CHAPTER 27 Techniques of Integration 27.1 1. 3. 5. 7. 9. 11. 13. THE GENERAL POWER FORMULA Ð sin3 x cos x dx. Let u ¼ sin x and du ¼ cos x dx, Ð 4 then u3 du ¼ u4 þ C ¼ 14 sin4 x þ C. ffi Ð pffiffiffiffiffiffiffiffiffiffiffi sin3 x cos x dx. Let u ¼ sin x and du ¼ Ð cos x dx, so we have u3=2 du ¼ 25 u5=2 þ C ¼ 5=2 2 x þ C. 5 sin Ð 2 2 x sec x dx. If you let u ¼ x2 andÐ du ¼ 2 x dx, or 12 du ¼ x dx, then you get 12 sec2 u du ¼ 1 1 2 2 tan u þ C ¼ 2 tan x þ C. Ð sec2 x tan x dx. If you let uÐ ¼ tan x and du ¼ sec2 x dx, then you get u du ¼ 12 u2 þ C ¼ 1 2 tan x þ C or rewrite the original integral as Ð Ð2 sec2 x tan x dx ¼ sec x ðsec x tan x dxÞ and let Ð u ¼ sec x and du ¼ sec x tan x dx. Thus, u du ¼ 1 2 1 2 2 u þ C ¼ 2 sec x þ C. Ð arccos x 1 ffi pffiffiffiffiffiffiffiffi dx. Let u ¼ arccos x and then du ¼ pffiffiffiffiffiffiffi 1x2 1x2 Ð 2 1 dx, with the result u du ¼ 1 2 u þ C ¼ 2 Ð =4 23. Ð 2 ½lnðx2 þ1Þ3 25. 27. ðarccos xÞ2 þ C. rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ð 1 arccsc x dx. Let u ¼ arccsc x and du ¼ x x2 1 Ð ffiffiffiffiffiffiffi ffi dx, with the result u1=2 du ¼ 23 u3=2 þ p1 2 x x 1 C ¼ 23 ðarccsc xÞ3=2 þ C. Ð ðarcsin 2xÞ3 pffiffiffiffiffiffiffiffiffi dx. Let u ¼ arcsin 2x and du ¼ 2 14x2 1 dx pffiffiffiffiffiffiffiffiffi dx, so 12 du ¼ pffiffiffiffiffiffiffiffiffi . Substitution 14x2 14x2 Ð 4 1 3 1 1 4 1 2 u du ¼ 2 4 u þ C ¼ 8 ðarcsin 2xÞ þ C. 15. Ð 17. then Ð ex dx 19. 21. yields 4 lnðxþ4Þ xþ4 Ð 4 dx dx. Let u ¼ lnðx þ 4Þ and du ¼ xþ4 , 5 1 5 1 u du ¼ 5 u þ C ¼ 5 lnðx þ 4Þ þ C. . Let u ¼ ex þ 4, and du ¼ ex dx, then have 1 u du ¼ 1u1 þ C ¼ ex þ 4 þ C. 3 Ð 2x e 1 e2x dx. Let u ¼ e2x 1 and du ¼ 2e2x dx Ð so 12 du ¼ e2x dx. Then, 12 u3 du ¼ 12 4 2x 1 4 1 þ C. 4u þ C ¼ 8 e 1 Ð ðex þ4Þ2 2 29. sin3 x cos x dx. If you let u ¼ sin x and Ð 3 du ¼ cos x dx, then you have u du ¼ 14 u4 . =4 4 Substituting for u produces 14 sin x0 ¼ 14 sin4 4 h pffiffi i 2 4 1 ¼ 04 ¼ 14 14 ¼ 16 . sin4 0 ¼ 14 2 0 dx. Let u ¼ ln x2 þ 1 1 x2 þ1 2x 1 x x2 þ1 dx and so 2 du ¼ x2 þ1 dx. Thus, 2 Ð 1 3 1 4 1 4 2 2 u du ¼ 8 u or 8 ln x þ 1 1 ¼ 4 4 1 8 ln 5 ln 2 0:8098. and du ¼ we get Ð2 e2x dx 2x 2x 1 ðe2x 1Þ2 . Let u ¼ e 1 and du ¼ 2e dx Ð so 12 du ¼ e2x dx. Then, 12 u2 du ¼ 12 u1 or 1 2 1 12 e2x 1 ¼ 1 ¼ 12 e4 1 1 2 e 1 0:0689. Ð 2 x dx. Let u ¼ sin x and du ¼ cos x 0 sin x cos Ð 2 dx, and so u du ¼ 13 u3 . The curve is above the x axis from 0 to 2 and below from 2 to . Thus, the =2 area is 13 sin3 x0 13 sin3 x=2 ¼ 13 sin3 2 sin3 0 sin3 þ sin3 2 ¼ 13 ð1 0 0 þ 1Þ ¼ 23. 2 Ð 3 t t e 2 dt. Let u ¼ et 2 and du ¼ 0:7 e Ð et dt, and so u2 du ¼ 13 u3 . Substituting h for 2 Ð 3 t t 1 t u iwe obtain h 0:7 e e 2 dt ¼i3 e 3 3 3 3 2 ¼ 13 e3 2 e0:7 2 0:7 31. 1:3397 C. Ð 1020 (a) NðtÞ ¼ 1020 t2 340dt ¼ t 340t þ C. Since Nð1Þ ¼ 1020 340 þ C ¼ 9750 and so, C ¼ 9070. Thus, NðtÞ ¼ 1020 t 340t þ 9070. (b) Nð10Þ ¼ 1020 340ð10Þ þ 9070 ¼ 102 3400 10 þ 9070 ¼ 5772. 275 276 CHAPTER 27 27.2 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21. 23. Ð BASIC LOGARITHMIC AND EXPONENTIAL INTEGRALS Let u ¼ 4x þ 1 and du ¼ 4 dx, so 14 du ¼ Ð 1 1 dx. Then, 14 du u ¼ 4 juj þ C ¼ 4 ln j4x þ 1j þ C. Ð 3x e dx. Let u ¼ 3x and du ¼Ð 3 dx, or 13 du ¼ dx, which leads to 13 eu du ¼ 13 eu þ C ¼ 13 e3x þ C. Ð sin x cos x dx. LetÐ u ¼ cos x and du ¼ sin x dx, then you have du u ¼ ln jujþ C ¼ ln j cos xj þ C. Ð 2 sec2 x 2 tan x . If you let u ¼ tan x and du ¼ sec x dx, 2 then 2 du ¼ 2 sec x dx. Substituting we get Ð 2 du u ¼ 2 ln juj þ C ¼ 2 ln j tan xj þ C. Ð x x 4 dx ¼ ln4 4 þ C. Ð x R Ð e þ ex dx ¼ ex dx ex dx ¼ ex x e þ C. (Note: for the second integral let u ¼ x, then du ¼ dx) Ð e2x 2x 2x 1þe2x dx. Let u ¼ 1 þ e , so duÐ ¼ e 2 dx or 1 1 du 1 2x 2 du ¼ e dx. Substituting we get 2 u ¼ 2 ln jujþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi p C ¼ 12 ln 1 þ e2x þ C ¼ ln 1 þ e2x þ C. Ð lnð1=xÞ dx. Let u ¼ ln 1x ¼ lnðxÞ1 ¼ ln x, and x Ð then du ¼ 1x dx. Substituting we get u du ¼ 2 12 u2 þ C ¼ 12 ln 1x þ C. pffi Ð e p3 ffiffiffi pffiffiffi x dx.pLet u ¼ 3 x ¼ x1=3 ; du=dt ¼ 13 x2=3 3 du ¼ 2=3 x ffiffiffi p ffi p ffiffi Ð 3 x Ð 3 1 dx ex2=3 dx ¼ 3 eu du ¼ 3eu þ c ¼ 3e x þ c. x2=3 1 x=2 4 i 2 h 2 Evaluating, we have 5 1 ¼ 1 15 15 ln 5 2 ln 5 ¼ 0:1998. dx 4xþ1. 2 27. x 2 0 x2 þ1 dx. Let u ¼ x þ 1 and du ¼ 2x dx Ð or 12 du ¼ x dx. Substituting we get 12 du u ¼ 2 2 1 1 1 2 ln juj ¼ 2 ln x þ 1 . This leads to 2 ln x þ 4 1 0 ¼ 12 lnð17Þ lnð1Þ ¼ 12 ln 17 1:4166. 3 Ð3 1 Ð3 1 x 1 ln ex dx. Recall that ln e ¼ x so 1 x dx ¼ ln jxj 1 ¼ ln :3 ln 1 ¼ ln 3 1:0986. Ð 1 3 x4 4 3 1 0 x e dx. Let u ¼ x and du ¼ 4x dx or 4 du ¼ Ð 4 x3 dx. Substituting produces 14 eu du ¼ 14 eu ¼ 14 ex 4 1 which leads to 1 ex ¼ 1 e1 e0 ¼ 1 ðe 1Þ 0:4296. Ð 4 1x=2 0 4 4 dx. Let u ¼ 2x and du ¼ 12 dx. Substi 1 u x=2 Ð 1 u 2 15 5 ¼ . tuting, we get 2 5 du ¼ 2 ln 15 ln 15 2 5 Since exþ1 > x2 on ½0; 1, the area we want is Ð1 Ð1 Ð 1 xþ1 x2 dx ¼ 0 exþ1 0 x2 dx ¼ exþ1 0 e 1 x3 1 ¼ e2 e1 13 ¼ e2 e 1 4:3374. 0 29. 31. 3 0 3 3 Ð (a) sðtÞ ¼ 394e0:025t 384 dt ¼ 15760e0:025t 384t þ C. At t ¼ 0, the object is on the ground, so sð0Þ ¼ 0 and we see that, C ¼ 15;760. Thus, the position function is sðtÞ ¼ 15;760e0:025t 384t þ 15;760; (b) The object reaches its maximum height when vðtÞ ¼ 0 or when e0:025t ¼ 384 394. Taking the natural logarithm of both sides we get 0:025t ¼ ln 384ln 394 ln 384 394 ¼ ln 384 ln 394. So, t ¼ 0:025 1:028; (c) sð1:028Þ ¼ 5:1196. Ð 2 2 Using the disc method this volume is 0 ex dx Ð2 ¼ 0 e2x dx. Let u ¼ 2x, then du ¼ 2 dx or 12 du ¼ dx. Thus, the integral becomes Ð u 2x . Evaluating, we get 12 eu du ¼ 2 e ¼ 2e 2 2x 4 0 e ¼ e e ¼ 1 e4 1:5420. 2 0 dV ds 2 2 0:15s 33. Since ¼ 0:45e , we see that V ¼ Ð 0:45 0:15s 0:15s ds ¼ 0:15 e þ C ¼ 3e0:15s þ 0:45e 0 C. Hence, Vð0Þ ¼ 3 ¼ 3e þ C ¼ 3 þ C so C ¼ 0 and VðsÞ ¼ 3e0:15s . Also, 3e0:15s ¼ 1:5 yields e0:15s ¼ 12. Taking the natural logarithm of both sides we get 0:15s ¼ ln 12 or s ¼ lnð0:5Þ ð0:15Þ ¼ 4:6210 mi. 35. First we find k ¼ PV ¼ 20 0:4 ¼ 8. Then, Ð 1:500 the work done by the gas is W ¼ 0:400 V8 dN ¼ 8ðln 1:5 ln 0:4Þ 10:574 ft lb. Ðx Ðx 2 2 FðxÞ ¼ 0 12te3t dt ¼ 2 0 ð6tÞe3t dt ¼ 2 x 2 2 2 2e3t 0 ¼ 2e3x 2e30 ¼ 2e3x þ 2 2 ¼ 2 2e3x Ð4 4 25. TECHNIQUES OF INTEGRATION 37. SECTION 27.3 27.3 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21. BASIC TRIGONOMETRIC AND HYPERBOLIC INTEGRALS Ð sin x dx. Let u ¼ 2x and du ¼ 12 dx gives Ð 2 2 sin u du ¼ 2 cos u þ C ¼ 2 cos 2x þ C. Ð tan 5x dx. Let u ¼ 5x, then du ¼ 5 dx and 15 du ¼ Ð dx. This gives 15 tan u du ¼ 15 ln j cos uj þ C ¼ 15 ln j cos 5xj þ C or 15 ln j sec 5xj þ C. Ð 1 Ð cos x dx ¼ sec x dx ¼ ln j sec x þ tan xj þ C Ð 1 Ð 2 cos2 x dx ¼ sec x dx ¼ tan x þ C Ð tan pffiffix pffiffiffi pffiffi dx. Let u ¼ x then du ¼ 2p1 ffiffix dx and 2du ¼ x Ð p1ffiffi dx. Substituting produces 2 tan u du ¼ x pffiffiffi 2 ln j cos uj þ C ¼ 2 ln j cos xj þ C or pffiffiffi 2 ln j sec xj þ C. Ð sinð4x 1Þdx ¼ 14 cosð4x 1Þ þ C Ð sin x and du ¼ sin x dx. Subcos2 x dx. Let u ¼ cos x Ð stituting, we obtain u2 du ¼ u1 þ C ¼ ðcos xÞ1 þ C ¼ sec x þ C. Ð sec 3x tan 3x 5þ2 sec 3x dx. Let u ¼ 5 þ 2 sec 3x, and then du ¼ 6 sec 3x tan 3x dx or 16 du ¼ sec 3x tan 3x dx. Ð This yields 16 1u du ¼ 16 ln juj þ C ¼ 16 ln j5 þ 2 sec 3xj þ C. Ð Ð sec4 3x tan 3x dx ¼ sec3 3x sec 3x tan 3x dx. If you let u ¼ sec ¼ 3 sec 3x tan 3x dx. Ð 3x, then1 du 1 This leads to 13 u3 du ¼ 12 u4 þC ¼ 12 sec4 3x þ C. Ð 3 dx Ð tan 3x ¼ 3 cotð3xÞdx ¼ ln j sin 3xj þ C Ð Ð ðsec x þ 2Þ2 dx ¼ ð sec2 x þ 4 sec x þ 4Þdx ¼ tan x þ 4 ln j sec x þ tan xj þ 4x þ C ð =2 23. 