250 Chapter 3 Applications of Differentiation 108. First observe that sin x cos x 1 1 cos x sin x cos x sin x tan x cot x sec x csc x sin 2 x cos 2 x sin x cos x sin x cos x 1 sin x cos x § sin x cos x 1 · ¨ ¸ sin x cos x © sin x cos x 1 ¹ sin x cos x 1 sin x cos xsin x cos x 1 2 2 sin x cos x sin x cos xsin x cos x 1 2 sin x cos x 1 Let t f t sin x cos x 1. The expression inside the absolute value sign is sin x cos x sin x 2 sin x cos x 1 cos x 1 1 t 1 2 sin x cos x 1 2 t S· § Because sin ¨ x ¸ 4¹ © sin x cos S 4 cos x sin S 4 2 sin x cos x, 2 sin x cos x ª¬ 2, 2 º¼ and sin x cos x 1 ª¬1 t f ct f 1 2 1 1 t t2 2 t2 2 t2 2 1 4 2§ ¨ 2 1 ¨© 2 º¼. 2, 1 2 t t 2 1 2 1· ¸ 2 1 ¸¹ 2 2 1 4 2 2 4 1 2 2 For t ! 0, f is decreasing and f t ! f 1 For t 0, f is increasing on 2 2 2 1, 2 2 2 3 2 23 2 2 , then decreasing on 2, 0 . So f t f 2 1 2 2. Finally, f t t 2 2 1. (You can verify this easily with a graphing utility.) Section 3.4 Concavity and the Second Derivative Test 1. The graph of f is increasing and concave upwards: f c ! 0, f cc ! 0 3. The graph of f is decreasing and concave downward: f c 0, f cc 0 2. The graph of f is increasing and concave downwards: f c ! 0, f cc 0 4. The graph of f is decreasing and concave upward: f c 0, f cc ! 0 © 2010 Brooks/Cole, Cengage Learning Section 3.4 5. Concavity and the Second Derivative Test g x 3x 2 x3 2x 1 g c x 6 x 3x 2 2 g cc x 6 6x y x2 x 2 yc ycc 7. Concave upward: f, f 6. y x3 3x 2 2 yc 3 x 2 6 x ycc 6 x 6 251 Concave upward: f, 1 Concave downward: 1, f 8. Concave upward: f, 1 Concave downward: 1, f h x x5 5 x 2 hc x 5x4 5 hcc x 20 x3 Concave upward: 0, f Concave downward: f, 0 9. f x x3 6 x 2 9 x 1 f c x 3x 2 12 x 9 f cc x 6 x 12 6 x 2 Concave upward: f, 2 Concave downward: 2, f 10. f x x5 5 x 4 40 x 2 f c x 5 x 4 20 x3 80 x f cc x 20 x3 60 x 2 80 20 x3 3 x 2 4 20 x 1 x 2 2 Test Interval: f x 2 2 x 1 1 x f Sign of f cc : f cc 0 f cc 0 f cc ! 0 Conclusion: Concave downward Concave downward Concave upward Concave upward: 1, f Concave downward: f, 1 11. f x fc f cc 24 x 12 48 x 12. 2 x2 12 f c x 2 144 4 x 2 x 2 12 f x 3 Concave upward: f, 2, 2, f Concave downward: 2, 2 x2 x 1 2x 2 x 2 1 23 x 2 1 f cc x 3 x 2 1 2 21 3x 1 x 2 1 3x 3 § 3 3· Concave upward: ¨¨ , ¸ 3 ¸¹ © 3 § 3· § 3 · Concave downward: ¨¨ f, , f ¸¸ ¸, ¨ 3 ¸¹ ¨© 3 © ¹ © 2010 Brooks/Cole, Cengage Learning 252 Chapter 3 13. f x fc Applications of Differentiation x2 1 x2 1 4 x 17. x 1 43 x 2 1 3 x 2 1 2 2 f cc 18. 3x 40 x 135 x 15x 4 120 x 2 135 y 1 270 yc 1 270 ycc 92 x x 2 x 2 2 sec2 x ycc 2 sec 2 x tan x 5 3 S , S y x 2 csc x, yc 1 2 csc x cot x ycc 2 csc x csc 2 x 2 cot xcsc x cot x 2csc3 x csc x cot 2 x Concave upward: f, 2, 0, 2 Concave upward: 0, S Concave downward: 2, 0, 2, f Concave downward: S , 0 g x g c x x2 4 4 x2 16 x 19. 