M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Calculation documentation & technical information >> In this chapter we have accumulated both general and specific technical information for Backer's tubular elements. Here you will find tables, formulas, diagrams and check-lists for the design work. Guide................................................................. 88 Thermology/science of electricity............. 90 Charts................................................................ 94 Base for calculation....................................... 98 Tables............................................................... 100 Design check list........................................... 104 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 87 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Guide Guide Operating temperature? Backer tubular elements can be used upBHV to 900°C. Backer AB AB Backer BHV Working temperature? Working temperature? Backer Backer tubular tubular elements can elements can be usedbe atused sheath at sheath temperatures up temperatures up to 900 to degrees C. 900 degrees C. Tube mantle material? Surface load? Bases for calculation/technical information 10:12 10:12 Copper, steel, stainless steel andBases for calculation/technical (W/cm² heated area.) information Incoloy are standard materials For recommended surface that fulfill the demands in most loads for different gases, applications. See table on page liquids and solid substances, 106. Special mantle materials see page 105. GUIDEGUIDE can be acquired. See corrosion guide on page 102. Surface load? load? SheathSheath material? material? Surface 2 (W/cm Copper,Copper, steel, stainless steel and heated surface.) steel, stainless steel and surface.) (W/cm2 heated IncoloyIncoloy are the are standard materials surface load load the standard materials For recommended For recommended surface which cover requirements in whichthe cover the requirements in for different gases, liquid and for different gases, liquid and most applications. See table most applications. Seeontable on solid substances, solid substances, page 10:30. sheath materials Thereafter: pageSpecial 10:30. Special sheath materials see page 10:29. see page 10:29. can be supplied. See corrosion guide be supplied. See corrosion • can Determine required power guide on pageon 10:26. page 10:26. • Determine type of element, standard or special Next steps: Next steps: • Determine required power power • Determine required • Determine type of type element, • Determine of element, standard or special standard or special To determine the power demand use To determine the required To determine the required one of the formulas: powerfollowing use one of the power use one of the following formulas: following formulas: Fluids: Gases: Gases:Gases: P qV ρ CP ∆ϑ P 88 = = = = = PPower = [W] Power [W] 3 flow [mflow /h] [m3/h] qGas = Gas V [kg/m3][kg/m3] ρDensity = Density Isobaric specific heat [J/kg x K] C P = Isobaric specific heat [J/kg x K] Increase in temperature [K] ∆ϑ = Increase in temperature [K] qV x ρ xqCV Pxxρ∆ϑ x CP x ∆ϑ _____________ = P_____________ =3600 3600 P = m = CP = ∆ϑ = t = Liquids: Liquids: Power P = [W] Power [W] Mass m = [kg] Mass [kg] Specific heat [J/kg x K] CP = Specific heat [J/kg x K] Increase in temperature [K] ∆ϑ = Increase in temperature [K] Heat up time [h] t = Heat up time [h] m x CP m x ∆ϑ x CP x ∆ϑ P = P__________ = __________ t x 3600t x 3600 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e For highest efficiency and quickest heating-up time, use heaters immersed into the medium or process. Gases in ducts, furnaces, or pipes: • Tubular elements without surface enlargement • Fin strip elements • Finned elements • Duct heaters Liquids in tanks, other vessles • Immersion heating elements with flange • Immersion heating elements with screw plug • Over the side immersion heaters Solid bodies: • Tool elements • Cast-in elements Where the conditions do not allow any of the above: • Outside flat-positioned element • Radiant heating element • Heat transfer system for instance with oil Criterias and considerations at dimensioning Provide adequate power Design for long life: • Low temperature • Low surface load • Correct material The design must prevent: • Corrosion • Risk of damage to material and surroundings Provide sufficient safety for: • Heating device (with suitable control device such as thermal cut-off ) • People (design according to safety precautions and standards in force) Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 89 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation/technical information 10:14 Therminology Backer BHV AB Thermology In nature, energy is found in many different forms that can be transformed between each other. One of these is mechanical work. Heat is another, which can come up from chemical energy at combustion, from mechanical work or from electrical energy. The transformation from electrical energy to heat is the objective of electroheat technology. In other segments of electro technology, when electrical energy is transformed into mechanical work, heat is normally produced in a greater or smaller extent. This heat dissipates to the surroundings and is mostly regarded as an energy loss. All forms of energy is normally measured in J or Ws, which is the unit for energy. Thermal parameters. Specific heat: cp. The cp for a body is the number of J