0 277 ð =2 ðsec 0:5x þ 5Þ2 dx ¼ 0 sec2 0:5x þ 10 sec 0:5x þ 25 dx ¼ ½2 tan 0:5x þ 20 ln j sec 0:5x =2 þ tan 0:5xj þ 25x 0 h ¼ 2 tan þ 20 lnsec 4 i 4 þ tan þ 25 4 2 ½2 tan 0 þ 20 lnjsec 0 þ tan 0j þ 25ð0Þ pffiffiffi 25 ¼ 2ð1Þ þ 20 ln 2 þ 1 þ 2 ½2ð0Þ þ 20 ln j1 þ 0j þ 25ð0Þ pffiffiffi 25 58:897 ¼ 2 þ 20 ln 2 þ 1 þ 2 25. Ð 27. Ð 29. 31. 33. 35. 37. 39. Ð Ð 1þcos 4x 1 cos 4x dx ¼ csc2 4x dx ¼ þ sin 2 4x sin2 Ð4x sin2 4x Ð cos 4x dx þ sin dx. Now, the first integral is csc2 4x 2 4x 2 ¼ 1 4 cot 4x þ C. For the second integral, let u ¼ sin 4x then du ¼ 4 cos 4x dx or 14 du ¼ cos 4x dx. Ð Substitution yields 14 u2 du ¼ 14 1u1 þ C ¼ 14 ðsin 4xÞ1 þ C ¼ 14 csc 4x þ C. Putting these together we get 14 cot2 4x 14 csc 4x þ C ¼ 14 cot2 4x þ csc 4x þ C or 14 cossin4xþ1 þ C. 4x tan 4x dx ¼ 4 ln j sec 4x j þ C Ð =2 Ð =2 2 x Using trig identities, we get =4 1þcot csc2 x dx ¼ =4 1 Ð =2 2 2 2 csc2 x þ cos x dx ¼ =4 sin x þ cos x dx Ð =2 =2 ¼ =4 dx ¼ xj=4 ¼ 2 4 ¼ 4. Ð =2 csc pffiffix cot pffiffix pffiffiffi pffiffi dx. Let u ¼ x and du ¼ 2p1 ffiffix. Then, =4 x Ð 2 csc u cot u du ¼ 2 csc u. Evaluating, we obtain pffiffiffi =2 2 csc xj=4 ¼ 0:4765. Using a Pythagorean trigonometric substitution Ð =2 2 x Ð =2 1sin2 x gives the result =6 cos sin x dx ¼ =6 sin x dx ¼ Ð =2 Ð =2 1 =6 sin x sin x dx ¼ =6 ðcsc x sin xÞdx ¼ h =2 ln j csc x cot xj þ cos x =6 ¼ ln j1 0j þ 0 pffiffiffi pffiffi ln j2 3j 23 ¼ 0:4509. Ð x sinh x2 dx. Let u ¼ x2 and du ¼ 2x dx or 12 du ¼ Ð x dx. Substituting we get 12 sinh u du ¼ 12 cosh uþ C ¼ 12 cosh x2 þ C pffiffiffiffiffiffiffiffiffiffiffiffiffi Ð 3x cosh x2 sinh x2 dx. Let u ¼ sinh x2 , then du ¼ 2x cosh x2 dx or 32 du ¼ 3x cosh x2 dx. Substituting Ð pffiffiffi 3=2 we get 32 u du ¼ 32 23 u3=2 þ C ¼ ðsinh x2 Þ þ C Ð 3 sinh3 x cosh2 x dx. Recall that sinh x¼ 2 2 sinh x sinh x ¼ sinh x cosh x 1 , and then we Ð have sinh x cosh2 x 1 cosh2 x dx ¼ Ð Ð cosh4 x sinh x dx cosh2 x sinh x dx ¼ 5 3 1 1 5 cosh x 3 cosh x þ C. 41. u We begin by rewriting cot u as cos sin u . Here, if we let vÐ ¼ sin u, then Ð dv ¼ cos u du, and the integral is cot u du ¼ dv v ¼ ln jvj Ðþ C. Back substitution gives the desired result: cot u du ¼ ln j sin uj þ C. 43. For 0 x 2, we see that sin 2x 0, so the area Ð =2 =2 ¼ is the integral 0 sin 2x dx ¼ 1 2 cos 2xj0 ð1 1Þ ¼ 1. 12 ðcos cos 0Þ ¼ 1 2 Ð 1 =4 The average value is =4 tan x dx ¼ 0 pffiffi pffiffiffi =4 4 ln 2 4 4 0:4413. ln j sec xj0 ¼ ðln 2 ln 1Þ ¼ 45. 278 CHAPTER 27 TECHNIQUES OF INTEGRATION Ð ¼ 1 1 5 sin 4t dt ¼ 5 cos 4tj10 ¼ E 10 0 4 54 ð0:6536 1Þ 2:067 V. 47. x x Here y ¼ 12 cosh 12 and so y0 ¼ sinh 12 . The length of the cable is the arc length ¼ ffi Ð 18 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ð 18 x x dx ¼ 1 þ sinh2 12 dx ¼ 18 cosh 12 18 49. 51. The center of the towers is at 0 and the towers are x and at 150 and 150. We are given y ¼ 80 cosh 80 0 x differentiating, we obtain y ¼ sinh 80. The arc Ð 150 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixffi Ð 150 x length is 150 1 þ sinh2 80 dx dx ¼ 150 cosh 80 150 x ¼ 80 sinh 80 ¼ 509:397 ft. 150 x 18 12 sinh 12 j18 ¼ 12 sinh 32 12 sinh 3 2 ¼ 51:1027 m. 27.4 1. 3. 7. 9. 11. MORE TRIGONOMETRIC INTEGRALS Ð Ð 1 sin2 3x cos 3x dx. Let u ¼ sin 3x and du ¼ 3 sin5 5x þ C 5. cos 5x sin4 5x dx ¼ 25 Ð cos 3x dx. Then, 13 u2 du ¼ 19 u3 þ C ¼ 19 sin3 3x þ C. Ð cos x sin3 x dx ¼ 14 sin4 x þ C. ð ð ð 1 cos 2x 1 þ cos 2x 2 1 2 4 sin x cos x dx ¼ dx ¼ ð1 cos 2xÞð1 þ 2 cos 2x þ cos2 2xÞdx 2 2 8 ð 1 ¼ 1 þ cos 2x cos2 2x cos3 2x dx 8ð ð 1 1 1 þ cos 2x cos3 2x cos2 2x dx ¼ 8 8 ð ð 1 1 1 1 1 þ cos 4x 2 dx ¼ x sin 2x 1 sin 2x cos 2x dx 8 16 8 8 2 1 1 1 1 1 1 1 ¼ x sin 2x þ sin 2x þ sin3 2x x þ sin 4x þ C 8 16 16 48 16 16 4 1 1 1 ¼ x þ sin3 2x þ sin 4x þ C 16 48 64 ð ð ð 1 þ cos 6x 3 1 6 cos 3x dx ¼ 1 þ 3 cos 6x þ 3 cos2 6x þ cos3 6x dx dx ¼ 2 8 ð 1 3 2 1 þ 3 cos 6x þ ð1 þ cos 12xÞ þ 1 sin 6x cos 6x dx ¼ 8 2 ð 1 3 3 1 þ 3 cos 6x þ þ cos 12x þ cos 6x sin2 6x cos 6x dx ¼ 8 2 2 ð 1 5 3 2 þ 4 cos 6x þ cos 12x sin 6x cos 6x dx ¼ 8 2 2 1 5x 2 1 1 3 þ sin 6x þ sin 12x sin 6x þ C ¼ 8 2 3 8 18 5x 1 1 1 þ sin 6x þ sin 12x sin3 6x þ C ¼ 16 12 64 144 ð ð ð 1 cos 4 1 þ cos 2 2 1 sin 2 cos 2 d ¼ 1 þ cos 4 cos2 4 cos3 4 d d ¼ 2 2 8 ð 1 1 1 þ cos 4 ð1 þ cos 8Þ 1 sin2 4 cos 4 d ¼ 8 2 ð 1 1 1 2 ¼ 1 þ cos 4 cos 8 cos 4 þ sin 4 cos 4 d 8 2 2 ð 1 1 1 1 1 1 2 3 cos 8 þ sin 4 cos 4 d ¼ sin 8 þ sin 4 þ C ¼ 8 2 2 8 2 16 12 1 1 sin 8 þ sin3 4 þ C ¼ 16 128 96 2 4 SECTION 27.5 Ð sec2 x tan2 x dx. Let u ¼ tanÐ x and then du ¼ sec2 x dx. Hence, we get u2 du ¼ 13 u3 þ C ¼ 1 3 3 tan x þ C. Ð Ð First factor csc4 x cot x dx ¼ csc3 x ðcsc x cot x dxÞ. Then let u ¼ csc Ð x and du ¼ csc x cot x dx. These produce u3 du ¼ 14 u4 þ Ð C ¼ 14 csc4 x þ C1 or csc4 x cot x dx ¼ Ð Ð csc2 xð1 þ cot2 xÞ cot x dx ¼ ð cot3 x þ cot xÞ csc2 x dx. Let u ¼ cot x and du ¼ csc2 x dx, and Ð then you have ðu3 þ uÞdu ¼ 14 u4 12 u2 þ C ¼ 14 cot4 x 12 cot2 xþC2 where C2 ¼ C1 0:25. 13. 15. We first factor the integrand and use a Pythagorean Ð Ð identity: sin1=2 3 cos3 3d ¼ sin1=2 3ð1 sin2 3Þ cos 3 d. Then multiply and integrate, Ð with the result sin1=2 3sin5=2 3 cos 3 d ¼ 3=2 1 2 3 13 27 sin7=2 3 þ C ¼ 29 sin3=2 3 3 3 sin 7=2 2 3 þ C. 21 sin Ð Ð csc x cot3 x dx ¼ ð csc2 x 1Þ csc x cot x dx ¼ 13 csc3 x þ csc x þ C. Ð tan3 x sec2 x dx ¼ 14 tan4 x þ C. Ð tan6 x sec2 x dx ¼ 17 tan7 x þ C Ð Ð cot6 x dx ¼ cot4 xð csc2 x 1Þdx ¼ Ð Ð cot4 x csc2 x dx cot2 xð csc2 x 1Þdx ¼ Ð Ð Ð cot4 x csc2 x dx cot2 x csc2 x dx þ cot2 x dx Ð ¼ 15 cot5 x þ 13 cot3 x þ ð csc2 x 1Þdx ¼ 15 cot5 x þ 13 cot3 xcot xx þ C. Recall: cot2 x ¼ csc2 x 1. Ð =4 2 Ð =4 tan x dx ¼ 0 ð sec2 x 1Þdx ¼ tan x 0 =4 xj0 ¼ 1 4 0 ¼ 1 4 Ð =2 4 Ð =2 2x 2 sin x dx ¼ 0 1cos dx by a half-angle 0 2 Ð =2 identity. This expands as 14 0 ð1 2 cos 2xþ 17. 