4 x 2 163x 2 4 g cc x 3 4 x 2 16. yc § S· Concave downward: ¨ 0, ¸ © 2¹ Concave downward: 1, 1 15. § S S· 2 x tan x, ¨ , ¸ © 2 2¹ § S · Concave upward: ¨ , 0 ¸ © 2 ¹ Concave upward: f, 1, 1, f 14. y 2 163x 2 4 2 x 2 x 3 f x 1 4 x 2 f c x 2 x3 6 x 2 f cc x 6 x 2 12 x f cc x 0 when x 2 x3 6 x x 2 0, 2 Concave upward: f, 2, 0, f 3 Concave upward: 2, 2 Concave downward: 2, 0 Concave downward: f, 2, 2, f Points of inflection: 2, 8 and 0, 0 h x hc x hcc x 20. x2 1 2x 1 2 x 2 x 1 2 x 1 2 6 2 x 1 x 4 24 x 2 f c x 4 x3 48 x f cc x 12 x 2 48 f cc x 0 for x 12 4 x 2 12 2 x 2 x 2, 2 Concave upward: 2, 2 3 Concave downward: f, 2, 2, f 1· § Concave upward: ¨ f, ¸ 2¹ © §1 · Concave downward: ¨ , f ¸ ©2 ¹ f x Points of inflection: 2, 80, 2, 80 21. f x x3 6 x 2 12 x f c x 3 x 2 12 x 12 f cc x 6 x 2 0 when x 2. Concave upward: 2, f Concave downward: f, 2 Point of inflection: 2, 8 © 2010 Brooks/Cole, Cengage Learning Section 3.4 22. f x 2 x3 3 x 2 12 x 5 f c x 6 x 2 6 x 12 f cc x 12 x 6 f cc x 12 x 6 f c x 1 4 x 2x2 4 x3 4 x f cc x 3x 2 4 f cc x 3x 2 4 f x f x Sign of f cc x : f cc x 0 1 2 1 2 253 x f f cc x ! 0 Concave downward Concave upward 12 , 132 Point of inflection: 23. Test interval: Conclusion: 1. 2 0 when x Concavity and the Second Derivative Test r 0 when x Test interval: f x Sign of f cc x: f cc x ! 0 Conclusion: 2 . 3 2 3 2 x 3 2 3 f cc x 0 Concave upward 2 x f 3 f cc x ! 0 Concave downward Concave upward 20 · § 2 , ¸ Points of inflection: ¨ r 9¹ 3 © 24. f x 2x4 8x 3 f c x 8 x3 8 f cc x 24 x 2 0 when x 0. However, 0, 3 is not a point of inflection because f cc x t 0 for all x. Concave upward: f, f 25. f x f c x x x 4 3 2 3 x ª3 x 4 º x 4 ¬ ¼ x 4 4 x 4 2 f cc x 4 x 1 ª¬2 x 4º¼ 4 x 4 f cc x 12 x 4 x 2 0 when x 2 4 x 4ª¬2 x 1 x 4º¼ f x 2 2 x 4 4 x f Sign of f cc x: f cc x ! 0 f cc x 0 f cc x ! 0 Concave upward 12 x 4 x 2 2, 4. Test interval: Conclusion: 4 x 43 x 6 Concave downward Concave upward Points of inflection: 2, 16, 4, 0 26. 2 x 1 f x f x x f c x f cc x x 2 4 x 5 6 x 2 2 x 3 f c x f cc x 0 when x 3 ,2 2 f cc x 3 27. 2 · 2¸ ¹ 1· §3 Points of inflection: ¨ , ¸, 2, 0 16 ¹ ©2 1 2 §1· x¨ ¸ x 3 © 2¹ 6 x3 x 3 3 x 2 x 3 4 x 3 3 x 2 2 x 3 1 2 3 x 4 3· § Concave upward: ¨ f, ¸ and 2, f 2¹ © §3 Concave downward: ¨ , ©2 x 3, Domain: >3, f x 4 x 3 32 f cc x ! 0 on the entire domain of f (except for x 3, for which f cc x is undefined). There are no points of inflection. Concave upward: 3, f © 2010 Brooks/Cole, Cengage Learning 254 28. Chapter 3 f x f c x f cc x Applications of Differentiation x 9 x Domain: x d 9 29. 36 x f c x 2 9 x 4 x 1 8 x 2 x 2 1 83 x 2 1 f cc x 3 x 2 1 3 x 12 49 x f x 32 Concave downward: f, 9 No point of inflection f cc x 2 0 for x r 3 3 § 3· § 3 · , f ¸¸ Concave upward: ¨¨ f, ¸, ¨ 3 ¸¹ ¨© 3 © ¹ § 3 3· Concave downward: ¨¨ , ¸ 3 ¸¹ © 3 § 3 , Points of inflection: ¨¨ 3 © 30. f x f c x f cc x 0 x 3 3 x f Sign of f cc x : f cc ! 0 f cc 0 Conclusion: f c x · 3¸¸ ¹ § 4 3· ¨¨ 3, ¸ 3 ¸¹ © Test intervals: f x § 3 , ¨¨ © 3 x 1 , Domain: x ! 0 x x 1 2 x3 2 3 x 4 x5 2 4 · § Point of inflection: ¨ 3, ¸ 3¹ © 31. · 3¸¸ and ¹ Concave upward Concave downward x sin , 0 d x d 4S 2 1 § x· cos¨ ¸ 2 © 2¹ 1 § x· sin ¨ ¸ 4 © 2¹ f cc x f cc x 0 when x 0, 2S , 4S . Point of inflection: 2S , 0 Test interval: 0 x 2S 2S x 4S Sign of f cc x: f cc 0 f cc ! 