per kilogram of the body that is required to raise its temperature 1K. ∆ϑ = temperature rise Q = m x cp x ∆ϑ Melting heat: The melting heat of a substance is the energy required to transform it from solid to liquid state. The unit for melting heat is J/kg. Vaporization heat: The vaporization heat of a liquid is the energy required to transform it from liquid to vapour state at constant pressure and temperature. The unit for vaporization heat is J/kg. Heat transfer Heat can be transferred mainly in three different ways: by convection, conduction or radiation. Convection most commonly applies where liquids are in circulation or gases are flowing, transferring heat from one place to another. The heat flow P (W) transferred by convection to a liquid or a gas from a heat source such as a radiator can be calculated by The heat transfer coefficient depends on wether the gas or the liquid is flowing freely, i.e. it flows as a result of the difference in temperature between different places in the medium, or as a result of applied mechanical force such as a pump or a fan. The flow of gases or liquids by force is found mainly in pipe or duct systems. The heat transfer coefficient can be calculated from empiric formulae. Flowing air that is heated by heating elements obtains this heat by forced convection. The sheath temperature of the element can be determined using the graphs 1 and 2 for this kind of heat transfer. For the elements closest to the duct walls, heat radiation from these elements should also be considered. This radiated heat can raise the wall temperature quite a lot and must always be taken into consideration when dimensioning the insulation etc. The inner elements only ”see” other elements with the same temperature and therefore the net radiation is zero. The power required to heat a flow of air can be calculated by ρ x cp x qv x (ϑ2 – ϑ1) P= 3600 where ρ = air density in kg/m3 cp = isobaric specific heat for air in J/kgK qv = air flow in m3/h ϑ1 = initial temperature of the air in °C ϑ2 = final temperature of the air in °C The values for ρ and qv are at same temperature. The value for cp is at mean temperature (ϑ1 + ϑ2) 2 As a general rule, ρ × cp can be put equal to 1200 to which must be added heat losses. This general rule applies at 20°C. At higher temperatures ρ × cp > 1200. 2004.05 P = α x A x (ϑ1–ϑ2) where α = heat transfer coefficient in W/m2K A = area of the heat dissipating surface in m2 ϑ1 = temperature of the heat emitting medium in °C ϑ2 = temperature of the heat absorbing medium in °C www.backer.se 90 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. therminology Bases for calculation/technical information 10:15 Backer BHV AB Heat is conducted in a solid medium by the vibration of molecules. These vibrations are transferred from molecule to molecule. The heat flow P transferred by conduction from one side of a hotplate to another can be calculated by λ x A x (ϑ1 – ϑ2) P = ______________ δ where λ = thermal conductivity in W/mK A = area of the hotplate in m2 δ = thickness of the hotplate in m ϑ1 and ϑ2 = temperature of the hotplate on each side in °C Heat radiation is a heat transfer process between bodies without the aid of heat transfer by a surrounding medium. According to Stefan Boltzmann´s law of radiation the following expression for heat transfer between two absolutely black parallell surfaces of equal size apply: Q12 = CS x A x (Θ14 – Θ24) where Cs = black body radiation constant: 5,77×10-8 W/m2K4 A = area of the surfaces absorbing or emitting the heat in m2 Θ1 and Θ2 = absolute temperatures of the bodies in K, i.e. temperatures in °C + 273°C Bodies that are not totally black emit and absorb less radiated energy than black bodies, at the same temperature. For such bodies with parallell surfaces of equal size and at short distance from each other, the Cs value must be replaced by CS C12 = 1 –1 1 + ε1 ε2 When a larger surface A2 completely surrounds a surface A1, e.g. a heating element in a room, Cs is replaced by CS C12 = 1 1 –1 ε1 + ε2 A1 A2 2004.05 For element in free air, heat is transferred both by free convection and by radiation. The element temperature can be determined from graph 3 for elements at different ambient temperatures. ε = absorption/emission coefficient. Calculation of required electrical power The amount of heat that must be transferred to a medium which is to be heated can be calculated by Q = m x cp x (ϑ1 – ϑ2) where m = weight of the medium in kg cp = specific heat for the medium in J/kgK ϑ1 = initial temperature in °C ϑ2 = final temperatue in °C If h = desired heating time in hours, the required power is P= m x cp x (ϑ2 – ϑ1) h x 3600 To this must be added 5–20 % to compensate for heat losses which depend on the heat insulation of the appliance. Electrical parameters U = voltage in V R = resistance in Ω I = current in A P = power in W Q = energy in J A heating appliance with a resistance R Ω at a current I A requires an amount of energy per s defined as the rated power of the appliance: U P = R x I2 = __ R 2 During the time t (in sec) the energy consumption of the appliance is Q=Pxt The resistance of a conductor wire is calculated by R=ρx 4xL π x D2 where L = wire length in m D = wire diameter in mm ρ = specific resistance, resistivity, for the wire in Ωmm2/m www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 91 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation/technical information 