19. 21. 23. 25. 27. 29. 27.5 1. 3. 5. 33. cos2 2xÞdx which becomes, by another half-angle Ð =2 4x dx or identity, 14 0 1 2 cos 2x þ 1þcos 2 Ð 1 =2 3 cos 4x 1 3x dx ¼ 4 2 sin 2xþ 4 0 2 2 cos 2x þ 2 =2 1 1 3 ¼ 8 4 sin þ 18 sin 2 ¼ 8 sin 4x0 3 1 3 4 4 0 þ 0 ¼ 16 . Ð =3 Using the disc method, you get 0 cos2 x dx ¼ =3 Ð =3 2x 0 1þcos dx ¼ 2 x þ 12 sin 2x 0 ¼ 2 3 þ 2 pffiffi 3 4 2:3251. ð mr 2 2 2 sin d 4 0 ð mr 2 1 2 ð1 cos 2Þd ¼ 4 2 0 2 mr 2 1 sin 2 ¼ 2 8 0 (a) I ¼ mr 2 mr 2 ½ð2 0Þ ð0 0Þ ¼ 4 8 (b) Substituting r ¼ 0:1 m and m ¼ 12:4 kg into 2 2 I ¼ mr4 produces I ¼ ð12:4Þð0:1Þ 0:0974 kg m2 . 4 ¼ 35. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 0:5 pffiffiffiffiffiffiffiffiffi 1 ieff ¼ ð2 sin t cos tÞ2 dt 0:5 0 0 pffiffiffi ð 0:5 2 ¼ 8 sin t cos t dt rffiffiffi 0 8 3 0:5 sin t 0 ¼ 3 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 8 3 sin 0:5 0:5421 ¼ 3 The effective current from t ¼ 0 to t ¼ 0:5 s is about 0.5421 A. INTEGRALS RELATED TO INVERSE TRIGONOMETRIC AND INVERSE HYPERBOLIC FUNCTIONS Ð dx ffi pffiffiffiffiffiffiffi ¼ arcsin 2x þ C 4x2 Ð dx pffiffiffiffiffiffiffiffiffi. Let u ¼ 3x and du ¼ 49x2 Ð du ffi Substituting, we have 13 pffiffiffiffiffiffiffi 4u2 1 3x 3 arcsin 2 þ C. Ð 31. 279 7. 1 3 du ¼ dx. 1 u 3 arcsin 2 þ C ¼ 3 dx so ¼ ffiffiffiffiffiffiffiffiffi. pdx 3x 9x2 4 Let u ¼ 3x, then du ¼ 3 dx, so 13 du ¼ dx. Thus, we can rewrite the integral as Ð du pffiffiffiffiffiffiffiffi ¼ 1 1 arcsec u þ C ¼ 1 arcsec 3x þ C. 3 2 2 6 2 u u2 4 Ð dx . Here u ¼ 3 x and du ¼ dx and so 1þð3xÞ2 Ð du we get 1þu 2 ¼ arctan u þ C ¼ 1 3 9. x dxffi p ffiffiffiffiffiffiffi . 9x2 Let u ¼ 9 x2 and du ¼ 2x dx so Ð 1=2 1 1 du ¼ 12 21 u1=2 þ C ¼ 2 du ¼ x dx. Then, 2 u pffiffiffiffiffiffiffiffiffiffiffiffiffi 9 x2 þ C. Ð 11. arctan ð3 xÞ þ C. Ð 4x6 Ð 4x Ð 4x2 þ25 dx ¼ 4x2 þ25 dx 2 6 4x2 þ25 dx. In the first integral let u ¼ 4x Ð þ 25; du ¼ 8x dx and we get 2 by substitution 2 du u ¼ 2 ln juj ¼ 2 lnð4x þ 25Þ. 280 13. 15. 17. 19. CHAPTER 27 TECHNIQUES OF INTEGRATION Ð The second integral is 6 4x2dxþ25 ¼ 6 1 2x 10 arctan 5 . Putting these together we have 2 ln 2 ð4x þ 25Þ 35 arctan 2x 5 þC Ð dx Completing the square, we obtain x2 þ6xþ10 ¼ Ð dx ¼ arctanðx þ 3Þ þ C. ðxþ3Þ2 þ1 Ð x dx 2 1þx4 ; Let u ¼ xÐ and then du ¼ 2x dx. Substitut1 du 1 ing, we obtain 2 1þu 2 ¼ 2 arctan u þ C ¼ 1 2 2 arctan x þ C. Ð sin x dx pffiffiffiffiffiffiffiffiffiffiffiffiffi. Let u ¼ cos x and du ¼ sin x dx. 1cos2 x Ð du ffi ¼ arcsin u þ Substituting produces pffiffiffiffiffiffiffi 1u 2 C ¼ arcsinðcos xÞ þ C ¼ 2 x þ C ¼ x 2 þ C. =4 Ð =4 cos x dx ¼ arctanðsin xÞ0 ¼ arctan sin 4 0 1þsin2 x pffiffi arctanðsin 0Þ ¼ arctan 22 arctan 0 ¼ 0:6155 21. 0 ¼ 0:6155. Ð dx pffiffiffiffiffiffiffiffiffi ¼ cosh1 x þ C. 5 x2 25 23. Ð 25. C ¼ 13 sinh1 3x 5 þ C. 0:5 Ð 0:5 dx pffiffiffiffiffiffiffiffi ¼ arcsin ¼ arcsin 0:5 arcsin 0 ¼ 0 0 1x2 1 1 2x ¼ e arctan x 2 0 0 2 ¼ e 1 ðarctan 1 arctan 0Þ 2 2 ¼ e 1 0 2 4 2 ¼ e 1 7:5685 2 2 35. dx pffiffiffiffiffiffiffiffiffiffiffi . 25þ9x2 Let u ¼ 3x and du ¼ 3 dx and so 13 du ¼ Ð du ffi ¼ 13 sinh1 u5 þ dx. Substituting produces pffiffiffiffiffiffiffiffiffi 25þu2 6 27. 29. 31. 33. 0 ¼ 6 0:5236 Ð 5 dx Ð5 Ð5 dx dx 1 x2 4xþ13 ¼ 1 ðx2 4xþ4Þþ9 ¼ 1 32 þðx2Þ2 ¼ ðx2Þ 5 1 ¼ ¼ 13 arctan 1 arctan 1 3 arctan 3 3 1 1 3 4 þ 0:32175 0:36905 Let u ¼ 4 tan x and du ¼ 4 sec2 x dx. Then, Ð =6 sec2 x dx Ð Ð pffiffi 1 =6 4 sec2 x dx 1 4 3=3 du ¼ ¼ 2 2 0 1þu2 i 1þ16 tan x pffiffi 4 0 1þð4 h tan xÞ pffiffi4 0 4 3 =3 ¼ 14 arctan u0 ¼ 14 arctan 4 3 3 arctan 0 ¼ pffiffi 4 3 1 0:2905 3 4 arctan 1 Ð1 1 0 1þx2 dx ¼ arctan x 0 ¼ arctan 1 arctan 0 ¼ 4 0 ¼ 4. These two graphs intersect at (0, 1) and, from 0 to 1, ex is always larger. Using the washer method we 2 # ð1" 1 ðex Þ2 pffiffiffiffiffiffiffiffiffiffiffiffiffi dx get x2 1 0 ð1 1 2x e 2 ¼ dx x 1 0 ð1 ð1 1 dx ¼ e2x dx 2 0 0x þ1 37. pffiffiffiffiffiffiffiffiffiffiffiffiffi 4 x2 1 y0 ¼ ð4 xÞ1=2 ð2xÞ 2 x ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 4 x2 2 x y02 ¼ 4 r x2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 1 x2 1 þ ðy 0 Þ2 ¼ 1þ dx 4 x2 1 1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r ð1 4 x2 þ x2 dx ¼ 4 x2 1 r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 4 ¼ dx 4 x2 1 ð1 2 dx pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 1 4 x2 1 x ¼ 2 arcsin 2 1 1 1 ¼ 2 arcsin arcsin 2 2 h i 2 ¼2 ¼ 6 6 3 y¼ 1 x f 0 ðxÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi þ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 x2 ð x 1x ð 1 f ðxÞ ¼ f 0 ðxÞdx ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi dx xð 1 x2 x þ pffiffiffiffiffiffiffiffiffiffiffiffiffi dx 1 x2 ð x dx ¼ sech1 x þ pffiffiffiffiffiffiffiffiffiffiffiffiffi : 1 x2 For the second integral let u ¼ 1 x2 , then du ¼ 2x dx or 12 du ¼ x dx. These substitutions Ð dx Ð pffiffiffi ffi ¼ 12 pduffiffi ¼ 12 21 u1=2 ¼ u ¼ make pxffiffiffiffiffiffiffi 2 u 1x pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 x2 . Putting these together we get f ðxÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi sech1 x 1 x2 þ C. Since f ð1Þ ¼ 0 we pffiffiffiffiffiffiffiffiffiffiffiffiffi have C ¼ sech1 1 þ 1 12 ¼ sech1 1. Thus, the desired equation is y ¼ sech1 x pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 x2 þ sech1 1. SECTION 27.6 27.6 1. 3. Ð TRIGONOMETRIC SUBSTITUTION x ffi pffiffiffiffiffiffiffi dx. 9x2 This can be done with trigonometric substitutions but it is much easier to do the following. Let u ¼ 9 x2 ; du ¼ 2x dx so x dx ¼ 12 du. Ð Substituting yields 12 pduffiffiu ¼ 12 21 u1=2 þ C ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 9 x2 þ C. Ð x2 pffiffiffiffiffiffiffiffi dx. Let x ¼ 3 sin and dx ¼ 3 cos d. 9x2 Substituting produces ð ð ð3 sin Þ2 3 cos d pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 9 sin2 d 9 9 sin2 ð 1 cos 2 ¼9 2 ð ð 9 9 ¼ 1 d cos 2 d 2 2 9 9 1 ¼ sin 2 þ C: 2 2 2 7. Hence sin 2 ¼ 2 sin cos , which yields sin 2 ¼ pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 3x 9x ¼ 29 x 9 x2 . Thus, the final answer is 3 pffiffiffiffiffiffiffiffiffiffiffiffiffi 9 x 1 2 2 arcsin 3 2 x 9 x þ C. Ð 3 pffiffiffiffiffiffiffiffiffiffiffiffiffi x 9 x2 dx. Again, this can be done using trig substitutions but the following method is easier. Let u ¼ 9 x2 and du ¼ 2x dx, Ðandpffiffiffiffiffiffiffiffiffiffiffiffi so x2ffi ¼ 1 3 9 u and du ¼ x dx. Thus, x 9 x2 ¼ Ð 2 pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 x 9 x2 x dx. Now substitute ð pffiffiffi 1 ð9 uÞ u du 2 ð 1 pffiffiffi ¼ 9 u u3=2 du 2 1 2 1 2 5=2 u þC ¼ 9 u3=2 þ 2 3 25 3=2 1 5=2 ¼ 3 9 x2 þ 9 x2 þC 5 3=2 1 3=2 ¼ 3 9 x2 þ 9 x2 9 x2 þC 5 3=2 15 9 x2 ¼ 5 3=2 1 þ 9 x2 9 x2 þC 5 3=2 1 ¼ 9 x2 6 þ x2 þ C: 5 Ð dx ffi pffiffiffiffiffiffiffi . x2 9 Let x ¼ 3 sec and then dx ¼ 3 sec tan d. Substitution into the given integral yields Ð Ð Ð 3 sec tan pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi d ¼ 3 sec tan d ¼ sec d ¼ 2 3 tan 9 sec 9 9. Since x ¼ 3 sin , we have sin ¼ 3x and ¼ sin1 3x. 5. 