0 Conclusion: Concave downward Concave upward © 2010 Brooks/Cole, Cengage Learning Section 3.4 32. f x f c x f cc x Concavity and the Second Derivative Test 255 3x , 0 x 2S 2 3x 3x 3 csc cot 2 2 9 § 3 3x 3x 3x · csc cot 2 ¸ z 0 for any x in the domain of f . ¨ csc 2© 2 2 2¹ 2 csc § 2S · § 4S · Concave upward: ¨ 0, ¸, ¨ , 2S ¸ © 3 ¹ © 3 ¹ § 2S 4S · Concave downward: ¨ , ¸ © 3 3 ¹ No point of inflection 33. f x S· § sec¨ x ¸, 0 x 4S 2¹ © f c x S· § S· § sec¨ x ¸ tan ¨ x ¸ 2¹ 2¹ © © f cc x S· S· S· § § § sec3 ¨ x ¸ sec¨ x ¸ tan 2 ¨ x ¸ z 0 for any x in the domain of f . 2¹ 2¹ 2¹ © © © Concave upward: 0, S , 2S , 3S Concave downward: S , 2S , 3S , 4S No point of inflection 34. f x sin x cos x, 0 d x d 2S f c x cos x sin x f cc x sin x cos x f cc x 0 when x 3S 7S , . 4 4 3S 4 Test interval: 0 x Sign of f cc x: f cc x 0 Conclusion: Concave downward 3S 7S x 4 4 7S x 2S 4 f cc x ! 0 f cc x 0 Concave upward Concave downward § 3S · § 7S · Points of inflection: ¨ , 0 ¸, ¨ , 0 ¸ © 4 ¹ © 4 ¹ 35. f x 2 sin x sin 2 x, 0 d x d 2S f c x 2 cos x 2 cos 2 x f cc x 2 sin x 4 sin 2 x f cc x 0 when x 2 sin x1 4 cos x 0, 1.823, S , 4.460. Test interval: 0 x 1.823 1.823 x S S x 4.460 4.460 x 2S Sign of f cc x: f cc 0 f cc ! 0 f cc 0 f cc ! 0 Conclusion: Concave downward Concave upward Concave downward Concave upward Points of inflection: 1.823, 1.452, S , 0, 4.46, 1.452 © 2010 Brooks/Cole, Cengage Learning 256 36. Chapter 3 Applications of Differentiation f x x 2 cos x, >0, 2S @ f c x 1 2 sin x f cc x 2 cos x f cc x 0 when x S 3S 2 , 2 . Test intervals: 0 x Sign of f cc x: f cc 0 Conclusion: S S 2 2 Concave downward x 3S 2 f cc ! 0 Concave upward 3S x 2S 2 f cc 0 Concave downward § S S · § 3S 3S · Points of inflection: ¨ , ¸, ¨ , ¸ ©2 2¹ © 2 2 ¹ 37. f x f c x x 5 2 x 5 f cc x 2 2 41. Critical number: x 5 f x x 5 3x 2 6 x f cc x 6x 6 f c x 2 x 5 f cc x 2 f cc 2 5 42. Therefore, 5, 0 is a relative maximum. 6 x x2 f c x 6 2x f cc x 2 6 x 1 0, x 2 6 0 6 ! 0 Therefore, 2, 1 is a relative minimum. f cc5 0 f x 3x x 2 Therefore, 0, 3 is a relative maximum. 2 Critical number: x f x x3 5 x 2 7 x f c x 3x 2 10 x 7 f cc x 6 x 10 §7· f cc¨ ¸ © 3¹ f cc3 0 Therefore, 3, 9 is a relative maximum. x 2 3x 8 f c x f cc x 7 x 1 4 ! 0 § 7 49 · Therefore, ¨ , ¸ is a relative minimum. © 3 27 ¹ f cc1 4 0 3 f x 3 x 7 ,1 3 Critical numbers: x Critical number: x 40. f c x f cc0 Therefore, 5, 0 is a relative minimum. 39. x3 3 x 2 3 Critical numbers: x f cc5 ! 0 38. f x Therefore, 1, 3 is a relative maximum. f x x 4 4 x3 2 2x 3 f c x 4 x3 12 x 2 4 x 2 x 3 2 f cc x 12 x 2 24 x 12 x x 2 32 Critical number: x Critical numbers: x However, f cc0 f cc 32 ! 0 43. Therefore, 32 , 41 is a relative minimum. 4 0, x 3 0, so you must use the First Derivative Test. f c x 0 on the intervals f, 0 and 0, 3; so, 0, 2 is not an extremum. 3, 25 is a relative minimum. f cc3 ! 