10:16 cont. therminology Backer BHV AB Designation Parameter Symbol Name P U I R Power Voltage Current Resistance W V A � Watt Volt Ampere Ohm In a 3-phase system U = Main voltage I = Main ampere UV = Phase voltage IV = Current in phase _ P = √3 UI = 3UVI = 3 UIV (cos ϕ of resistance = 1) 1 1 R1×R2 (2 elements) 1 1 __ ______ __ __ __ Rp = R1 + R2 ···+ Rn Rp = R1+R2 Rs=R1+R2+···Rn Connection in series Resistance Power Relationship Rs=n R1 Ps= U2 n R1 1 Ps Pp = n2 Connection of equal resistances Example of 2 resistances 52.9� U=230 V Connection in parallel Connection in series Connection in parallel 52.9 R1 Rp = = 26.45 Rs = 2 x 52.9 = 105.8 Rp= n 2 U2n 2302 x 2 2302 Pp = Pp= = 500 W Ps = = 500 W R1 52.9 2x52.9 1000 W resistance 250 W resistance Pr = n2Ps Pp = 22 x Ps = 4 x Ps Power at different voltages 2004.05 P1= U12 R1 U12 U22 P P2= R ; 1 = P2 U22 1 E.g. 400 V instead of 230 V U22 P2= U 2 x P1 1 P2= 4002 x P1 = 3 x P1 2302 www.backer.se 92 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. therminology Bases for calculation/technical information 10:17 Backer BHV AB Star and delta connections with 3-phase systems. Phases equally loaded Star connection Y 400/230 V UV2 PR = PS = PT = ––– R PY = PR + PS + PT U2 PRS = PST = PTR = ––– R PD = PRS + PST + PTR 3UV2 U2 PY = –––– = ––– R R __ PY = UVI = √3 UI(cos ϕ=1) 3U2 PD = ––––– R __ PD = 3UIV = √3 UI (cos ϕ = 1) PD = 3 x PY 1 IY = ––– PY 3UV 1 P (cos ϕ = 1) __ I = ––––– √3 U 1 IV = –––– PD 3U IY (A) = 1,52 x PY (kW) I (A) = 1,52 P (kW) IV (A) = 0,88 x PD (kW) Effekt 100 133 167 200 250 333 350 500 667 750 1000 1250 1330 1500 1667 2000 2500 3000 3333 4000 4500 5000 2004.05 Delta connection D 400 V 230 V Motstånd Ω 400 V 500 V 529,0 397,7 316,8 264,5 211,6 158,9 151,1 105,8 79,3 70,5 52,9 42,3 39,8 35,3 31,7 26,5 21,2 17,6 15,9 13,2 11,8 10,6 1600,0 1203,0 958,1 800,0 640,0 480,5 457,1 320,0 239,9 213,3 160,0 128,0 120,3 106,7 96,0 80,0 64,0 53,3 48,0 40,0 35,6 32,0 2500,0 1879,7 1497,0 1250,0 1000,0 750,8 714,3 500,0 374,8 333,3 250,0 200,0 187,5 166,7 150,0 125,0 100,0 83,3 75,0 62,5 55,6 50,0 Power with different connections of two or three identical resistances. The power for one resistance at 230 equals 1. The figure in brackets is the corresponding effect connected to 400 V. Important! Check to ensure that none of the resistances is overloaded when www.backer.se making these different connections. Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 93 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Charts Bases for calculation/technical information 10:18 Backer BHV AB AirAir Heating heating Example: Calculate the surface temperature of the element for air input at 100ºC and air output at 300°C. The rate of air flow is 10 m/s. The surface load of the tubular element is 2.6 W/cm2. 300 + 100 = 200°C. The mean temperature will be 2 From graph no. 1 we obtain = 129 W/m2 K for a mean temperature of 200°C and a rate of air flow of 10 m/s. Then turn to the axis for surface load on graph no. 2. The surface load was 2.6 W/cm2. Trace the graph upwards to α = 129 W/m2 K. Then go horizontally towards the graph for the increase in air temperature 200°C. Now go to the graph for a mean air temperature of 200°C and then horizontally to the axis for element temperature. From this you will be able to read the surface temperature of the element, 420°C 2004.05 Heat transfer coefficient α as function of air speed at different mean air temperatures 94 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e www.backer.se M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. charts Bases for calculation/technical information 10:19 Backer BHV AB 2004.05 Temperature of element at different surface loads, heat transfer coefficient and temperatures of input and output air. Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e www.backer.se 95 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. charts Bases for calculation/technical information 10:20 Backer BHV AB 2004.05 Surface temperature of element at different ambient temperatures and with different surface loads in free air ε = 0.75 for Element type 085. www.backer.se 96 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Beräkningsunderlag, teknisk information 10:21 Backer BHV AB cont. charts 2004.05 Loss of power from oven wall in an ambient temperature of 20°C. www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 97 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation/technical information 10:22 Backer BHV AB cont. base for calculation Heating water in a tank Heating water in a tank An open tank filled with water is to be heated to a temperature of 70°C in one hour and after that be kept at this temperature. The tank is made of 5 mm stainless steel and the dimensions are (L x B x H) 2 m x 1 m x 1 m. The tank is insulated with 50 mm mineral wool. The tank is not fitted with a lid. The ambient temperature is 20°C and the relative humidity is 40 %. A. Power required for heating Density of steel: ρ = 7840 kg/m3 Weight of tank: (3 · 2 · 1+2 · 1 · 1) · 5 · 10–3 · 7840 = 314 kg Weight of water: 2 · 103 kg Specific heat of steel: cP, st = 0.46 kJ/kg K Specific heat of water: cP, W = 4.18 kJ/kg K (314 · 0.46 + 2 · 103 · 4.18) · (70 – 20) PA = ––––––––––––––––––––––––––––––– = 118.1 kW 3600 B. Heat losses from vertical wall of tank A = 2 (2 · 1 + 1 · 1) = 6 m2 PB = 1 kW (see diagram page 10:28) C. Heat loss from surface of water A = 1 · 2 = 2 m2 F = 4.5 