281 ln j sec þ tan j þ C. Since sec ¼ 3x and tan ¼ ffi pffiffiffiffiffiffiffiffi x pffiffiffiffiffiffiffi x2 9 x2 9 þ C ¼ ln 13 x þ 3 , the answer is ln 3 þ 3 pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi x2 9 þ C ¼ ln 13 þ ln x þ x2 9 þ C or pffiffiffiffiffiffiffiffiffiffiffiffiffi ln xþ x2 9 þ k where k ¼ C þ ln 13 ¼ C ln 3. Ð 2 Ð pffiffiffiffiffiffiffiffiffiffiffiffiffi 1=2 ðx 9Þ dx ¼ x2 9 dx. Let x ¼ 3 sec , then dx ¼ 3 sec tan d. Substituting yields Ð Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 9 sec2 9 3 sec tan d ¼ 9 tan2 sec Ð Ð d ¼ 9 ðsec2 1Þ sec d ¼ 9 ðsec3 Ð Ð sec Þd ¼ 9 sec2 d 9 sec d. The first integral is example 20.50 and the second is a formula. They yield 9 12 sec tan þ 12 ln j sec þ tan j ln j sec þ tan j ¼ 92 sec tan 92 ln jpsec ffi ffiffiffiffiffiffiffi x x2 9 þ tan j. Since sec ¼ 3 and tan ¼ 3 , we get pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi Ð 2 2 2 ðx h 9Þ1=2 dx ¼ 92 3x x39 92 ln i3x þ x39 þ K pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 12 x x2 9 9 ln x þ x2 9 þ C where C ¼ K 92 ln 3. Ð x pffiffiffiffiffiffiffiffi dx. Letting u ¼ x2 þ 9 and du ¼ 2x dx, pro11. x2 þ9 Ð pffiffiffiffiffiffiffiffiffiffiffiffiffi duces 12 pduffiffi ¼ 12 21 u1=2 þ C ¼ x2 þ 9 þ C. u 13. 15. Ð dx x2 þ9 ¼ 13 arctan 3x þ C. Ð 3 pffiffiffiffiffiffiffiffiffiffiffiffiffi x 9 þ x2 dx. Let u ¼ 9 þ x2 and du ¼ 2x dx or 1 2 these 2 du ¼ x dx. Thus, x ¼ u 9. Substituting Ð pffiffiffi 1 in the given integral yields 2 ðu 9Þ u du ¼ Ð 3=2 1 u 9u1=2 du ¼ 12 25 u5=2 92 23 u3=2 þ C ¼ 2 1 5=2 3u3=2 þC ¼ 15 uu3=2 3u3=2¼ 15 ð9 þ x2 Þ 5u 2 3=2 3=2 3=2 ð9 þ x2 Þ 3ð9 þ x2 Þ ¼ x 56 ð9 þ x2 Þ . 282 17. CHAPTER 27 Ð pffiffiffiffiffiffiffiffiffi 43x2 x4 dx. Let TECHNIQUES OF INTEGRATION pffiffiffi 3x ¼ 2 sin , so x ¼ p2ffiffi3 sin and dx ¼ p2ffiffi3 cos d. Substitution produces ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 4 sin2 2 4 pffiffiffi cos d 3 p2ffiffi sin 3 ð 2 cos p2ffiffi cos d 3 ¼ 4 16 sin 9 ð 2 4 9 cos ¼ pffiffiffi d 3 16 sin4 pffiffiffi ð 3 3 csc2 cot2 d ¼ 4 pffiffiffi 3 3 1 3 ¼ cot þ C 3 4 pffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!3 4 3x2 3 pffiffiffi þC ¼ 4 3x pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð 4 3x2 Þ3 þC ¼ 12 x3 3=2 1 ð4 3x2 Þ þC ¼ 12 x3 19. 21. dx. Let x ¼ tan and dx ¼ sec2 . Then ffi ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð sec tan2 þ 1 2 sec sec2 d d ¼ tan2 tan2 ð ð sec3 ð1 þ tan2 Þ sec d ¼ d ¼ 2 tan tan2 ð ð sec ¼ þ sec d tan2 ð 1 ð cos ¼ d þ sec d 2 x2 sin 2 23. Ð x3 pffiffiffiffiffiffiffiffiffi dx; u ¼ 3x; 3x ¼ 2 tan and so x ¼ 23 tan ; 9x2 þ4 and dx ¼ 23 sec2 d. Substituting these values in the given integral produces 2 3 ð 2 2 3 tan qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sec d 3 2 ð2 tan Þ þ 4 ð 16 3 tan sec2 d ¼ 81 2 sec ð 8 tan3 sec d ¼ 81 ð 8 tan sec2 1 sec d ¼ 81 ð 8 tan sec3 tan sec d ¼ 81 8 1 3 sec sec þ C ¼ 81 3 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!3 3 2 9x þ 4 9x2 þ 4 5 8 1 ¼ 4 þC 81 3 2 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 4 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ð9x2 þ 4Þ3 9x2 þ 4 þ C 243 81 ffi Ð pffiffiffiffiffiffiffi x2 þ1 25. ð cos ð cos ¼ d þ sec d sin2 ¼ ðsin Þ1 þ ln j sec þ tan j þ C pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi x2 þ 1 þ ln x2 þ 1 þ x þ C ¼ x Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ðx 1Þ2 dx. Here we have a ¼ 2 and u ¼ x 1. Let x 1 ¼ 2 sin , then x ¼ 2 sin þ 1 and dx ¼ 2 cos d. Substitution yields Ð Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 4 sin2 ð2 cos Þ d ¼ ð2 cos Þð2 cos Þ Ð Ð Ð 2 d ¼ 2 ð1 þ cos 2Þ d ¼ 4 cos2 d ¼ 4 1þcos 2 d þ 2 þ sin 2 þ C. Thus ¼ sin1 x1 2 and using pffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ffi 4ðx1Þ the identity sin 2 ¼ 2 sin cos ¼ 2 x1 2 2 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx1Þ 4ðx1Þ2ffi 1 x1 so the answer is 2 sin þC 2 þ 2 Ð dx pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi dx. Let x 1 ¼ 2 sec and dx ¼ 2 sec 2 ðx1Þ 4 tan d. Then, you get ð ð sec tan d 2 sec tan d qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2 tan 2 ð2 sec Þ 4 ð ¼ sec d ¼ ln j sec þ tan j þ C x 1 ¼ ln 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx 1Þ2 4 þC þ 2 1 ¼ ln x 1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ðx 1Þ2 4 þ C ¼ ln x 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ðx 1Þ2 4 þ K where K ¼ C ln 2. SECTION 27.6 27. Completing the square produces Ðx2p 2x 3 ¼ x2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 x 2x 3 dx 2xþ1 4 ¼ ðx 1Þ 4. Thus Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ðx 1Þ2 4 dx. Let x 1 ¼ 2 sec , then dx ¼ 2 sec tan d. Substitution gives ð qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2 sec Þ2 4ð2 sec tan Þ d ð ¼ 2 tan 2 sec tan d ð ¼ 4 tan2 sec d ð ¼ 4 sec2 1 sec d ð ð ¼ 4 sec3 d 4 sec d 1 1 ¼ 4 sec tan þ ln j sec þ tan j 2 2 4 ln j sec þ tan j þ C 1 ¼ 4 sec tan 2 1 ln j sec þ tan j þ C 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 2x 3 x1 ¼2 2 2 x 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 2x 3 þ 2 ln þC 2 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ¼ ðx 1Þ x2 2x 3 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ln x 1 þ x2 2x 3 þ K 29. Ð dx pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx3Þ x2 6xþ25 ¼ Ð dx pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi . Here u ¼ 2 ðx3Þ ðx3Þ þ16 x 3 and a ¼ 4. Let x 3 ¼ 4 tan , so dx ¼ Ð 2 4p sec d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 sec2 d. Then, ¼ 4 tan ð4 tan Þ2 þ16 Ð 4 sec2 d Ð Ð Ð 1 sec 1 1 1 4 tan 4 sec ¼ 4 tan d ¼ 4 sin ¼ 4 csc d ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 1 x2 6xþ25 4 þ 4 ln j csc cot j þ C ¼ 4 ln x3 x3 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 4 þ C. C ¼ 14 ln x 6xþ25 x3 31. Substituting these values, we obtain ð x¼3 ð 3 pffiffiffiffiffiffiffiffiffiffiffiffi2ffi 3 cos 9x dx ¼ 3 cos d 2 x ð3 sin Þ2 1 x¼1 ð x¼3 cot2 d ¼ x¼1 ð x¼3 2 csc 1 d ¼ x¼1 ¼ ½ cot x¼3 x¼1 " pffiffiffiffiffiffiffiffiffiffiffiffiffi # x 3 9 x2 arcsin ¼ 3 x 1 ¼ 0 2 ð2:82843 0:33984Þ 1:59747 33. Using the trigonometric substitution x ¼ 3 sin , pffiffiffiffiffiffiffiffiffiffiffiffiffi produces 9 x2 ¼ 3 cos and dx ¼ 3 cos d. Let x ¼ 2 sec ; ¼ sec1 2 , and dx ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 sec tan d so that x2 4 ¼ 2 tan . Then ð8 ð x¼8 dx 2 sec tan d pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4 x x2 4 x¼4 2 sec 2 tan x¼8 ð 1 x¼8 1 ¼ d ¼ 2 x¼4 2 x¼4 x 8 1 ¼ sec1 2 2 4 1 ¼ sec1 4 sec1 2 2 0:1355 35. where K ¼ C þ ln 2. 