0 so © 2010 Brooks/Cole, Cengage Learning Section 3.4 44. f x x 4 4 x3 8 x 2 f c x 4 x3 12 x 2 16 x f cc x 12 x 24 x 16 47. 4 x x 4 x 1 43x 6 x 4 2 20 80 f c x ! 0 on 0, f, 0, 3 is a relative minimum. 48. g x x 2 6 x g c x x x 6 12 5 x g cc x 46 x5 x 2 24 x 18 f cc x 0, g cc6 49. 125 , 268.7 is a relative maximum. g c x g cc x f x x 4 x f c x 1 4 x2 x2 4 x2 r2 2 3 2 3 3x x 2 2, 1, 4 f cc 2 ! 0 Therefore, 2, 4 is a relative minimum. 50. f x f c x 9 0 2, 0 is a relative maximum. 9 ! 0 2 1, 10.125 is a relative minimum. g cc 4 1 ! 0 Therefore, 2, 4 is a relative maximum. 1 x 22 x 42 8 x 4 x 1 x 2 Critical numbers: x g cc1 0 f cc 2 0 g cc 2 32 8 x3 Critical numbers: x extremum. g x 1 f cc x 0 Test fails. By the First Derivative Test, 6, 0 is not an 46. x2 Therefore, 0, 1 is a relative minimum. 155.52 0 Therefore, x 1 1 f cc0 6 Therefore, 0, 0 is a relative minimum. x 2 Critical number: x 432 ! 0 12 5 x2 1 f c x 2 Critical numbers: x g cc f x 3 12 , 5 0 Derivative Test. Because f c x 0 on f, 0 and Therefore, 4, 128 is a relative maximum. g cc0 2 3 x1 3 2 43 9x 257 However, f cc0 is undefined, so you must use the First Therefore, 0, 0 is a relative minimum. 45. f c x Critical number: x 16 f cc 4 x2 3 3 f cc x Therefore 1, 3 is a relative maximum. f cc0 f x 2 1, 0, 4 Critical numbers: x f cc 1 Concavity and the Second Derivative Test 9 0 x x 1 1 x 1 2 There are no critical numbers and x 1 is not in the domain. There are no relative extrema. 51. f x f c x cos x x, 0 d x d 4S sin x 1 d 0 Therefore, f is non-increasing and there are no relative extrema. 4, 0 is a relative maximum. © 2010 Brooks/Cole, Cengage Learning 258 Chapter 3 52. f x Applications of Differentiation (b) f cc0 ! 0 0, 0 is a relative minimum. 2 sin x cos 2 x, 0 d x d 2S f c x 2 cos x 2 sin 2 x 2 cos x 4 sin x cos x 2 cos x1 2 sin x f cc x , , , . 6 2 6 2 2 sin x 4 cos 2 x §S · f cc¨ ¸ ©6¹ §S · f cc¨ ¸ ©2¹ § 5S · f cc¨ ¸ © 6 ¹ § 3S · f cc¨ ¸ © 2 ¹ Points of inflection: r1.2758, 3.4035 f 6 0 ! 0 x −3 3 0 f' f '' ! 0 55. f x 0.2 x 2 x 3 , >1, 4@ 3 f c x 0.2 x5 x 6 x 3 f cc x (b) f cc0 (a) 2 x 34 x 2 9.6 x 3.6 0.4 x 310 x 2 24 x 9 0 0, 0 is a relative maximum. 56 ! 0 1.2, –1.6796 is a relative minimum. Points of inflection: 3, 0, 0.4652, 0.7048, 1.9348, 0.9049 y sin x 1 1 sin 3x sin 5 x, 3 5 f c x cos x cos 3x cos 5 x f c x 0 when x f cc x S 5S ,x ,x . 6 2 6 sin x 3 sin 3 x 5 sin 5 x f cc x 0 when x 2 1.9685, 0.9637, §¨ x 4 f f is increasing when f c ! 0 and decreasing when f c 0. f is concave upward when f cc ! 0 and concave downward when f cc 0. (a) f c x f c x f cc x f cc x 5S , 6 5S · , 0.2667 ¸ 6 © ¹ 1 x2 ,x §S · Points of inflection: ¨ , 0.2667 ¸, 1.1731, 0.9638, ©6 ¹ f″ 54. f x S §S · §S · (b) f cc¨ ¸ 0 ¨ , 1.53333¸ is a relative 2 2 © ¹ © ¹ maximum. f′ −2 −1 >0, S @ S 6 x | 1.1731, x | 1.9685 f cc (c) −6 The graph of f is increasing when f c ! 0 and decreasing when f c 0. f is concave upward when f cc ! 