kW/m2 Pc = 2 · 4.5 = 9 kW 2004.05 During heating one should allow for a loss of 2/3 of the losses of B and C above, i.e. 2/3 x 10 = 6.7 kW. 98 The total power required, inclusive of an additional 10 % as a safety margin, will be: P = 1.1 · (118.1 + 6.7) = 137.3 = 140 kW www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. base for calculation Bases for calculation/technical information 10:23 Backer BHV AB Pressure Pascal, Pa 1 Pa = 1 N/m Pa kp/cm 1 98.07 · 103 6.89 · 103 133 9.807 10.2 · 10 1 70.3 · 103 1.36 · 10–3 1 · 10–2 0.145 · 10 14.22 1 19.3 · 10–3 1.43 · 10–3 W, Nm/s kpm/s 1 9.81 1.16 735.5 1.356 0.102 1 0.119 75 0.138 mmHg lbf/in2 –6 mmvp 7.5 · 10 735.6 51.7 1 74.3 · 10–3 1.0120 · 10 1.10 697.3 13.46 1 kcal/h hk ft · ibf/s 0.86 8.43 1 632 1.166 1.36 · 10–3 13.,3 · 10–3 1.58 · 10–3 1 1.84 · 10–3 0.738 7.233 0.858 542.5 1 cal ft · Ibf 3 –3 Power Watt, W Energy Joule, J J, Ws, Nm Wh 1 3.6 · 10–3 4.19 1.356 0.278 · 10 1 1.16 · 10–3 0.377 · 10–3 0.239 860 1 0.324 0.738 2.66 · 10–3 3.088 1 Magnitude Kelvin scale K Centigrade scale C Fahrenheit scale F Related temperatures 0 255.37 273.15 373.15 –273.15 –17.78 0 100 –459.67 0 32 212 Related temperaturedifferences 1 0.55556 =5/9 1 0.5556 =5/9 1.8 1 –3 Temperature Kelvin, K The electrochemical chain of potential The electrochemical chain of potential showa in the table gives the electrochemical potentials of the principle metals with their relevant chemical symbols and also according to the magnitude of their normal potentials which arise when each of the metals is immersed in a normal aqueous solution (1n) of its salt. The valency of the metai ions of each solution is indicated by a corresponding number of dots after the chemical symbol. the metals listed above hydrogen (H) in the table are termed electropositive, those listed below H are termed electronegative. If two metals are placed together in a galvanic element the further the two metals are from each other in the chain of potential the greater will be their electromotive force. Electromotive forces can be calculated using the formula e.g. Cu/Ni gives + 0.34 – (–0.23) = 0.57 V. Conversion ºC ↔ ºF tC = 5/9 (tF–32) tF = 9/5 tC+32 Metals Process that detemines potential (oxidation) Normal potential Megnesium Aluminium Beryllium Manganese Zinc Chrome Iron Cadmium Nickel Tin Lead Hydrogen Copper Silver Mercury Gold Mg → Mg·· Al → Al··· Be → Be·· Mn → Mn·· Zn → Zn·· Cr → Cr·· Fe → Fe·· Cd → Cd·· Ni → Ni·· Sn → Sn·· Pb → Pb·· H → H· Cu → Cu·· Ag → Ag· Hg2 → 2Hg·· Au → Au· –2.34 –1.70 –1.69 –1.10 –0.76 –0.60 –0.44 –0.44 –0.23 –0.14 –0.13 0 +0.34 +0.80 +0.80 +1.5 04.05 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 99 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Tables Bases for calculation/technical information 10:24 Backer BHV AB 2004.05 Physical properties 100 Temperature ºC Density kg/m3 Specific heat kJ/kg K Thermal conductivity W/m K Gases Ammonia Carbon dioxide Carbon monoxide Nitrogen Air Oxygen Sulphur dioxide Hydrogen 0/100 0/200 0/200 0/200 0/200 0/200 0/200 0/200 0.771 1.951 1.234 1.234 1.276 1.410 2.888 0.089 2.056/2.219 0.816/1.001 1.038/1.055 1.038/1.047 1.005/1.022 0.909/0.963 0.586/0.712 14.05/14.41 0.022/0.033 0.015/0.030 0.023/0.037 0.024/0.037 0.024/0.039 0.024/0.039 0.0086/0.019 0.171/0.249 Liquids Ethanol Fuel oil class 1 Paraffin Glycerine Glycol Hydraulic oil Methanol Olive oil Paraffin Lubricating oil Coal tar Turpentine Trichlorethylene Water 18 15 20 20 20 XX 20 20 20 30 15–90 18 20 18 791 860 800 1260 1120 XX 790 920 710 900–930 1100–1260 840 1480 999 2.39 2.36 0.50 2.36 2.4 XX 2.50 1.65 0.71 2.09 1.42 1.75 0.96 4.18 0.17 0.285 0.145 0.285 Metals Babits Lead Bronze Cast iron Incoloy 800 Copper Brass Stainless steel Silumin Steel 20 20 20 20 20 20 20 20 20 20 10000 11340 8670 7000–7800 8030 8950 8100–8600 7840 2700 7850 0.16 0.13 0.34 0.54 0.50 0.42 0.38 0.46 0.90 0.50 Other solid substances ABS Acryllic Asbetos Asphalt Bakelite Cement/concrete Beeswax Oak (air dried) Fat Glass Graphite (pure) Pine (air dried) Gravel (dry) Rubber (pure) Resin Ice Marble Nylon Paper Paraffin wax Polyethylene Polyimide Polycarbonate Polyprobylene Polystyrene Polyester Porcelain Sand (dry) Steatit Brick 20 20 0 20 20 20 20 20 20 20 20 20 20 20 20 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 1100–1220 1100–1180 470–700 1100–1500 1400 1800–2500 965 690–1030 920–940 2400–2900 1800–2350 350–600 1800–2100 900–1000 1030–1340 920 2500–2800 1070–1150 700–1200 900 910–960 1440 1180-1250 880-910 1060 1060–1470 2150–2360 1410–1600 2590 1400–2000 1.46 1.42 0.81 2.09 1.60 0.88 65 2.38 2.09 0.71–0.83 0.75–1.25 2.72 3.34 1,42–2,1 0.19 0.14 0.15–0.23 0.7 0.23 0.8–1.4 1.92 0.83 1.26–2.09 1.88 2.88 2.26 1.31–1.30 1.26 1.93 1.34 0.84–1.46 1.09 0.80 0.84 0.83–1.09 2.25 2.1–3.5 0.24 0.19 (0.13) 0.28 (0.24) 0.33 0.36–0.98 0.20 0.25 0.05–0.14 0.57–0.72 1.05 (1.52) 0.32 2.94 0.41 www.backer.se Melting point °C –115 –18 0.21 0.17 0.242 0.13–0.14 0.15 0.15 0.60 10 34.6 26.0 55–64 14.0 388.0 110–150 15.0 160.0 65.8 327 1000 1200 1357 1083 925 1440 570 1516 120 0,1-0,46 0.9 1.46 0.1–0.46 0.34 0.23 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 3000 125 70200 0 54 1550 1580–2200 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. tables Bases for calculation/technical information 10:25 Backer BHV AB General physical constants for elements in solid form m bo l p d ro u Sy G Pe rio At o no mic M = Atomic weight; ρ = Density at 18ºC, kg/m3; λ = Thermal conductivity at 18ºC, W/mK cp = Specific heat at 20–100°C, J/kgK; ϑSM = Melting point in ºC; ϑKP = Boiling point at 1 bar, ºC QKP = Vaporization heat at ϑKP kJ/kg; QSM = Melting point, kJ/kg; ρe = Resistivity at 20ºC, Ωm ρ – ρO e0 = Volta-effect at 0°C, µV; e100 = Volta-effect at 100°C, µV β = –––––––– = Temperature coefficient of the resistivity ϑ (e – e ) µV eϑ = Volta-effect at ϑ°C = e0 + ––––– (ϑ – ϑO)ρO 100 0 100 Resistivity Volta-effect No Name cP M Qkp ϑsm Qsm ϑkp λ ρ e0 e100 108 e 103β 1 2 Aluminium ................. Antimony ................... 