283 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Let x ¼ 6 sin ; dx ¼ 6 cos d; 36 x2 ¼ 6 cos , and ¼ arcsin 6 . Thus, when x ¼ 0; ¼ 0 and when x ¼ 6; ¼ 2. Then ð 6 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð =2 2 2 x 36 x dx ¼ ð6 sin Þ2 0 0 xð6 cos Þð6 cos Þ d ð =2 sin2 cos2 d ¼ 1296 0 ¼ 324 ¼ 162 ð =2 0 ð =2 sin2 2d ð1 cos 2Þ d 0 1 ¼ 162 sin 2 2 ¼ 81 254:4690 =2 0 284 37. CHAPTER 27 TECHNIQUES OF INTEGRATION x3 The area under pffiffiffiffiffiffiffiffiffi from 0 to 3 is 16x2 Ð3 0 x2 dx pffiffiffiffiffiffiffiffiffi . 16x2 Let Substitution gives ð 4 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 25 625 625 sin2 pffiffiffiffiffi cos d 25 21 ð 4 25 25 cos pffiffiffiffiffi cos d ¼ 25 21 ð ð 100 100 1 þ cos 2 cos2 d ¼ pffiffiffiffiffi d ¼ 25 2 21 50 1 50 ¼ pffiffiffiffiffi þ sin 2 ¼ pffiffiffiffiffi ½ þ sin cos 2 21 21 pffiffiffiffiffi pffiffiffiffiffi 21x 21x 50 þ ¼ pffiffiffiffiffi sin1 25 25 21 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#5 625 21x2 25 pffiffiffiffiffi5 21 50 ¼ pffiffiffiffiffi sin1 5 21 pffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# 21 5 625 21 25 þ ð2Þ 625 pffiffiffiffiffi pffiffiffiffiffi 21 50 100 1 21 þ ¼ pffiffiffiffiffi sin 5 625 21 pffiffiffiffiffi 100 50 100 1 21 þ pffiffiffiffiffi sin ¼ 5 625 21 pffiffiffiffiffi 21 100 104:6073: ¼ 8 þ pffiffiffiffiffi sin1 5 21 x ¼ 4 sin , then dx ¼ 4 cos d. Substituting gives ð ð4 sin Þ3 ð4 cos Þ d qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 16 ð4 sin Þ2 ð 64 sin3 4 cos ¼ ð 4 cos ð 3 ¼ 64 sin d ¼ 64 1 cos2 sin d 1 ¼ 64 cos þ cos3 3 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi33 3 16 x2 16 x2 5 1 4 ¼ 64 3 4 4 0 39. pffiffiffi 1 1 pffiffiffi3 7 16 7 43 þ 16 4 ¼ 3 3 pffiffiffi 1 pffiffiffi ¼ ð7 7 48 7 64 þ 192Þ 3 pffiffiffi 1 ¼ ð128 41 7Þ 6:5080654 3 Ð 4 pffiffiffiffiffiffiffiffiffiffiffiffiffi The area described is 0 9 þ x2 dx. Let x ¼ 3 tan Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ 9 tan2 and dx ¼ 3 sec2 d. Then, Ð R ð3 sec2 Þ d ¼ ð3 sec Þð3 sec2 Þ d ¼ 9 sec3 d ¼ 9 12 sec tan þ 12 ln j sec þ tan j ¼ hpffiffiffiffiffiffiffiffi i hpffiffiffiffiffiffiffiffi i4 9þx2 x 9þx2 9 x 3 þ ln 3 þ 3 or, we get, 92 53 43 þ 2 3 0 ln j 53 þ 43 j 33 03 ln j 33 j ¼ 92 20 9 þ ln j3j 0 0 ¼ 5 þ 92 ln 3 or 5 þ ln 39=2 9:9438. 41. To find the desired area we first solve 2 2 2 x2 25 2 2 þ y4 ¼ 1 2 x 4x for y : y4 ¼ 1 25 y2 ¼ or y ¼ 1004x 25 qso ffiffiffiffiffiffiffiffiffiffiffiffi ffi 4 p25 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 . We also ¼ 25 x and we get y ¼ 1004x 25 5 1=2 1=2 need y0 ¼ 25 ð25 x2 Þ 12 2x ¼ 25 xð25x2 Þ ¼ 2 2x 02 4x pffiffiffiffiffiffiffiffiffi . Thus, y ¼ 25ð25x2 Þ and so 5 25x2 ð5 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2y 1 þ y02 dx S¼ 5 ffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð5 2 2 4x 1þ dx ¼ 2 25 x2 5 25ð25 x2 Þ 5 s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ð5 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 625 21x2 ¼ dx 2 25 x 5 25ð25 x2 Þ 5 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð5 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 1 625 21x2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dx ¼ 2 25 x 5 5 25 x2 5 ð 4 5 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 ¼ 625 21x dx: 25 5 pffiffiffiffiffi ffi cos d: If you let 21x ¼ 25 sin , then dx ¼ p25ffiffiffi 21 43. Let u ¼ t ¼ tan and du ¼ dt ¼ sec2 d. Then ffi ð pffiffiffiffiffiffiffiffiffiffiffiffi ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t2 þ 1 tan2 þ 1 2 sec d dt ¼ 9t2 9 tan2 ð ð 1 sec3 1 csc2 sec d d ¼ ¼ 9 tan2 9 ð 1 1 þ cot2 sec d ¼ 9 ð 1 cos ¼ sec þ 2 d 9 sin i 1h lnj sec þ tan j ðsin Þ1 ¼ 9" # pffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffi 2 1 þ t 1 ln 1 þ t2 þ t ¼ t 9 from t ¼ 0:5 to ti¼ 1, we have i ¼ 19 hSo p ffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi2 1 ln 1 þ t2 þ t 1þt 0:1829 A t 0:5 SECTION 27.7 27.7 1. Ð INTEGRATION BY PARTS x ln x dx. Completing the table, we get u ¼ lnx v ¼ 12 x2 du ¼ 1x dx dv ¼ x dx Combined with the Ðresult from the first table, this produces 12 x3 e2x 32 x2 e2x dx ¼ 12 x3 e2x Ð 2x 3 1 2 2x 2 2 x e xe dx . A third table produces Ð Thus, using the table, we obtain x ln x dx ¼ Ð Ð ln x 12 x2 1x dx ¼ 12 x2 ln x 12 x dx ¼ 1 2 2x 1 2 2x 3. 5. Ð v ¼ 12 cos 2x du ¼ dx dv ¼ sin 2x dx 11. Ð Using the table, we see that x sin 2x dx ¼ Ð 12 x cos 2x 12 cos 2x dx ¼ 12 x cos 2x þ 1 4 sin 2x þ C. Ð 2 x ln x dx u ¼ ln x v ¼ 13 x3 du ¼ 1x dx du ¼ x2 dx Thus, from the table, we see that x2 ln x dx ¼ Ð ln x 13 x3 1x dx ¼ 13 x3 ln x 19 x3 þ C. Ð x sin1 x2 dx. u ¼ sin v¼ x 13. For the second integral let w ¼ 1 x ; dw ¼ 4x3 dx or 14 dw ¼ x3 dx. Substituting, we get Ð x3 Ð 1 2 1 2 1 2 1 2 x x 14 pdwffiffiwffi ¼ 12 2 x sin 1x2 dx ¼ 2 x sin Ð x2 sin1 x2 14 w1=2 dw ¼ 12 x2 sin1 x2 þ 12 w1=2 þ 1 4 1=2 þ C. The 2 ð1 x Þ 1 2 1 2 1 answer is 2 x sin ix þ 2 ð1 x4 Þ1=2 h pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2 1 2 x þ 1 x4 þ C. 2 x sin final þC ¼ x3 e2x dx u ¼ x3 v ¼ 12 e2x du ¼ 3x2 dx dv ¼ e2x dx Ð Ð So, x3 e2x dx ¼ 12 x3 e2x 32 x2 e2x dx. Using a second table produces u ¼ x2 v ¼ 12 e2x du ¼ 2x dx dv ¼ e2x dx Ð x2 ex=4 dx u ¼ 8x du ¼ 8 dx 4 Ð Ð pffiffiffiffiffiffiffiffiffiffiffiffiffi x 4x þ 1 dx. Let u ¼ 4x þ 1 and du ¼ 4 dx. So, u1 ¼ x and 1 du ¼ dx. Thus, the given integral is Ð 4u1 pffiffiffi 1 4 Ð 3=2 1 1 2 5=2 u 4 dx ¼ 16 u u1=2 du ¼ 16 4 5u h i 5=2 2 2 3=2 1 2 þC ¼ 16 3 ð4x þ 1Þ3=2 þ C ¼ 3u 5 ð4xþ1Þ h i 3=2 2 3=2 1 2 ð Þ ð Þ ð Þ 4x þ 1 4x þ 1 4x þ 1 þC ¼ 16 5 3 h i 3=2 1 8x 4 1 24x4 þ C ¼ 16 16 5 15 ð4x þ 1Þ 15 v ¼ 4ex=4 du ¼ 2x dx dv ¼ ex=4 dx Ð Ð 2 x=4 Thus, x e dx ¼ 4x2 ex=4 8xex=4 . Using integration by parts a second time, we get the following table: 2x ffi du ¼ pffiffiffiffiffiffiffi dx dv ¼ x dx 1x2 Ð x3 Ð ffi dx. Hence, x sin1 x2 dx ¼ 12 x2 sin1 x2 pffiffiffiffiffiffiffi 1x2 9. dv ¼ e2x dx u ¼ x2 1 2 2x C ¼ 12 x2 sin1 x2 þ du ¼ dx 1 ð4x þ 1Þ3=2 þ C ¼ 60 ð6x 1Þð4xþ1Þ3=2 þ C. Ð 1 2 v ¼ 12 e2x 1 3 2x 3 1 2 2x 2x 1 3 2x 3 2 2x 2 x e 2 2 x e xe dx ¼ 2 x e 4 x e Ð 3 2x 1 2x 1 3 2x 3 2 2x 3 2x 4 xe 2 e dx ¼ 2 x e 4 x e þ 4 xe 1 2x 2x 1 3 3 2 3 1 4e þ C ¼ e 2x 4x þ 4x 4 þ C x sin 2x dx u¼x u¼x When combined with the previous result, this yields Ð þ ln x 14 x2 þ C or 12 x2 ðln x 12Þ þ C. 1 3 3x 7. 