0 and concave downward when f cc 0. § S · § 3S · Relative minima: ¨ , 1¸, ¨ , 3¸ ©2 ¹ © 2 ¹ (a) y (c) § S 3 · § 5S 3 · Relative maxima: ¨ , ¸, ¨ , ¸ © 6 2¹ © 6 2¹ 53. f x f cc r2 0 r2, 4 2 are relative maxima. S S 5S 3S 0 when x 6 x 2 , ª¬ 6, f x −2 π 4 π 2 π f′ −4 −6 f″ −8 r 2. 0, x The graph of f is increasing when f c ! 0 and decreasing when f c 0. f is concave upward when f cc ! 0 and concave downward when f cc 0. 6 x 4 9 x 2 12 0 when x y (c) 2 6 º¼ 6 x2 6 x 2 because they are endpoints. 4 3 x 4 x 2 0 when x Note: 0, 0 and S , 0 are not points of inflection 32 r 9 33 2 . © 2010 Brooks/Cole, Cengage Learning Section 3.4 Concavity and the Second Derivative Test 259 2 x sin x, >0, 2S @ 56. f x (a) f c x sin x 2x 2 x cos x Critical numbers: x | 1.84, 4.82 f cc x cos x cos x sin x 2x 2x 2x 2x 2 x sin x 4 x2 1 sin x 2 cos x 2x 2x 2x 4 x cos x 4 x 2 1 sin x 2x 2x (b) Relative maximum: 1.84, 1.85 Relative minimum: 4.82, 3.09 Points of inflection: 0.75, 0.83, 3.42, 0.72 (c) y 4 f′ f 2 x π 2 f '' −2 −4 f is increasing when f c ! 0 and decreasing when f c 0. f is concave upward when f cc ! 0 and concave downward when f cc 0. y 57. (a) 58. (a) y 4 4 3 3 2 2 1 1 x 1 (b) 2 3 x 4 1 2 3 4 f c 0 means f decreasing f c 0 means f decreasing f c increasing means concave upward f c decreasing means concave downward (b) y 4 y 4 3 3 2 2 1 1 x 1 2 3 4 x 1 2 3 4 f c ! 0 means f increasing f c ! 0 means f increasing f c increasing means concave upward f c decreasing means concave downward © 2010 Brooks/Cole, Cengage Learning 260 Chapter 3 Applications of Differentiation 59. Answers will vary. Sample answer: 3 f x Let x4. f cc x f cc0 y 64. f '' 2 12 x 2 f 1 x 0, but 0, 0 is not a point of inflection. −1 1 3 −1 y −2 6 f' −3 5 4 y 65. 3 2 4 1 x −3 −2 −1 1 2 2 3 (2, 0) (4, 0) x 2 60. (a) The rate of change of sales is increasing. 4 6 S cc ! 0 (b) The rate of change of sales is decreasing. S c ! 0, S cc 0 y 66. 2 (c) The rate of change of sales is constant. Sc C , S cc 0 1 (0, 0) (d) Sales are steady. x C, Sc S (2, 0) −1 0, S cc 1 3 0 (e) Sales are declining, but at a lower rate. S c 0, S cc ! 0 (f) Sales have bottomed out and have started to rise. Sc ! 0 3 y 61. y 67. 2 f 1 (2, 0) 2 (4, 0) x 1 f′ f″ 2 3 4 5 x −2 1 −1 y 68. 3 y 62. f 2 f' 3 f '' (0, 0) (2, 0) x −1 1 3 x −2 −1 −1 3 −1 y 63. f″ f′ f 4 x −2 2 −2 −4 © 2010 Brooks/Cole, Cengage Learning Section 3.4 69. Concavity and the Second Derivative Test 70. (a) y 261 d 12 f x −4 8 12 f″ −8 t f cc is linear. 10 f c is quadratic. (b) Because the depth d is always increasing, there are no relative extrema. f c x ! 0 f is cubic. f concave upward on f, 3, downward on 3, f. 71. (a) n 1: n 2: n 3: n f x x f c x x 2 2 x 2 f cc x f c x 3 x 2 2 f cc x 6 x 2 f x x 2 f x f c x 1 f cc x 0 No point of inflection (c) The rate of change of d is decreasing until you reach the widest point of the jug, then the rate increases until you reach the narrowest part of the jug's neck, then the rate decreases until you reach the top of the jug. 2 2 3 2 Point of inflection: 2, 0 No point of inflection Relative minimum: 2, 0 