Geometry Guided Notes Perpendicular Bisectors Name: ______________________________ Date: _________________ Period: ______ Perpendicular Bisector of a Triangle – a segment that is _________________________ to a ___________ and divides the side into ___________ _______________ ______________. (It bisects the side!) A PERPENDICULAR BISECTOR ______________ OR ______________ START AT A VERTEX! A triangles has ________________ perpendicular bisectors! ______________________________________________ - if a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. _________________________________________ - if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment. C A M B D Example: If ̅̅̅̅ is a bisector of ̅̅̅̅, then AC = BC. Example: If AD = BD , then D lies on the bisector of ̅̅̅̅. So, how can we use the Perpendicular Bisector Theorem with triangles? Geometry Guided Notes Perpendicular Bisectors Example #1: Find the length of ̅̅̅̅. Name: ______________________________ Date: _________________ Period: ______ Example #2: Find the length of ̅̅̅̅. Example #3: ⃡ is the perpendicular bisector of ̅̅̅̅ . Find AD. Example #4: ⃡ is the perpendicular bisector of ̅̅̅̅. Find AC.
© Copyright 2025 Paperzz