285 15. v ¼ 4ex=4 dv ¼ ex=4 dx Ð Hence, we get 4x2 ex=4 8xex=4 ¼ 4x2 ex=4 Ð 32xex=4 þ 32ex=4 dx ¼ 4x2 ex=4 32xex=4 þ 128ex=4 þ C ¼ ex=4 ð4x2 32x þ 128Þ þ C. Ð x e cos x dx u ¼ ex du ¼ ex dx v ¼ sin x dv ¼ cos x dx Ð Ð This results in ex cos x dx ¼ ex sin x ex sin x dx. Using integration by parts again produces u ¼ ex du ¼ ex dx v ¼ cos x dv ¼ sin x dx Combining thisÐ with the previous result x x ex sin x ex sin x dx Ðyields Ð ¼x e sin x þ e x cos x x e cos x dx. Hence 2 e cos x dx ¼ e sin x þ Ð ex cos x or ex cos x dx ¼ 12 ex ðsin x þ cos xÞ þ C. 286 17. CHAPTER 27 Ð Ð Rewrite the given integral as x3 cos x2 dx ¼ 2x cos x2 dx, and then use integration by parts. 2 u ¼ x2 v ¼ sin x2 du ¼ x dx dv ¼ 2x cos x2 dx So the integral equals x2 2 1 2 2 sin x þ 2 cos x þ C 19. TECHNIQUES OF INTEGRATION Ð x2 2 x2 2 27. x3 ex dx v ¼ ex dv ¼ ex dx Ð Ð Thus, we obtain x3 ex dx ¼ x3 ex þ 3x2 ex . Using integration by parts a second time, we have the following table. 29. ¼ 14:7781 þ 5:8861 ¼ 20:6642 Ð2 Ð2 2 Mx ¼ 12 1 ðx2 ex Þ dx ¼ 12 1 x4 e2x dx. From Exercise #16, we know ð x4 e2x dx 3 2 3 3 2x 1 4 3 x x þ x xþ ¼e þC 2 2 2 4 CombinedÐ with the earlier result, this produces Ð x3 ex þ 3x2 ex ¼ x3 ex 3x2 ex þ 6xex . We now use integration by parts a third time. v ¼ ex dv ¼ ex dx u ¼ 6x du ¼ 6 dx 21. Ð 2 x Hence, x3 ex 3x e þ 6xex ¼ x3 ex Ð 3x2 ex 6xex þ 6ex ¼ x3 ex 3x2 ex 6xex 6ex þ C ¼ ex ðx3 þ 3x2 þ 6x þ 6Þ þ C Ð x e cos x dx Thus, ð ð 1 2 2 x 2 1 2 4 2x x e dx ¼ x e dx 2 1 2 1 2 1 ¼ e2x 2x4 4x2 þ 6x2 6x þ 3 1 8 15 21 ¼ e4 e2 ¼ 102:0163 8 8 Ð2 The mass is m ¼ 1 x2 ex dx. Once again, we need to use integration by parts. Mx ¼ u ¼ ex v ¼ sin x x du ¼ e dx dv ¼ cos x dx Ð Ð x Thus, e cos x dx ¼ ex sin x þ sin xex dx. Applying integration by parts again, we have the following table. v ¼ ex u ¼ x2 du ¼ 2x dx dv ¼ ex dx Ð Ð So, x2 ex dx ¼ x2 ex 2xex dx. A second application of integration by parts produces u ¼ ex du ¼ ex dx 23. v ¼ cos x dv ¼ sin x dx Ð Hence, Ð ex sin x þ sin xex dx ¼ ex sinÐ x ex cos x ex cos x dx which produces 2 exÐ cos x dx ¼ ex sin x ex cos x and means that ex cos x ¼ 12 ex ðsin x cos xÞ þ C. Ð x cos 4x dx u¼x 25. u ¼ 2x du ¼ 2 dx v ¼ ex dv ¼ ex dx Ð 2 x With the result that x e dx ¼ x2 ex 2xex þ Ð2 Ð x 2e dx ¼ x2 ex 2xex þ2ex . Thus, m ¼ 1 x2 ex dx ¼ v ¼ 14 sin 4x du ¼ dx dv ¼ cos 4x dx Ð Ð Hence, x cos 4x dx ¼ 4x sin 4x 14 sin 4x dx ¼ x 1 4 sin 4x þ 16 cos 4x þ C. Ð =2 Using the disc method, we see that V ¼ 0 =2 Ð =2 2x cos2x dx ¼ 0 1þcos ¼ 12 x þ 14 sin 2x 0 ¼ 2 2 4 þ 0 0 0 ¼ 4 . du ¼ 4 dt dv ¼ sin 2t dt Ð Ð Thus, 4t sin 2t dt ¼ 2t cos 2t þ 2 cos 2t dt ¼ 2t cos 2t þ sin 2t. Evaluated from 0 to 4 we have ½8 cos 8 þ sin 8 ¼ 2:1534 C. Ð2 Ð2 My ¼ 1 x x2 ex dx ¼ 1 x3 ex dx. From Exercise #9, Ð we have x3 e2x dx ¼ e2x 12 x3 34 x2 þ 34 x 38 þ C. Hence, we see that ð2 2 x x2 ex dx ¼ ex x3 3x2 þ 6x 6 1 My ¼ 1 v ¼ ex dv ¼ ex dx u ¼ 3x2 du ¼ 6x dx v ¼ 12 cos 2t u ¼ 4t Ð sin x2 x sin x2 ¼ u ¼ x3 du ¼ 3x2 dx Charge Ð is the integral of current. Hence we must find 4t sin 2t dt. Use the following integration by parts table. 2 2 ½x2 ex 2xex þ 2ex 1 ¼ ½ex ðx2 2x þ 2Þ1 ¼ 12:9378. Using the above result, we see that x ¼ My 20:6642 m ¼ 12:9387 ¼ 1:5971 31. and y ¼ Mmx ¼ 102:0163 12:9387 ¼ 7:8846. is the integral of force so we get W ¼ ÐWork x3 cos x dx. Using integration by parts, we have SECTION 27.7 u ¼ x3 v ¼ sin x 2 du ¼ 3x dx dv ¼ cos x dx Ð Ð 3 Thus, x cos x dx ¼ x3 sin x 3x2 sin x dx. Using integration by parts again yields F ¼ 2 v ¼ sin x dv ¼ cos x dx ¼ x3 sin x þ 3x2 cos x 6x sin x ð þ 6 sin x dx =2 ¼ x3 sin x þ 3x2 cos x 6x sin x þ 6 cos xj0 3 ¼ þ0 6 0 0 þ 0 0 6 2 2 3 ¼ 3 þ 6 0:4510 2 33. As in example 28.54 set up the coordinate axis so that (0, 0) is at the center of the road between the towers. Since it is a parabola the equation of the main cable fits the form y ¼ 4px2 and contains the point (500, 200). Thus, 200 ¼ 4p ð500Þ or 2 p ¼ 10000 . The equation of the cable is thus 1 1 x. The y ¼ 1250 x2 . Differentiating we get y0 ¼ 625 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x 2 Ð 500 length of the cable is 500 1 þ 625 dx. Evalu x 2 Ð qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ 625 ¼ ate this integral as follows: p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi Ð 1 6252 þ x2 . Let x ¼ 625 tan and dx ¼ 625 625 Ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2 sec d. This leads to 625 6252 þ252 tan2 Ð 1 625 sec d ¼ 625 625 sec 625 sec2 d ¼ Ð 3 we get 625 sec d. Using Example 28.50, hpffiffiffiffiffiffiffiffiffiffiffi 625þx2 625 625 625 þ 2 ½sec tan þ ln j sec þ tan j ¼ 2 pffiffiffiffiffiffiffiffiffiffiffi i500 625þx2 x x þ 625 ¼ 625ð1:02445 þ 625 þ ln 625 500 35. lnð2:08062Þ ¼ 625ð1:02445 þ 0:73267Þ. Thus, the length of the main cable is 625ð1:75712Þ ¼ 1098 ft. ÐR ÐR (a) F ¼ 2 0 r PðrÞdr ¼ 2 0 P0 ekr dr. Integrating by parts, we have u ¼ Po r v ¼ 1k ekr du ¼ P0 dr dv ¼ ekr dr and so, r P0 ekr dr 0 v ¼ cos x u ¼ 3x2 du ¼ 6x dx dv ¼ sin x dx Ð 3 Hence, x cos x dx ¼ x3 sin x þ 3x2 cos x Ð 6x cos x. We need integration by parts one more time. u ¼ 6x du ¼ 6 dx ð x3 cos x dx ðR 287 ðR R 1 P0 kr e dr ¼ 2 P0 rekr 0 þ 2 k 0 k 1 P0 kr R kr ¼ 2 P0 re 2 2 d k k 0 2P0 RkekR 2P0 ekR 2P0 þ 2 k2 k kR e 2ðkR þ 1ÞP0 2P0 ¼ þ 2 k2 k ÐR 2 ÐR (b) T ¼ 2 0 r PðrÞdr ¼ 2 0 r 2 ÐR P ekr dr ¼ 2P0 0 r 2 ekr dr. Integrating Ð R0 2 kr dr we will use integration by parts 0 r e twice. The first time produces ¼ u ¼ r2 v ¼ 1k ekr du ¼ 2r dr dv ¼ ekr dr Ð Ð 2 and we get r 2 ekr dr ¼ rk ekr þ 2k rekr dr. The second time we use integration by parts, we have u ¼ 2k r v ¼ 1k ekr du ¼ 2k dr dv ¼ ekr dr and we get ð ð r2 2r 2 r 2 ekr dr ¼ ekr 2 þ 2 ekr dr k k k r 2 kr 2r 2 kr ¼ e 2 3e þC k k k Putting the constant multiples and the limits of integration back in, the result is ðR T ¼ 2 r 2 PðrÞdr 0 R r 2 kr 2r 2 kr ¼ 2 e 2 3 e k k k 0 R 1 kr 2 2 ¼ 2 3 e k r þ 2kr þ 2 k 0 1 kR 2 2 ¼ 2 3 e k R þ 2kR þ 2 k 1 þ 2 3 e0 k2 02 þ 2k 0 þ 2 k 1 kR 2 2 k R þ 2kR þ 2 ¼ 2 3 e k 1 þ 4 3 k 288 37. CHAPTER 27 C¼ Ð 6 40 lnðtþ2Þ 0 ðtþ2Þ2 TECHNIQUES OF INTEGRATION dt ¼ 20 3 Ð 6 lnðtþ2Þ 0 ðtþ2Þ2 dt. To determine the integral, we use integration by parts u ¼ lnðt þ 2Þ 1 du ¼ tþ2 dt and Ð so, v ¼ ðt þ 2Þ1 dv ¼ ðt þ 2Þ2 dt lnðtþ2Þ dt ðtþ2Þ2 ¼ lnðtþ2Þ tþ2 Ð 1 ðtþ2Þ2 dt ¼ lnðtþ2Þ tþ2 1 tþ2 . Combining the pieces, we get C ¼ 20 3 h i6 lnðtþ2Þþ1 ln 8þ1 ln 2þ1 3:0776 ppm ¼ 20 3 8 2 tþ2 0 39. (a) As in Example 27.54, we put the origin at the roadbed midway between the towers. This means that the vertex of the parabolas that describe the cables is at the ð0; 11:86Þ and the cables are