f x x f c x 4 x 2 f cc x 12 x 2 2 4 3 2 No point of inflection Relative minimum: 2, 0 6 6 6 4: 6 f(x) = (x − 2)3 −9 −9 9 9 −9 9 f(x) = (x − 2)2 Point of inflection f(x) = x − 2 −6 −6 −6 −9 9 f(x) = (x − 2)4 −6 Conclusion: If n t 3 and n is odd, then 2, 0 is point of inflection. If n t 2 and n is even, then 2, 0 is a relative minimum. (b) Let f x x 2 , f c x n x 2 n n 1 , f cc x n n 1 x 2 For n t 3 and odd, n 2 is also odd and the concavity changes at x n2 . 2. For n t 4 and even, n 2 is also even and the concavity does not change at x 2 is point of inflection if and only if n t 3 is odd. So, x 72. (a) 2. f x 3 x f c x 1 x 2 3 3 f cc x 92 x 5 3 Point of inflection: 0, 0 (b) f cc x does not exist at x 0. y 3 2 1 (0, 0) x −6 −4 −2 2 4 6 −2 −3 © 2010 Brooks/Cole, Cengage Learning 262 Chapter 3 73. f x Applications of Differentiation ax3 bx 2 cx d Relative maximum: 3, 3 Relative minimum: 5, 1 Point of inflection: 4, 2 f c x 3ax 2 2bx c, f cc x f 3 6ax 2b 3 ½° ¾ 98a 16b 2c 125a 25b 5c d 1°¿ 27 a 6b c 0, f cc 4 24a 2b 0 27 a 9b 3c d f 5 f c3 49a 8b c 1 24a 2b 0 0 22a 2b 1 27 a 6b c 22a 2b 1, 2 a f x 2a 6, c b 1 x3 2 74. f x 1 45 , 2 6x2 2 49a 8b c 1 1 24 d 24 45 x 2 ax3 bx 2 cx d Relative maximum: 2, 4 Relative minimum: 4, 2 Point of inflection: 3, 3 f c x 3ax 2 2bx c, f cc x f 2 8a 4b 2c d 6ax 2b 4 °½ ¾ 56a 12b 2c 64a 16b 4c d 2°¿ f 4 f c 2 12a 4b c 0, f c 4 48a 8b c 28a 6b c 1 18a 2b 0 12a 4b c 16a 2b 0 1 16a 2b 2a 1 1 1, 2 a f x 75. f x b 1 x3 2 92 , c 0, f cc3 18a 2b 1 0 6 12, d 9 2 x 2 2 28a 6b c 12 x 6 ax3 bx 2 cx d Maximum: 4, 1 Minimum: 0, 0 (a) f c x f 0 f 4 f c 4 f c0 f cc x 3ax 2 2bx c, 0 d 1 0 0 0 64a 16b 4c 48a 8b c c 1 32 Solving this system yields a f x 1 x3 32 6ax 2b 1 0 0 and b 6a 3 . 16 3 2 x 16 (b) The plane would be descending at the greatest rate at the point of inflection. f cc x 6ax 2b 3 x 16 3 8 0 x 2. Two miles from touchdown. © 2010 Brooks/Cole, Cengage Learning Section 3.4 76. (a) line OA : y line CB : y 0.06 x slope: 0.06 0.04 x 50 slope: 0.04 ax3 bx 2 cx d f c x 3ax 2 2bx c (1000, 90) B 100 1000 0.06 1000, 90: 150 10003 a 60 263 y f x 1000, 60: Concavity and the Second Derivative Test 90 1000 0.04 1000 3 2 2 (−1000, 60) A 1000 b 1000c d 2 C (0, 50) 3a 2000b c x −1000 O 1000 a 1000 b 1000c d 2 3a 2000b c 1.25 u 108 , b The solution to this system of four equations is a 8 3 0.000025, c 0.0275, and d 50. 1.25 u 10 x 0.000025 x 0.0275 x 50 (b) y 2 100 −1100 1100 −10 (c) 0.1 −1100 1100 − 0.1 (d) The steepest part of the road is 6% at the point A. 77. D 2 x 4 5 Lx 3 3L2 x 2 Dc 8 x 15Lx 6 L x x 3 2 0 or x (c) S 20q | 0.9982 x8 x 15Lx 6 L 2 2 § 15 r 33 · ¨¨ ¸¸ L 16 © ¹ 15 L r 33L 16 By the Second Derivative Test, the deflection is maximum when x § 15 33 · ¨¨ ¸¸ L | 0.578 L. 16 © ¹ 5.755T 3 8.521T 2 0.654T 78. S 0.99987, 8 10 106 104 0 T 25 (a) The maximum occurs when T | 4q and S | 0.999999. (b) S 2 0 79. C 0.5 x 2 15 x 5000 C C x C average cost per unit dC dx 0.5 0.5 x 15 5000 x2 5000 x 0 when x 100 By the First Derivative Test, C is minimized when x 100 units. 