24 May 2016 Ruminant microbiology in cow nutrition y Intestinal Tract of Ruminant and Its Microbe y History of Microbiology y Ecology of Rumen Microbe & Its Function Ruminant microbiology in cow nutrition y Analytical Method of Rumen Microbe y Classification of Rumen Microbe y Analytical method of eDNA (environmental DNA) Akio TAKENAKA Ph. D Deputy Director Food & Fertilizer Technology Center (FFTC) y Two Main Function of Rumen Microbe y Fiber degradation y Methane production 1 History of Microbiology ɚ ɛ 1684 Microorganism was found by Leeuwenhoek’s microscope 1843 1860 First report of rumen ciliate protozoa Pasteur denied natural occurrence of microorganism Koch established gelatin medium for colony formation 1882 1950 ɜ ɝ 1953 Hungate established anaerobic roll tube method Watson and Crick found double helix formation of DNA 1977 Sanger established the method to analysis DNA sequence 1988 Polymerase chain reaction (PCR) method using heat stable Taq polymerase was established 1995 First report of complete sequence of bacterial genome(Haemophilus influenzae) 2003 Complete sequence of human genome was published A new generation (post genome era) has come. 3 A difference of energy intake and output is accumulated to a body. Gastrointestinal system of herbivore Volume proportion of gastrointestinal system Horse stomach 㻡㻑 intestine 㻥㻡㻑 Cattle 㻡㻑 㻡㻑 㻟㻑 intestine rumen 㻡㻠㻑 㻟㻟㻑 䠎䠑䠌䃛㼙 5 The role of rumen microorganisms Rumen Microscopic picture of rumen juice The global efficiency of rumen microbe be㸦 㸦per year ar㸧 3 billion ruminant livestock 㸦increasing 15 million/year㸧 Around 10000MT of cellulosic material are ingested by domestic ruminants Meat Feed Digested in the rumen Milk bacteria protozoa archaea fungi Rumen microorganisms The role of rumen mircoorganisms • Fiber degradation • Production of proteins • Production of VFAs • Breakdown of nutrients • Methane production ࣭ ࣭ ࣭ 150 MT of carcass 15 MT of milk 7 Feed the people 8 Main rumen bacteria • Cellulose degrader • Fibrobacter