13 51 3 5 3 15 26.97 121.76 2700 6680 Al Sb 218 19 890 210 658 630.5 388 164 2500 1635 11500 1250 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Arsenic ....................... Barium ........................ Beryllium.................... Lead ............................ Boron.......................... Cerium ....................... Cesium ....................... Phosphor, yellow ...... Gallium ....................... Germanium ............... Gold ...................... .... Hafnium...................... Indium......................... Irdium ......................... Iodine .......................... Iron (amorph) ........... Cadmium ................... 33 56 4 82 5 58 55 15 31 32 79 72 49 77 53 26 48 4 6 2 6 2 6 6 3 4 4 6 6 5 6 5 4 5 15 2 2 14 13 3 1 15 13 13 11 4 13 9 17 8 12 74.91 137.36 9.01 207.21 10.82 140.13 132.91 30.98 69.72 72.60 197.2 178.6 114.76 193.1 126.92 55.85 112.41 5720 3780 1840 11340 2500 6800 1873 1830 5903 5460 19300 13300 7250 22420 4950 7860 8640 As Ba Be Pb B Ce Cs P Ga Ge Au Hf In Ir J Fe Cd – – 168 35 – – – – 128 – 300 – – 59 – 84 100 325 300 1800 125 1300 170 210 790 330 290 130 – 210 135 220 460 330 –500 –710 1280 327 2300 775 28.5 44 30 958 1063 2230 155 2454 113.5 1530 320.9 – – 1400 24.8 – – 16.3 22 79 – 84 – – 120 120 270 54 615 1640 3000 1750 2550 1400 690 280.5 2064 – 2960 >3200 1450 >4800 184.35 2500 765 1700 1350 24800 920 – – 500 1650 540 – 2280 – – 3900 100 6400 1000 20 21 22 23 24 20 19 14 27 6 6 6 29 24 80 57 3 12 25 42 11 28 41 76 46 78 75 45 37 44 34 47 38 47 48 49 50 Calcium ...................... Potassium................... Cilikon ........................ Cobalt......................... Carbon, diamond ..... Carbon, graphite ...... Carbon, amorphous Copper ....................... Chrome ...................... Mercury ..................... Lanthanum ................. Lithium ....................... Magnesium................. Manganese ................. Molybdenum ............. Sodium ....................... Nickel ......................... Niobium ..................... Osmium ..................... Palladium .................... Platinum ..................... Renium ....................... Rhodium .................... Rubidium .................... Ruthenium ................. Selenium (amorph) .. Silver ........................... Strontium ................... Sulphur, amorph ....... Sulphur, monocloride Sulphur, rhombic ...... Thallium ..................... Tantalum .................... Tellurium .................... Tin ............................... 81 73 52 50 4 4 3 4 2 2 2 4 4 6 6 2 3 4 5 3 4 5 6 5 6 6 5 5 5 4 5 5 3 3 3 6 5 5 5 2 1 14 9 14 14 14 11 6 12 3 1 2 7 6 1 10 5 8 10 10 7 9 1 8 16 11 2 16 16 16 13 5 16 14 40.08 39.096 28.06 58.94 12.01 12.01 12.01 63.54 52.01 200.61 138.92 6.94 24.32 54.93 95.95 23.00 58.69 92.91 190.2 106.7 195.23 186.31 102.91 85.48 101.7 78.96 107.88 87.63 32.07 32.07 32.07 204.39 180.88 127.61 118.70 1540 870 2330 8800 3510 2220 1900 8918 7100 13550 6150 534 1734 7200 10200 970 8900 8550 22480 12160 21450 20530 12100 1520 12200 4800 10500 2500 – 1960 2070 11850 16600 6250 7300 Ca K Si Co C C C Cu Cr Hg La Li Mg Mn Mo Na Ni Nb Os Pd Pt Re Rh Rb Ru Se Ag Sr S S S Tl Ta Te Sn 600 134 – 70 165 160 2 395 43 10.3 – 70 171 – 138 140 88 – – 67 71 – 89 – – – 420 – 0.19 – 0.29 51 55 – 65 630 750 750 420 490 690 840 385 440 140 170 3400 1000 500 260 1250 450 270 130 250 130 135 240 350 250 375 230 670 – 735 720 125 140 210 210 850 63.5 1420 1492 3500 3500 3500 1083 1920 38.9 885 179 650 1260 2620 97.5 1452 1950 2500 1555 1773 3170 1966 38.5 2500 217.4 960.5 577 –120 119.0 112.8 303 3027 452 231.9 328 60 – 260 17000 17000 17000 205 315 11.5 – 140 200 260 290 115 300 – 145 160 100 – 215 25.5 – 64.5 105 – – 46 39 17 – 30 59 1487 776 2600 3185 4200 4200 4200 2595 2327 357 1800 1372 1097 2152 4800 877 3075 – 5300 2200 4300 – >2500 713 >2700 690 2170 1360 – – 444.6 1457 5300 1300 2430 4200 2050 14000 6500 – 50000 – 4650 6150 287 – 21300 5650 4200 7100 4200 6200 – – 3950 2500 – – 8400 – 1100 2150 – – – 290 800 – 670 2600 51 52 53 54 55 Titanium ..................... Thorium ..................... Uranium ..................... Vanadium ................... Bismuth ...................... 22 90 92 23 83 4 7 7 4 6 4 4 6 5 15 47.90 232.12 238.07 50.95 209.00 4500 11200 18700 5866 9800 Ti Th U V Bi – – – – 10 460 125 125 500 120 1727 1840 1690 1715 271.3 – – – – 59 3000 >3000 – 3000 1560 – – – – 840 55 Wolfram ..................... 57 Zinc ............................. 74 30 6 4 6 12 183.92 65.38 19300 7140 W Zn 170 113 135 390 3370 419.5 250 112 5900 907 4800 1800 58 Zirconium .................. 