80. C Cc 300,000 x 300,000 2 x2 2x 0 when x 100 15 | 387 By the First Derivative Test, is C minimized when x | 387 units. 1.001 1.000 0.999 0.998 0.997 0.996 T 5 10 15 20 25 30 © 2010 Brooks/Cole, Cengage Learning 264 Chapter 3 Applications of Differentiation 5000t 2 ,0 d t d 3 8 t2 81. S (a) t 0.5 1 1.5 2 2.5 3 S 151.5 555.6 1097.6 1666.7 2193.0 2647.1 Increasing at greatest rate when 1.5 t 2 (b) 3000 0 3 0 Increasing at greatest rate when t | 1.5. (c) S S ct 5000t 2 8 t2 80,000t 8 t 2 80,0008 3t 2 S cct 3 8 t 2 S cct 8 . So, t 3 r 0 for t 2 6 | 1.633 yrs. 3 100t 2 ,t ! 0 65 t 2 82. S (a) 2 100 0 35 0 (b) S ct 13,000t 65 t 2 13,00065 3t 2 S cct 3 65 t 2 2 0 t 4.65 S is concave upwards on 0, 4.65, concave downwards on 4.65, 30. (c) S ct ! 0 for t ! 0. As t increases, the speed increases, but at a slower rate. © 2010 Brooks/Cole, Cengage Learning Section 3.4 83. f x 2sin x cos x, §S · f¨ ¸ ©4¹ 2 2 f c x 2cos x sin x, §S · f c¨ ¸ ©4¹ 0 f cc x §S · 2 sin x cos x, f cc¨ ¸ ©4¹ P1 x S· § 2 2 0¨ x ¸ 4¹ © P1c x 0 P2 x S· 1 S· § § 2 2 0¨ x ¸ 2 2 ¨ x ¸ 4 2 4¹ © ¹ © P2c x S· § 2 2 ¨ x ¸ 4¹ © P2cc x 2 2 Concavity and the Second Derivative Test 265 2 2 2 2 2 2 2 S· § 2¨ x ¸ 4¹ © 2 4 P1 − 2p 2p f P2 −4 S 4. The values of the second derivatives of f and P2 are S 4. The approximations worsen as you move away from x S 4. The values of f , P1 , P2 , and their first derivatives are equal at x equal at x 84. f x 2sin x cos x, f 0 2 f c x 2cos x sin x, f c0 2 f cc x 2 sin x cos x, f cc0 2 P1 x 2 2 x 0 P1c x 2 P2 x 2 2 x 0 P2c x 2 2x P2cc x 2 21 x 4 1 2 2 x 0 2 2 2 x x2 −6 85. −4 1 x, f 0 1 1 , 2 1 x 1 f c0 1 2 f cc0 1 4 f c x f cc x P1 x x § 1· 1 ¨ ¸ x 0 1 2 © 2¹ 1 2 1§ 1 · 2 § 1· 1 ¨ ¸ x 0 ¨ ¸ x 0 2© 4 ¹ © 2¹ P1c x P2 x P2c x P2cc x 41 x 32 , 1 0. x x2 2 8 5 P1 x 1 2 4 1 4 f The values of f , P1 , P2 , and their first derivatives are equal at x equal at x 0. The values of the second derivatives of f and P2 are 0. The approximations worsen as you move away from x f x 6 P1 The values of f , P1 , P2 , and their first derivatives are equal at x equal at x P2 f −8 4 P2 −3 0. The values of the second derivatives of f and P2 are 0. The approximations worsen as you move away from x 0. © 2010 Brooks/Cole, Cengage Learning 266 Chapter 3 x , x 1 f x 86. Applications of Differentiation f 2 x 1 f c x f c 2 3x 2 6 x 1 , 3 4 x3 2 x 1 f cc 2 23 8 2 2 § 3 2· 2 ¨¨ ¸ x 2 4 ¸¹ © P1 x P1c x 3 2 2 , x x 1 2 f cc x 2 3 2 4 23 2 16 3 2 5 2 x 4 2 3 2 4 § 3 2· 1 § 23 2 · 2 2 ¨¨ ¸¸ x 2 ¨¨ ¸¸ x 2 4 2 16 © ¹ © ¹ P2 x 2 3 2 23 2 x 2 4 16 P2c x P2cc x 23 2 16 The values of f , P1 , P2 and their first derivatives are equal at x at x 3 2 23 2 x 2 x 22 4 32 2. The approximations worsen as you move away from x 2. The values of the second derivatives of f and P2 are equal 2. 3 P1 P2 f −1 5 −1 f x §1· x sin ¨ ¸ © x¹ f c x ª 1 § 1 ·º §1· x « 2 cos¨ ¸» sin ¨ ¸ x x © ¹ © x¹ ¬ ¼ f cc x 1ª 1 1 1 § 1 ·º §1· §1· « 2 sin ¨ ¸» 2 cos¨ ¸ 2 cos¨ ¸ x¬x x x x x © ¹¼ © ¹ © x¹ 1 87. x 1 §1· §1· cos¨ ¸ sin ¨ ¸ x © x¹ © x¹ 1 §1· sin ¨ ¸ x3 © x¹ 0 S §1 · Point of inflection: ¨ , 0 ¸ ©S ¹ When x ! 