attached to the towers at the points ð1650; 312:34Þ and ð1650; 312:34Þ. By placing the vertex at the midpoint of the roadbed, we know that this parabola is of the form 4pðy 11:86Þ ¼ x2 . Since ð1650; 312:34Þ is a point on this parabola, we see that 4pð312:34 11:86Þ ¼ 4pð300:48Þ ¼ 1201:92p ¼ 16502 and so p 2265:1258. The parabola for the cables has x2 þ 11:86. For the arc the equation 4ð2265:1258Þðy 11:86Þ ¼ 9060:5032ðy 11:86Þ ¼ x2 or y ¼ 9060:5032 2x x ¼ . The length of the cable is length we need the derivative of y, which is y0 ¼ 9060:5032 4530:2516 r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ð 1650 2 x L¼ 1þ dx 4530:2516 1650 ð 1650 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 4530:25162 þ x2 dx ¼ 4530:2516 1650 Using the trigonometric substitution of x ¼ 4530:2516 tan , then dx ¼ 4530:2516 sec2 d and the indefinite integral becomes ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 L¼ 4530:25162 þ x2 dx 4530:2516 ð qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 4530:25162 þ ð4530:2516 tan Þ2 ð4530:2516 sec2 Þ d ¼ 4530:2516 ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4530:2516 1 þ tan2 sec2 d ð ¼ 4530:2516 sec3 d Since ð 1 1 sec3 d ¼ sec tan þ ln j sec þ tan j þ C 2 2 we have 4530:2516 ½sec tan þ ln j sec þ tan j þ C 2 ¼ 2265:1258½sec tan þ ln j sec þ tan j þ C pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4530:25162 þ x2 x and so , we see that sec ¼ Since tan ¼ 4530:2516 4530:2516 #1650 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi "pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4530:25162 þ x2 x x 4530:25162 þ x2 L ¼ 2265:1258 þ ln þ 4530:2516 4530:2516 4530:2516 4530:2516 L¼ 1650 3371:573066 Thus, the length of one of the cables that hold up the center span is about 3371.56 m and the total length of the four cables is about 13 486.24 m. SECTION 27.8 289 (b) For this parabola, place the origin at the anchor block so it has an equation of the type 4py ¼ x2 . Since the cable is fasten to the top of the tower at ð960; 322:5Þ we see that 4pð322:5Þ ¼ 9602 and p 714:4186. Thus, 1 1 1 y ¼ 4714:4186 x2 ¼ 2857:6744 x2 and y0 ¼ 1428:8372 x. The length of one of these cables is ð 960 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi x L 1þ dx 1428:8372 0 Using the procedures in (a) you should find that L 1027:9863 and the total length of the four cables from the top of the tower on the Sicily side of the bridge to the anchor block is about 4111.95 m. (c) As in (b), place the origin at the anchor block so it has an equation of the type 4py ¼ x2 . Since the cable is fasten to 1 the top of the tower at ð810; 258Þ we see that 4pð258Þ ¼ 8102 and p 635:7558. Thus, y ¼ 2543:0232 x2 and 0 1 y ¼ 1217:5116 x. The length of one cable is ð 810 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi x L¼ 1þ dx 1217:5116 0 866:304592 The total length of the four cables from the top of the tower on the Calabria side of the bridge to the anchor block is about 3465.22 m. (d) The total length of the four cables from the anchor block on the Sicily side to the anchor block on the Calabria side is 13 486:24 þ 4111:95 þ 3465:22 ¼ 21 063:41 m. We can think of this as a cylinder with a length of 21 063:41 m and a diameter of 1:24 m or a radius of 0:62 m. The volume of a cylinder is V ¼ r 2 h and for these cables we have V ¼ ð0:62Þ2 ð21 063:41Þ 25 436:77 m3 . 27.8 1. 3. USING INTEGRATION TABLES Ð Ð ð1 þ tan 3xÞ2 dx ¼ ð1 þ 2 tan 3x þ tan2 3xÞdx by formulas #12 and #58 we get x þ 2 13 ln j sec 3xjþ 1 2 1 3 ðtan 3x 3xÞ þ C ¼ x þ 3 ln j sec 3xj þ 3 tan 3x x þ C ¼ 13 ð2 ln j sec 3xj þ tan 3xÞ þ C Ð dx Ð dx xð4x3Þ ¼ xð3þ4xÞ Let u ¼ x; a ¼ 3, and du ¼ u dx. By formula #48 this is 1a ln j aþbu jþC ¼ þ C. Ð x2 dx pffiffiffiffiffiffiffiffiffi. Let u ¼ x3 and du ¼ 3x2 dx or x6 16þx6 Ð du 1 2 1 pffiffiffiffiffiffiffiffiffi 3 du ¼ 3x dx. Substituting yields 3 u2 42 þu2 . By pffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi 2 16þu 16þx6 formula #39 this is 13 16u þC ¼ 13 16x þ 3 pffiffiffiffiffiffiffiffiffi 6 16þx þ C. C ¼ 48x 3 11. 1 x 3 ln 4x3 5. 7. 9. Ð 2 x ffi pffiffiffiffiffiffiffi dx. 9x2 1 x 9 2 sin 3þ Ð pffiffiffiffiffiffiffiffiffiffiffiffiffi By formula #25 this is 2x 9 x2 þ 13. 15. C. cos3 x dx. By formula #65 this is 13 cos2 x sin x þ Ð 2 ¼ 1 cos2 x sin x þ 23 sin x þ C ¼ 13 3 cos x dx 3 2 1sin x sin x þ 23 sin x þ C ¼ sin x 13 sin3 xþ Ð Ð C. Alternate solution: cos3 x dx ¼ 1 sin2 x Ð Ð 2 cos x dx ¼ cos x dx sin x cos x dx ¼ sin x 13 sin3 x þ C. 17. 19. Ð sin6 3x dx. Let u ¼ 3x, then du ¼ 3 dx or Ð 1 we get 13 sin6 u du. By for3 du ¼ dx. Substituting Ð mula #64 this is 13 16 sin5 u cos u þ 56 sin4 u du . Using formula #64 once more, you obtain 1 5 1 3 Ð 1 5 u þ 34 sin2 3 6 sin u cos u þ 6 4 sin u cos u duÞ. By formula #56 we get 13 16 sin5 u cos uþ 3 5 1 3 1 1 6 4 sin u cos u þ 4 2 u 2 sin u cos u þ C ¼ 1 5 5 sin5 u cos u 72 sin3 u cos u 48 sin u cos u þ 18 5 3 5 1 5 u þ C ¼ sin 3x cos 3x sin 3x cos 3x 48 18 72 5 5 48 sin 3x cos 3x þ 48 x þ C. Ð 10x e cos 6x dx: By formula #88 we have this is e10x 1 10x ð10 cos 6x 102 þ62 ð10 cos 6x þ 6 sin 6xÞ þC ¼ 136 e þ 6 sin 6xÞ þ C. Ð 7 x ln x dx. By formula #90 we obtain x8 18 ln x 1 64Þ þ C Ð arcsin 4x dx. Letting u ¼ Ð 4x and du ¼ 4 dx and then substituting we get 14 arcsin u du. By formula pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R #78, arcsin 4x dx ¼ 14 ð4x sin1 4xþ 1ð4xÞ2 þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi C ¼ 14 4x sin1 4x þ 1 16x2 þ C. ffi pffiffiffiffiffiffiffiffiffiffiffiffiffi Ð pffiffiffiffiffiffiffi 9þx2 dx. By formula #32 this is 9 þ x2 x p ffiffiffiffiffiffiffi ffi 3þ 9þx2 þ C. 3 ln x 290 21. CHAPTER 27 Ð x3 e2x dx. By formula #86 we get 12 x3 e2x Ð 3 2 2x 1 3 2x 2 x e dx. Repeating this process, we get 2 x e Ð 32 12 x2 e2x þ 32 22 xe2x dx or 12 x3 e2x 34 x2 e2x þ Ð 2x 3 1 3 2x 2 xe dx. Repeating again produces 2 x e Ð 3 2 2x 3 2x 31 2x 1 3 2x 3 2 2x 4 x e þ 4 xe 2 2 e dx ¼ 2 x e 4 x e þ 3 2x 3 2x 4 xe 8 e 23. TECHNIQUES OF INTEGRATION Ð 25. þ C ¼ 18 e2x ð4x3 6x2 þ 6x 3Þ þ C. x3 sin 2x dx. Let u ¼ 2x, then u3 ¼ 8x3 or x ¼ 18 u3 , and also, du ¼ 2dx or dx ¼ 12 du. SubstiÐ 3 1 tution produces 16 u sin u du. By formula #75 this 3 Ð 1 is 16 u cos u þ 3 u2 cos u du . Now using formula #76, on the integral in this result, we obtain 3 2 Ð 1 16 u cos uþ3 u sin u2 u sin u du . Finally, using formula #75 one more time produces the Ð 1 ½u3 cos uþ3u2 sin uþ6u cos u 6 cos u result 16 1 ½u3 cos uþ3u2 sin uþ6u cos u 6 sin u þ C. or 16 3 27. Ð Back substituting for u produces x3 sin 2x dx ¼ 1 3 2 16 ½8x cos 2x þ12x sin 2x þ12x cos 2x6 sin 2x 1 3 þ C ¼ 2 x cos 2x þ 34 x2 sin 2x þ 34 x cos 2x 3 8 sin 2xþ C. Ð 1 2:5 2 5t V ¼ 2:5 0 t e dt. Using integration form #85 produces 2:5 1 e5t 2 25t 10t þ 2 V¼ 2:5 125 0 1 ¼ ð286047:5315Þ 114419:0126 2:5 3xþ7 2 Ð Ð2 1 1 W ¼ F dx ¼ 0 499x 2 dx ¼ 27 ln 3x7 0 by inte1 ðln 13 gration form #19. This evaluates as 14 1 ln 1Þ ¼ 14 ln 13 0:1832 N m. CHAPTER 27 REVIEW 1. 