40 5 4 91.22 6400 Zr – 275 1857 – 2900 – 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 16 –1.6 +21 +47 – – – –1.2 – – – – – +301.3 +1.7 – +1.2 +1.2 – +15.0 ±0.0 +3.2 –9.4 –12.5 – –18.6 – – – +1.7 – –3.2 – +13.2 –1.3 – +4.7 –5.4 –17.8 – – –6.7 -4.4 – +1.0 –1.5 – – +1.3 – – – – +0.5 –5.0 +330 –0.7 –1.5 – – – – –110 –54 +0.4 +0.4 +2.2 – –2.1 +25 +53 – – – –1.4 – – – – – +373.6 +2.2 – +1.2 0.9 – +10.3 +2.0 +7.2 –12.5 –16.5 – –26.6 – – – +2.2 – –4.9 – +21.8 –1.5 – +8.0 –4.4 –21.6 – – –9.5 -7.3 – +0.8 –7.7 – – +2.0 – – – – ±0 –6.7 +330 –1.1 –1.5 – – – – –95 –59 +3.6 +0.8 +3.6 – 2.72 39.8 4 5.4 37.6 57.5 6.3 20.7 – 74.0 20.8 – 43.9 – 2.21 32 9.1 5.3 – 9.9 7.25 3.89 – 0.42 4.2 – – 4.4 – 4.0 – 4.0 – 4.7 4.1 – 6.6 4.2 4.5 6.9 – 6.8 – – –3500 1.7241 2.8 95.4 59.8 9.1 4.3 5.0 4.72 4.6 7.35 – 9.45 10.75 10.5 – 5.0 12.6 14.5 – 1.58 32.4 – – – 17.5 14.7 200000 11.3 3.3 5.8 – 6.6 – – -0.5 3.93 – 0.99 – 4.4 4.1 – 4.7 5.5 6.7 – 4 3.8 3.92 – 4.4 5.2 – – 4.1 3.83 – – – 5.2 3.5 – 4.6 90.2 40.1 – – 118 – 2.1 – – 4.5 5.32 5.95 4.8 4.2 45 – 2004.05 Reproduced from Ingenjörshandboken (The Engineer’s handbook). The Basic Technical Sciences, Nordisk Rotogravyrs Förlag/Norstedts 1965. Reproduced with necessary permission. www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 101 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. tables Bases for calculation/technical information 10:26 Backer BHV AB Corrosion guide Corrosion Guide The effects of corrosion have been graded in the table as follows: 0: Rate of corrosion <0.1 mm per year Material used is resistant to corrosion. 1: Rate of corrosion 0.1–1.0 mm per year. Material not resistant to corrosion but usable in certain cases. 2: Rate of corrosion >1.0 mm per year. Excessive corrosion. Material not usable. Substance 2004.05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 102 Conc.% Acetone ..................................................... Aluminium chloride................................. Aluminium sulphate neutr. low Fe ....... Ammonium hydrate solution ................ Ammonium bicarbonate ........................ Ammonium chloride ............................... Ammonium nitrate .................................. Ammonium persulphate ........................ Ammonium sulphate ............................... Benzene ..................................................... Blood (meat juices) ................................. Lead acetate .............................................. Borax .......................................................... Boric acid .................................................. Citric acid .................................................. Ether ........................................................... Ethyl alcohol ............................................. Carbolic acid............................................. Formaldehyde ........................................... Phosphoric acid........................................ Photographic developer ......................... Fruit juices ................................................. Furfurol, vapour ....................................... Gallic acid .................................................. Tannic acid ................................................. Glycerine ................................................... Iron chloride (111) .................................. Iron nitrate (111) ..................................... Iron sulphate (11, 111) ........................... Coffee......................................................... Calcium chloride...................................... Potassium chromate ............................... Potassium cyanide ................................... Potassium chloride .................................. Potassium nitrate ..................................... Potassium permanganate ....................... Potassium sulphate .................................. Chlorine (hydrous) .................................. Chloroform ............................................... 5 10 5 saturated 10 all concentrations 20 saturated saturated 5 all concentrations all concentrations all concentrations <35, 50 saturated 50 all concentrations 5 5 5 5 25 saturated saturated 5 5 P: Risk for pitting and crevice corrosion. S: Risk for stress corrosion. Please note that the figures in the corrosion table can change considerably in if concentrations and temperatures are increased. The mixing of different substances can result in the resistance to corrosion being reduced. This applies above all to solutions ccntaining chlorides. Temp.ºC 20-K 50 20-K 20-K 20-K 20-K 20-K 20 20-K 20-K 20 20-K 20-K 20-K 20-K 20 20 20-K 20 80, K 20 20-K vapour 20-K 20-K 20 20 20 20-K K 20-K 20-K 20 20-K 20-K 20-K 20-K 20 20-K SS2337 SS2348 0 2 0 2 P S 0 2 0 1 0 2 0 P P 0 1 www.backer.se 0 P S 2 0 0 0 0 0 0 P S 2 0 0 0 P S 0 0 0 P 0 0 0 0 P 2 0 0 0 P 2 P 1 0 0 0 0 0 0 0 P S 2 0 0 0 P S 0 0 0 P 0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P S 2 0 0 0 P S 0 0 0 P 0 0 0 0 P 2 P S 0 0 P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 800 0 0 0 0 0 P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 P S 2 0 0 0 P S 0 0 0 P 0 0 0 0 P 1 P S 0 0 P S 0 1 0 0 0 0 0 0 0 0 0 0 0 SS2562 0 P S Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e P 0 P S 0 P S P 0 0 P S M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e cont. tables Bases for calculation/technical information 10:27 Backer BHV AB Substance 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 Carbone tetrachloride ........................... Copper cyanide........................................ Copper nitrate ......................................... Copper sulphate ...................................... Chromic acid ............................................ Magnesium chloride ................................ Magnesium sulphate ................................ Manganese chloride ................................ Lactic acid .................................................. Formic acid ............................................... Sodium bisulphate ................................... Sodium bisulphate ................................... Sodium citrate .......................................... Sodium hydroxide.................................... Sodium carbonate ................................... Sodium nitrate .......................................... Sodium nitrite........................................... Sodium peroxide...................................... Sodium sulphate ....................................... Sodium sulphite........................................ Sodium thiosulphate ............................... In presence of Cl ..................................... Nickel chloride ......................................... Nickel sulphate......................................... Oxalic acid ................................................ Pyrogallic acid ........................................... Nitric acid ................................................. Hydrochloric acid .................................... Silvernitrate ............................................... Butyric acid ............................................... Stearic acid ................................................ Sulphuric acid ........................................... ..................................................................... ..................................................................... Stanic chloride .......................................... Trichlorethylene ....................................... Tartaric acid .............................................. Hydrogen peroxide ................................. Zinc chloride ............................................ Zinc sulphate ............................................ Acetic acid ................................................. Malic acid ................................................... Conc.% Temp.ºC SS2337 SS2348 SS2562 I 800 100 saturated 10 10 10 2.5 saturated 10 5 5 10 10 saturated 20 25 saturated saturated 10 saturated 5 25 25 saturated saturated 5 all concentrations <40 1 5 20-K 20-K 20-K 20-K 20-K 20 20-K 20-K 20-K 20 20–50 20-K 20 20-K 20-K 20-K 20-K 20-K 20-K 20-K 20-K 20-K 20 20-K 20-K 20-K 20-K 60 20-K 20-K 130 20–100 20–100 20–70 20 20-K 20-K 20 20-K 20-K 20-K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 60 5 10 30 5–20 saturated 80 10 0 2 0 0 0 P S 0 0 0 0 0 1 2 0 0 0 2 0 0 1 2 2 2 P 2 0 0 0 0 0 0 P 1 2 0 1 0 0 0 0 0 P S 1 2 2 0 0 0 0 1 0 0 0 P S 0 0 0 1 2 2 P 0 P 1 0 0 2 0 0 0 1 0 0 0 0 0 0 2 0 0 P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P S 0 P 0 0 P P Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 004.05 0 0 0 P 1 0 0 0 2 1 0 0 0 P S 0 0 P 1 1 1 P 1 0 0 2 0 0 P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P S 0 P 0 0 P 0 0 2 0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0 P S 0 P 0 0 0 2 0 0 P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P S 0 P 0 0 P P 0 0 P S 0 0 0 103 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Design check list Read more on page: · Calculate the power required · Suitable surface load................................. 105 · Decide increase in heat dissipation surface · Choice of type of element....................... 106 · Choice of mantle material....................... 106 · Choice of cold parts.................................. 107 · Calculation of total length of element.107 · Bending........................................................ 108 · Choice of fixing devices and connections .................................................. 12 104 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation, technical information 10:29 Backer BHV AB Maximum recommended surface loads when heating Maximum recommended surface loads when different substances and media heating different substances and media Surface effect in W/cm2 Substance 2004.05 Still air ................................................................ Still air ................................................................ Still air 3 m/s ..................................................... Still air 6 m/s ..................................................... Still air 10 m/s................................................... Still air 10 m/s................................................... Still air 10 m/s................................................... Alkaline solutions ............................................ Thin oil ............................................................... Thin oil solutions ............................................. Thin oil solutions ............................................. Vegetable oil...................................................... Heat transfer oil .............................................. Heat transfer oil .............................................. Tar ....................................................................... Still water .......................................................... Flowing water ................................................... Metallic surfaces for contact heating ...400 Metallic surfaces for contact heating ...600 Solid castings in aluminium ............................ Temp °C Steel Stainless steel Copper 50 450 200 260 200 300 450 100 50 200 350 200 200 300 150 100 80 2 1.7 6 4 5 7 10 8 4 6 6 4 2 4 5 2 1 10 15 10 15 300 1.5 2.5 3.5 1.5 5 12 12 www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 105 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation, technical information 10:30 Backer BHV AB The following types of tubular elements are produced The following types of tubular elements are produced We can supply these different types of elements in the following sheath materials: Swedish standard Material Steel ........................................ Stainless steel ...................... Stainless steel ...................... Acid proof steel ................... Copper................................... Nickel/bronze ....................... SMO254................................. Incoloy 800 ........................... Incoloy 825 ........................... R323 ....................................... Titan ....................................... SS2333 SS2337 SS2348 SS5015 SS5667 SS2378 AISI WERK-stoff Max. temp* 064 085 140 – 304 321 316L C12200 C70600 UNS S31254 – – (302B) – – 1.4301 1.4541 1.4404 – – – 1.4876 2.4858 1.4828S – 400 750 750 700 250 275 400 800 450 900 X X X X X X X X X X X X X X X X 2004.05 * Max. temp refers to the sheath temperature of the element. 106 www.backer.se Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e X X X X X X X M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation, technical information 10:31 Standard cold part - and max/min element lengths Backer BHV AB other cold part lengths on request Standard inactive lengths and max/min. element lengths Other inactive lengths can be made if required All tubular elements must be produced with an inactive part in both ends. Tubular ElementCold part length in mmElement length Type 30 35 45 60 70 85 100110130145175190200205235245275325375425475 Min. Max. • 3400 Element length 064 TubularTerminal element pin Ø 2,5 mm • • 45 60 70 064 085 TerminalTerminal pin of 2.5pin mmØdiam • •• 2,5 mm Qual. SSQual. 1914 SS 1914 •• •• • • • • • •• •• •• • • 085 TerminalAlt.pinMof4 2.5 mm diam • • • Qual. SSQual. 1914 SS 1914 •• •• • • • • • • •• • • • •• Type Qual. SS 1914 30 35 • Alt. M 085-2 4 • • Qual. SSTerminal 1914 pin Ø 1,5 mm • 085-2 Qual. SS 1914 Terminal pin of 1.5 mm diam • • Qual. SS140-1 1914 Terminal pin M 6 • • • • • • • • • • • • • 140-2 Terminal pin Ø 2,5 mm • TerminalKval. pin of mm diam • • SS2,5 1914 Qual. SS 1914 • • • • 140-3 140-3 2,5 mm TerminalTerminal pin of 2,5pin mmØdiam • •• Qual. SSQual. 1914 SS 1914 •• •• • • • 250 85 100 110 130 145 175 190 200 205 235 245 275 325 375 425 475 • 140-1 Qual. SS 1914 Terminal pin M 6 Qual. SS 1914 • Inactive • • • length in mm • • • • • • • • • • • Max. • • • • • • •• •• • • 6400 155 210 4500 • • • • • • • •• 210 • • 6400 170 6400 • • • • • • • 350 170 350 • • • • 160 • 6400 3600 • • Min. 3900 6400 • 160 6400 140-2 • • • • • • • • • • • • •• • • • • • • •• •• • • • • • • • • • • • • • • • • •• 160 4200 • • • 160 4200 •• 220 • • 4200 220 4200 Through other companies within the Backer group we can offer a wide range of other dimensions. Please contacts us for more info! Surface load Among other factors the functional life of an element depends on the surface load of the element.You will find recommendations for surface loads for different kind of heating onpage page10:29. 105. heating purposes puposes on Surface load is calculated as follows: P Y = ––––––– LXM P L = ––––––– MXY Y = Surface load in W/cm2 L = Active length of the element in cm P = Output in W M = Element type 064: 2.01 cm2/cm Element type 085: 2.67 cm2/cm Element type 140: 4.40 cm2/cm Total length of element The total length of the element is obtained by adding L to the total length of the inactive section. Ohms/metre In certain cases ohms/metre can be a limiting factor. The following limits apply: Min. 66�/mL Ω/ mL Max. Ω/ mL Type of element 064 min. max.61300�/mL 085 3 1300 085-2 14 700 140-1 3 1300 140-2 8 1200 140-3 8 1000 P = Power in W U = Voltage in V L = Active length of element in m U2 Ohms/metre = ––––––– PxL Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e 107 M o r e t e c h n i c a l d e t a i l s a t w w w. b a c k e r. s e Bases for calculation, technical information 10:32 Backer BHV AB Bending instructions Bending instructions Inactive length Smallest bending radius In cold state Backer’s elements can easily be bent to a small radius. This simplifies the work of design. The requirement for space in different electrical applinaces can be reduced Inactive length Min. 10 Min. 10 Smallest bending radius to a minimum. Terminal pins must always be least 10 mm from the extremity of a bend (see diagram). Smallest bending radius of different sheath materials. Type of tubular element Copper C12200 Steel Grade D Stainless steel 304 ENAISI 1.4301 Stainless steel AISI 316L EN 1.4404 Stainless steel 323 EN R1.4828 Stainless steel Incoloy 800 Stainless steel Incoloy 825 Stainless steel UNS S31254 S/Titanium 20 064 085 140 10 12,5 25 – 12,5 25 10 12,5 25 10 12,5 25 10 11 25 11,5 15 30 17,5 18 30 12,5 15 30 – 2004.05 When figuring an element drawing, c-c measures apply. 108 Te l . + 4 6 4 5 1 6 6 1 0 0 · Fa x . + 4 6 4 5 1 6 6 1 9 5 · i n f o @ b a c k e r. s e www.backer.se 35
© Copyright 2026 Paperzz