1 S , f cc 0, so the graph is concave downward. 1 −1 1 ( π1 , 0( −1 88. f x x x 6 f c x 3 x 2 24 x 36 f cc x 6 x 24 2 x3 12 x 2 36 x 3 x 2 x 6 6 x 4 0 0 Relative extrema: 2, 32 and 6, 0 Point of inflection 4, 16 is midway between the relative extrema of f. © 2010 Brooks/Cole, Cengage Learning Section 3.4 Concavity and the Second Derivative Test 89. Assume the zero of f are all real. Then express the function as f x 267 a x r1 x r2 x r3 where r1 , r2 , and r3 are the distinct zeros of f. From the Product Rule for a function involving three factors, we have f c x a ª¬ x r1 x r2 x r1 x r3 x r2 x r3 º¼ f cc x a ª¬ x r1 x r2 x r1 x r3 x r2 x r3 º¼ Consequently, f cc x x 90. 2 r1 r2 r3 6 0 if r1 r2 r3 3 p x ax3 bx 2 cx d pc x 3ax 2 2bx c pcc x 6ax 2b 6ax 2b 0 x b 3a. Therefore, b 3a, p b 3a is a point of inflection. § b3 · § b2 · § b· a¨ b¨ 2 ¸ c ¨ ¸ d 3¸ 27 a 9 a © 3a ¹ © ¹ © ¹ When p x x0 y0 x3 3 x 2 2, a 3 2 3 3 2 30 31 2 2 0 2 ycc 0, and d ax3 bx 2 cx d , a z 0. Then 6ax 2b 0 when x b 3a, and the 1 x has a discontinuity at x 0. 93. False. Concavity is determined by f cc. For example, let f x x and c 2. f cc f c 2 ! 0, but f is not concave upward at c 2. 94. False. For example, let f x 1, 0. 95. f and g are concave upward on a, b implies that f c and g c are increasing on a, b, and f cc ! 0 and g cc ! 0 . So, f g cc ! 0 f g is concave upward on concavity changes at this point. 92. False. f x 2. 0 x3 3 x 2 2 is x0 , y0 The point of inflection of p x 91. True. Let y 3, c 1, b 2b3 bc d 27 a 2 3a 1 31 271 Average of r1, r2 , and r3 . b 3a The sign of pcc x changes at x § b· p¨ ¸ © 3a ¹ a ª¬6 x 2 r1 r2 r3 º¼. x 2 . 4 a, b by Theorem 3.7. 96. f, g are positive, increasing, and concave upward on a, b f x ! 0, f c x t 0 and f cc x ! 0, and g x ! 0, g c x t 0 and g cc x ! 0 on a, b. For x a, b, fg c x f c x g x f x g c x fg cc x f cc x g x 2 f c x g c x f x g cc x ! 0 So, fg is concave upward on a, b. © 2010 Brooks/Cole, Cengage Learning 268 Chapter 3 Applications of Differentiation Section 3.5 Limits at Infinity 2x2 x2 2 1. f x 4. f x No vertical asymptotes Horizontal asymptote: y Horizontal asymptote: y 2 Matches (a) 2x 5. f x x2 2 No vertical asymptotes Horizontal asymptotes: y 4 sin x x2 1 No vertical asymptotes r2 Horizontal asymptote: y Matches (c) 0 f 1 ! 1 x x 2 3. f x x2 x4 1 No vertical asymptotes 2 Matches (f ) 2. f x 2 Matches (b) 2 6. f x No vertical asymptotes Horizontal asymptote: y 0 f 1 1 2 x 2 3x 5 x2 1 No vertical asymptotes Horizontal asymptote: y Matches (d) 2 Matches (e) 7. f x 4x 3 2x 1 x 100 101 102 103 104 105 106 f(x) 7 2.26 2.025 2.0025 2.0003 2 2 lim f x 2 xof 10 − 10 10 − 10 8. f x 2x2 x 1 x 100 101 102 103 104 105 106 f(x) 1 18.18 198.02 1998.02 19,998 199,998 1,999,998 lim f x xof f Limit does not exist 20 0 10 −2 © 2010 Brooks/Cole, Cengage Learning
© Copyright 2026 Paperzz