
double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute
Stroke Study Investigators. Lancet. 1998;352:1245–1251.
3. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours
after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase
Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA.
1999;282: 2019–2026.
4. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel
M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden
P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and
NINDS rt-PA stroke trials. Lancet. 2004;363:768–774.
5. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A,
Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial pro-urokinase for acute isch-
22. 23. 24. 25. 26. 27.
emic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute
Cerebral Thromboembolism. JAMA. 1999;282:2003–2011.
IMS Study Investigators. Combined intravenous and intra-arterial recanalization
for acute ischemic stroke: the Interventional Management of Stroke Study. Stroke.
2004;35:904–911.
IMS II Trial Investigators. The Interventional Management of Stroke (IMS) II Study.
Stroke. 2007;38:2127–2135.
Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T. Randomized trial of intraarterial infusion of urokinase within 6 hours
of middle cerebral artery stroke: the middle cerebral artery embolism local fibrinolytic
intervention trial (MELT) Japan. Stroke. 2007;38:2633–2639.
Saqqur M, Uchino K, Demchuk AM, Molina CA, Garami Z, Calleja S, Akhtar N,
Orouk FO, Salam A, Shuaib A, Alexandrov AV. Site of arterial occlusion identified
by transcranial Doppler predicts the response to intravenous thrombolysis for stroke.
Stroke. 2007;38:948–954.
Zangerle A, Kiechl S, Spiegel M, Furtner M, Knoflach M, Werner P, Mair A, Wille G,
Schmidauer C, Gautsch K, Gotwald T, Felber S, Poewe W, Willeit J. Recanalization
after thrombolysis in stroke patients: predictors and prognostic implications. Neurology. 2007;68:39–44.
Arnold M, Kappeler L, Nedeltchev K, Brekenfeld C, Fischer U, Keserue B, Remonda
L, Schroth G, Mattle HP. Recanalization and outcome after intra-arterial thrombolysis in middle cerebral artery and internal carotid artery occlusion: does sex matter?
Stroke. 2007;38:1281–1285.
Mattle HP, Arnold M, Georgiadis D, Baumann C, Nedeltchev K, Benninger D,
Remonda L, von Bu¨dingen C, Diana A, Pangalu A, Schroth G, Baumgartner RW.
Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with
hyperdense middle cerebral artery sign. Stroke. 2008;39:379–383.
Gobin YP, Starkman S, Duckwiler GR, Grobelny T, Kidwell CS, Jahan R, PileSpellman J, Segal A, Vin˜uela F, Saver JL. MERCI 1: a phase 1 study of Mechanical
Embolus Removal in Cerebral Ischemia. Stroke. 2004;35:2848–2854.
Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep HL, Nesbit
GM, Grobelny T, Rymer MM, Silverman IE, Higashida RT, Budzik RF, Marks MP.
Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of
the MERCI trial. Stroke. 2005;36:1432–1438.
Smith WS. Safety of mechanical thrombectomy and intravenous tissue plasminogen
activator in acute ischemic stroke. Results of the Multi Mechanical Embolus Removal in
Cerebral Ischemia (MERCI) trial, part I. AJNR Am J Neuroradiol. 2006;27:1177–1182.
Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, Lutsep HL,
Rymer MM, Higashida RT, Starkman S, Gobin YP, Frei D, Grobelny T, Hellinger F,
Huddle D, Kidwell C, Koroshetz W, Marks M, Nesbit G, Silverman IE. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial.
Stroke. 2008;39:1205–1212.
Flint AC, Duckwiler GR, Budzik RF, Liebeskind DS, Smith WS. Mechanical thrombectomy of intracranial internal carotid occlusion: pooled results of the MERCI and
Multi MERCI Part I trials. Stroke. 2007;38:1274–1280.
Lutsep HL, Rymer MM, Nesbit GM. Vertebrobasilar revascularization rates and outcomes in
the MERCI and Multi-MERCI trials. J Stroke Cerebrovasc Dis. 2008;17:55–57.
Molina CA, Montaner J, Abilleira S, Ibarra B, Romero F, Arenillas JF, Alvarez-Sabín J.
Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute
cardioembolic stroke. Stroke. 2001;32:1079–1084.
Neumann-Haefelin T, du Mesnil de Rochemont R, Fiebach JB, Gass A, Nolte C, Kucinski T, Rother J, Siebler M, Singer OC, Szabo K, Villringer A, Schellinger PD. Effect of
incomplete (spontaneous and postthrombolytic) recanalization after middle cerebral artery
occlusion: a magnetic resonance imaging study. Stroke. 2004;35:109–114.
Josephson SA, Saver JL, Smith WS; MERCI and Multi MERCI Investigators. Comparison of mechanical embolectomy and intraarterial thrombolysis in acute ischemic
stroke within the MCA: MERCI and Multi MERCI compared to PROACT II. Neurocrit Care. 2009;10:43–49.
Arnold M, Schroth G, Nedeltchev K, Loher T, Remonda L, Stepper F, Sturzenegger M,
Mattle HP. Intra-arterial thrombolysis in 100 patients with acute stroke due to middle cerebral artery occlusion. Stroke. 2002;33:1828–1833.
Tomsick T, Broderick J, Carrozella J, Khatri P, Hill M, Palesch Y, Khoury J. Revascularization results in the Interventional Management of Stroke II trial. AJNR Am J
Neuroradiol. 2008;29:582–587.
Schumacher HC, Meyers PM, Yavagal DR, Harel NY, Elkind MS, Mohr JP, PileSpellman J. Endovascular mechanical thrombectomy of an occluded superior division
branch of the left MCA for acute cardioembolic stroke. Cardiovasc Intervent Radiol.
2003;26:305–308.
Fourie P, Duncan IC. Microsnare-assisted mechanical removal of intraprocedural distal middle
cerebral arterial thromboembolism. AJNR Am J Neuroradiol. 2003;24:630–632.
The Penumbra Pivotal Stroke Trial Investigators. The Penumbra Pivotal Stroke Trial.
Safety and effectiveness of a new generation of mechanical devices for clot removal
in intracranial large vessel occlusive disease. Stroke. 2009;40:2761–2768.
Brekenfeld C, Schroth G, Mattle HP, Do DD, Remonda L, Mordasini P, Arnold M,
Nedeltchev K, Meier N, Gralla J. Stent placement in acute cerebral artery occlusion: use of a self-expandable intracranial stent for acute stroke treatment. Stroke.
2009;40:847–852.
27