3. 5. 7. 9. Ð xe3x dx. Using integration by parts with the table u¼x v ¼ 13 e3x du ¼ dx dv ¼ e3x dx Ð 3x Ð We have xe dx ¼ 13 xe3x 13 e3x dx ¼ 13 xe3x 1 3x 1 3x 9 e þ C ¼ 9 e ð3x 1Þ þ C. Ð x pffiffiffiffiffiffiffiffiffi dx. Let x ¼ 5 sin , then dx ¼ 5 cos d. 25x2 Ð 5 sin 5 cos d Thus, substitution produces pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 255 sin2 Ð 5 sin 5 cos d Ð ¼ ¼ 5 sin d ¼ 5 cos þ C ¼ 5 5 cos pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 25x þ C ¼ 25 x2 þ C. Alternate solution: 5 Let u ¼ 25 x2 , then du ¼ 2x dx or 12 du ¼ x dx. Substituting, we obtain ð ð 1 du 1 1=2 1 2 p ffiffi ffi u du ¼ u1=2 þ C ¼ 2 2 2 1 u pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 25 x2 þ C 11. 1 7 ð cos uÞ þ C ¼ 17 cosð7x þ 2Þ þ C. Ð Ð sin5 3x cos2 3x dx ¼ sin 3x sin4 3x cos2 3x dx ¼ 2 sin 3xð1 cos2 3xÞ cos2 3x dx. This expands as Ð 2 cos 3x2 cos4 3x þ cos6 3x sin 3x dx. Let u ¼ cos 3x and du ¼ 3 sin 3x dx or 13 du ¼ sin 3x dx. Ð Substituting we get 13 u2 2u4 þ u6 du ¼ 13 1 3 2 5 1 7 1 2 3 5 3 u 5 u þ 7 u þ C ¼ 9 cos 3x þ 15 cos 3x 1 7 21 cos 13. 3x þ C. Ð dx . Let 2x ¼ 7 tan , or x ¼ 72 tan ð4x2 þ49Þ3=2 dx ¼ 72 sec2 d. Substituting yields Ð Ð and then Ð 2 sec2 d d 1 1 ¼ 72 sec 73 sec3 ¼ 98 sec d ¼ ðð7 tan Þ2 þ49Þ3=2 Ð 1 1 1 pffiffiffiffiffiffiffiffiffiffiffi 2x 98 cos d ¼ 98 sin þ C ¼ 98 4x2 þ49 þ C 7 2 x pffiffiffiffiffiffiffiffiffiffiffi 49 4x2 þ49 15. Ð sin4 2x cos 2x dx. Let u ¼ sin 2x then du ¼ 2 cos 2x dx or 12 du ¼ cos 2x dx. Substitution proÐ 1 sin5 2x þ C. duces 12 u4 du ¼ 12 15 u5 þ C ¼ 10 Ð dx 1 9xþ5. Let u ¼ 9x þ 5 and du ¼ 9 dx or 9 du ¼ dx. Ð 1 1 Then 19 du u ¼ 9 ln juj ¼ 9 ln j9x þ 5j þ C. Ð sinð7x þ 2Þdx. Let u ¼ 7x þ 2 and du ¼ 7 dx or Ð 1 1 7 du ¼ dx. Then, substitution produces 7 sin u du ¼ Ð 17. 19. Ð ¼ þ C. 3 x2 ex dx. Let u ¼ x3 and du ¼ 3x2 dx or 13 du ¼ Ð x2 dx. Substituting, we get 13 eu du ¼ 13 eu þ C ¼ 1 x3 3 e þ C. Ð x dx pffiffiffiffiffiffiffiffiffiffiffi. Let u ¼ 4x2 þ 49 and du ¼ 8x dx or 4x2 þ49 Ð 1 Substituting we get 18 pduffiffiu ¼ 8 du ¼ x dx. pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ð 1 1 1 2 1=2 2 þ C ¼ 14 4x2 þ 49 þ C. 8 u du ¼ 8 1 u Ð sec 4x tan 4x 9þ2 sec 4x dx. Let u ¼ 9 þ 2 sec 4x and du ¼ Ð 8 sec 4x tan 4x dx. Substituting we get 18 du u ¼ 1 1 ln juj þ C ¼ ln j9 þ 2 sec 4xj þ C. 8 8 CHAPTER 27 REVIEW 21. 23. Ð ½lnð2xþ1Þ5 2xþ1 dx. Let u ¼ lnð2x þ 1Þ and then du Ð 5 2dx 1 1 6 2xþ1. Substituting yields 2 u du ¼ 12 u þ C 6 1 12 ½lnð2x þ 1Þ þ C. Ð x2 3 x3 þ4 dx. Let u ¼ x þ 4 and 1 2 3 du ¼ x dx. Now substituting 1 1 3 3 ln juj þ C ¼ 3 ln jx þ 4j þ C. 25. Ð 27. Ð 29. Ð 31. 33. 35. 37. ¼ du ¼ 3x dx or Ð we get 13 du u ¼ tan 5x dx ¼ 5 ln j sec 5x j þ C or 5 ln j cos 5x j þ C. 39. 41. cos x dx. sin2 xþ9 2 x5 ex dx. Using integration by parts, we have the following table. u ¼ x4 du ¼ 4x3 dx v ¼ 12 ex 2 2 dv ¼ xex dx Ð Ð 5 x2 2 2 This produces x e dx ¼ 12 ex x4 2 x3 ex dx. Using integration by parts again with u ¼ 2x2 2 2 and dv ¼ xex dx, we get v ¼ 12 ex and du ¼ Ð 2 2 2 2 4x dx. Thus, 12 ex x4 2 x3 ex dx ¼ 12 ex x4 ex Ð ðarctan 2xÞ4 1þ4x2 2 dx. Let u ¼ arctan 2x, then du ¼ 1þ4x 2 dx Ð 1 4 1 5 and substituting gives 2 u du ¼ 10 u þ C ¼ 5 1 10 ðarctan 2xÞ ecos x sin x dx ¼ ecos x þ C Let u ¼ sin x and du ¼ cos x dx. Ð Substituting we get u2duþ9 ¼ 13 tan1 u3 þ C ¼ 1 1 sin x þ C. 3 tan 3 Ðe Let u ¼ x2 and du ¼ 2x dx. Then 1 x3 ln x2 dx ¼ Ð 1 e 2 2 2 1 x ln x 2x dx and by integration formula #90, e ð 1 e 2 1 2 ln x2 1 x ln x2 2x dx ¼ x2 2 1 2 4 1 2 2 4 e ln e 1 ¼ 4 2 2 1 1 0 2 4 4 e 1 1 ¼ 1 þ 4 8 2 4 3e 1 ¼ þ 20:5993 8 8 Ð 1=3 Ð 2 sin 4x cos5 4x dx ¼ sin1=3 4xðcos2 4xÞ 2 Ð cos 4x dx ¼ sin1=3 4x 1 sin2 4x cos 4x dx ¼ Ð 1=3 sin 4x 2 sin7=3 4x þ sin13=3 4x cos 4x dx ¼ 4=3 1 3 1 3 4x 2 10 sin10=3 4x þ 16 sin16=3 4x þ 4 4 sin 3 C ¼ 320 sin4=3 4x 20 16 sin2 4x þ 5 sin4 4x þ C. Ð cos x dx pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi. Let u ¼ 2 sin x and du ¼ 2 cos x dx or 164 sin2 x Ð du 1 du ¼ cos x dx. Substituting we get 12 pffiffiffiffiffiffiffiffiffi 2 x 42 u2 1 sin x 1 ¼ 12 sin u4 þC ¼ 12 sin1 2 sin sin þC ¼ 4 2 2 þC. Ð Ð 2 2 2 2 2 xex ¼ 12 ex x4 ex x2 þ ex þ C ¼ x2 þ 2 4 x2 ex x2 x2 1 þ C ¼ e2 ðx4 2x2 þ 2Þ þ C. ¼ 2 291 43. þ C. ffi Ð ln 49 pffiffiffiffiffiffiffiffiffiffiffiffiffi Ð ln 49 pffiffiffiffiffiffiffi 9þex ex=2 Rewrite 0 9 þ ex dx ¼ 2 0 2 dx. Let ex=2 1 x=2 x=2 u ¼ e ; du ¼ 2 e dx, and a ¼ 3 and this fits integration formula #32. Remember that ln 49 ¼ ln 72 ¼ 2 ln 7, and so, evaluating ex=2 when x ¼ ln 49 produces eðln 49Þ=2 ¼ eð2 ln 7Þ=2 ¼ eln 7 ¼ 7. ð ln 49 pffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ ex dx 0 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼2 9 þ ex =2: pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 þ 9 þ ex=2 ln 49 3 ln ex=2 0 pffiffiffiffiffiffiffiffiffiffiffi 3 þ 9 þ 7 pffiffiffiffiffiffiffiffiffiffiffi ¼ 2 9 þ 7 3 ln 7 pffiffiffiffiffiffiffiffiffiffiffi 3 þ 9 þ 1 pffiffiffiffiffiffiffiffiffiffiffi 9 þ 1 3 ln 1 ¼ 2½4 3 ln j1j hpffiffiffiffiffi pffiffiffiffiffii 2 10 3 ln 3 þ 10 pffiffiffiffiffi pffiffiffiffiffi ¼ 8 2 10 þ 6 ln 3 þ 10 12:5861 Using integration by parts, with pffiffiffiffiffiffiffiffiffiffiffiffiffi v ¼ 9 þ x2 u ¼ x2 du ¼ 2x dx x ffi dv ¼ pffiffiffiffiffiffiffi dx 9þx2 Then, we obtain ð3 3 x dx pffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ x2 0 ð 3 pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ x2 9 þ x2 30 2x 9 þ x2 dx 0 pffiffiffiffiffiffiffiffiffiffiffiffiffi 3 2 ¼ x2 9 þ x2 ð9 þ x2 Þ3=2 3 0 pffiffiffiffiffi 2 2 3=2 3=2 ¼ 9 18 ð18Þ 0 þ ð9Þ 3 3 pffiffiffi 2 pffiffiffi3 2 ¼ 27 2 3 2 þ ð27Þ 3 pffiffiffi 3 pffiffiffi ¼ 27 2 36 2 þ 18 pffiffiffi ¼ 18 9 2 5:2721 292 CHAPTER 27 TECHNIQUES OF INTEGRATION CHAPTER 27 TEST 1. 3. 5. Ð x dx ffi¼ Let u ¼ 9 ex , then du ¼ ex dx and peffiffiffiffiffiffiffi 9ex pffiffiffiffiffiffiffiffiffiffiffiffiffi Ð 1=2 1=2 x du ¼ 2u þ C ¼ 2 9 e þ C u Ð 5 dx 1 xþC x2 þ1 ¼ 5 tan 4x Use integration by parts with u ¼ x and dv ¼ e dx. Ð Then du ¼ dx and v ¼ 14 e4x and so xe4x dx ¼ uv Ð 1 4x e þC ¼ v du ¼ 14 xe4x 14 e4x dx ¼ 14 xe4x 16 1 4x e ð4x 1Þ þ C. 16 Ð 7. Using the disk method, we have V ¼ Ð 1 2x Ð 1 pffiffiffi x 2 1 2x 0 ð xe Þ dx ¼ 0 xe dx ¼ 4 e ð2x 1Þ0 ¼ 2 4 ðe þ 1Þ.
© Copyright 2026 Paperzz