succinogenes: • Ruminococcus albus: • Ruminococcus flavefaciens: • Hemicellulose, pectin utilizer • Prevotella ruminicola: • Butyrivibrio fibrisolvens: • Starch fermenter • Ruminobacter amylophilus: • Streptococcus bovis*: • Organic acid utilizer • Megasphaera elsdenii: • Selenomonas ruminantium: Morphological classification of rumen ciliate protozoa G-, rods G+, cocci G+, cocci cilia with whole body cilia present anterior part G-, rods G+, rods <100䗇 Dasytricha cilia only at adoral area Isotricha G-, rods G+, rods Entodinium G-, cocci G-, rods *: Streptococcus bovis is facultative anaerobe, others are strict anaerobe. Epidinium Diplodinium Eudiplodinium Polyplastron 9 Analytical method of rumen ciliate protozoa 10 Apparent digestibility of dry matter, energy, crude protein, NDF and ADF. Rumen ciliate protozoa is difficult to culture in vitro. However animals without protozoa is provided by isolation from other animals, because rumen protozoa is infected only by direct touch with other animal. Faunated: • Normal ruminant has more than one species of rumen protozoa. Unfaunated: • Ruminants isolated immediately after birth, ruminant without any species of protozoa can be provided. Defaunated: •Rumen protozoa is removed by any method (wash out, detergent treatment, middle chain fatty acid etc.) Monofaunated: • Ruminants which have only one species of protozoa. >120䗇 Unf (n=5) Dry matter Energy Crude protein NDF ADF 67.86㼼0.98 66.02㼼0.92 56.56㼼1.24 57.26㼼1.23 54.02㼼0.85 Values are means㼼S.E. *:p<0.05, **:p<0.01 Roughage:Concentrate=1:1 11 Mono-fau (n=6) Poly-fau (n=6) 70.78㼼1.09 68.63㼼1.24 59.60㼼1.68 58.90㼼1.71 50.38㼼2.65 ** 73.15㼼0.81 71.40㼼1.06* 64.20㼼1.84* ** 63.28㼼1.29 ** 62.53㼼1.11 Life has already digital protocol The structure of sugars 㻯㻴 㻞 㻻㻴 㻯㻴 㻴 㻞 㻻㻴 㻻 㻴 㻴 㻻㻴 㻴㻻 㻴 㻴 WUDQVFULSWLRQ 㻯㻰㻌㼐㼕㼟㼏 '1$ GXSOLFDWH 㻰㼂㻰㻌㼐㼕㼟㼏 P 51 $ 㻴 3URWHLQ &KDUDFWHU 㻯㻴 㻞 㻻㻴 㻴 㻴㻻 㻻 㻴㻻 㻯㻴㻞 㻻㻴 㻴 㻻㻴 㻻㻴 Sucrose șELQG 㻴 㻻㻴 㻯㻴 㻞 㻻㻴 㻯㻴㻞 㻻㻴 㻻 㻴 㻴 㻴 㻴 㻻 㻻㻴 㻻 㻴 㻻㻴 㻴 㻴 㻴㻻 㻴 㻯㻴㻞 㻻㻴 㻻 㻴 㻻㻴 㻻㻴 㻴 㻻㻴 㻴 㻴 㻻㻴 Maltose 㻴 