Guided Notes Perpendicular Bisectors

Geometry
Guided Notes
Perpendicular Bisectors
Name: ______________________________
Date: _________________ Period: ______
Perpendicular Bisector of a Triangle – a segment that is _________________________ to a
___________ and divides the side into ___________ _______________ ______________. (It bisects the
side!)
A PERPENDICULAR BISECTOR ______________ OR ______________ START AT A VERTEX!
A triangles has ________________ perpendicular bisectors!
______________________________________________ - if a point is on the perpendicular bisector of a
segment, then it is equidistant from the endpoints of the segment.
_________________________________________ - if a point is equidistant from the endpoints of a
segment, then it lies on the perpendicular bisector of the segment.
C
A
M
B
D
Example: If ̅̅̅̅ is a bisector of ̅̅̅̅, then AC = BC.
Example: If AD = BD , then D lies on the
bisector of ̅̅̅̅.
So, how can we use the Perpendicular Bisector Theorem with triangles?
Geometry
Guided Notes
Perpendicular Bisectors
Example #1: Find the length of ̅̅̅̅.
Name: ______________________________
Date: _________________ Period: ______
Example #2: Find the length of ̅̅̅̅.
Example #3: ⃡
is the perpendicular bisector of ̅̅̅̅ . Find AD.
Example #4: ⃡
is the perpendicular bisector of ̅̅̅̅. Find AC.