㻻 㻴 㻴 㻻㻴 㻴 㻻 㻻㻴 㻴 㻴 㻻㻴 Cellobiose Multimedia has universal standard protocol: digital words long chain will be Life is multimedia ia䟿 2 Gß1-4Gß1-4Gß1-4Gß1-4Gß1-4Gß1-4Gß1-4G Gß1-4Gß1-4Gß1-4Gß1-4Gß1-4Gß1-4G 3 Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4X Gß1-4G 3 3 5 4 4 D1 Af 2G 6 Xß1-4X 6 Af 5 2X 7 Fer Lignin -Fer-O-Fer 5 Af mGu 8 Ac D1 1 9 3 3 2 Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4Xß1-4X Ac:Acetic acid 2 3 Af:Arabinose 1 D1 Fer:Ferulic acid mGu Af G:Glucose 6 5 mGu: Fer Fer 4-O-methylgluculonic acid X:Xylose Lignin Lignin Starch 13 1 Many kind of enzymes are needed to degrade lignocellulose 1 㻴 ȘELQG 5HYHUV Life has universal standard already! y Digital words are A, T, G, and C. 㻴 㻴 㻴㻻㻴 㻞 㻯 㻴 㻴 㻻㻴 Glucose WUDQODWLRQ 㻴 㻻㻴 㻴㻻 㻻㻴 㻻 㻻 㻴 7-Feruloyl esterase 8-Acetylxylan esterase 9-D-Glucuronidase 15 14 Number of genes concerning to β β-glucanase -gl glucanase e (ce cellulase ellulas se, se e,, ce e cellobiohydrase c ellobiohyd se, xylanase, βglucosidase) and homologues in each family. Family Number 1-Cellobiohydrolase 2-Endoglucanase 3-Cellobiase 4-Endoxylanase 5-Xylosidase 6-Arabinofuranosidase Cellulose Total Number From From From Archaea Bacteria Eukaryota From Virus Unclassif From Rumen From Rumen From Rumen ied Bacteria Fungi Protozoa 㻝 㻟 㻠 㻡 㻢 㻣 㻤 㻥 㻥㻡㻡㻥 㻥㻣㻟㻞 㻟㻥㻜㻟 㻢㻤㻟㻟 㻢㻥㻤 㻡㻜㻣㻤 㻝㻣㻞㻣 㻝㻥㻟㻣 㻔㻝㻜㻜㻝㻕 㻔㻥㻟㻥㻕 㻔㻝㻣㻠㻕 㻔㻥㻝㻜㻕 㻔㻝㻞㻟㻕 㻔㻝㻠㻞㻕 㻔㻝㻟㻣㻕 㻔㻟㻜㻣㻕 㻝㻜㻥 㻤㻥 㻟㻠 㻡㻣 㻙 㻙 㻙 㻠 㻤㻠㻡㻥 㻤㻣㻢㻜 㻟㻤㻢㻣 㻠㻤㻢㻜 㻡㻝㻥 㻝㻜 㻝㻣㻜㻞 㻤㻡㻢 㻥㻠㻥 㻣㻣㻜 㻙 㻝㻣㻥㻥 㻝㻣㻡 㻡㻜㻢㻠 㻠 㻤㻢㻢 㻙 㻙 㻙 㻙 㻙 㻙 㻙 㻙 㻠㻝 㻝㻝㻟 㻞 㻝㻝㻠 㻠 㻙 㻞㻝 㻞㻝㻝 㻝㻤㻔㻙㻕 㻡㻢㻔㻢㻕 㻟㻔㻙㻕 㻤㻞㻔㻞㻝㻕 㻙 㻝㻜㻔㻙㻕 㻟㻢㻔㻝㻞㻕 㻟㻥㻔㻞㻥㻕 㻡㻔㻡㻕 㻟㻔㻝㻕 㻙 㻞㻜㻔㻝㻝㻕 㻠㻞㻔㻞㻞㻕 㻙 㻙 㻠㻔㻞㻕 㻙 㻙 㻙 㻝㻠㻔㻡㻕 㻙 㻙 㻙 㻙 㻝㻜 㻞㻞㻤㻞 㻔㻟㻜㻥㻕 㻝㻠 㻝㻡㻢㻢 㻟㻡㻝 㻙 㻟㻡㻝 㻞㻞㻔㻝㻞㻕 㻞㻔㻞㻕 㻣㻔㻞㻕 㻝㻝 㻝㻞 㻝㻢 㻞㻢 㻠㻟 㻠㻠 㻠㻡 㻠㻤 㻡㻝 㻣㻠 㻝㻝㻡㻜 㻡㻡㻝 㻠㻞㻣㻞 㻥㻠㻜 㻡㻝㻟㻥 㻝㻜㻤 㻟㻡㻜 㻣㻠㻤 㻝㻠㻡㻜 㻞㻠㻢 㻡㻢㻣㻜㻟 㻔㻞㻡㻢㻕 㻔㻝㻝㻠㻕 㻔㻢㻠㻥㻕 㻔㻝㻜㻡㻕 㻔㻟㻢㻠㻕 㻔㻝㻥㻕 㻔㻤㻝㻕 㻔㻞㻤㻕 㻔㻝㻟㻣㻕 㻔㻞㻣㻕 㻔㻡㻤㻤㻣㻕 㻡 㻢㻢 㻝㻤 㻡 㻝㻣 㻙 㻙 㻙 㻞㻜 㻙 㻠㻟㻤 㻡㻤㻞 㻟㻡㻠 㻝㻥㻞㻜 㻤㻤㻤 㻠㻣㻢㻢 㻝㻜㻠 㻝㻤 㻣㻞㻟 㻝㻞㻡㻢 㻞㻞㻞 㻠㻝㻠㻟㻞 㻠㻡㻥 㻝㻟㻜 㻞㻞㻣㻢 㻟㻟 㻟㻞㻥 㻟 㻟㻞㻡 㻞㻞 㻝㻟㻠 㻞㻝 㻝㻟㻣㻝㻜 㻙 㻙 㻠㻥 㻙 㻙 㻙 㻙 㻝 㻞㻜 㻙 㻣㻜 㻝㻜㻠 㻝 㻝㻝 㻝㻠 㻞㻣 㻝 㻣 㻞 㻞㻜 㻟 㻝㻜㻠㻣 㻙 㻞㻞㻔㻠㻕 㻟㻠㻔㻞㻕 㻢㻣㻔㻡㻕 㻡㻔㻞㻕 㻠㻔㻙㻕 㻞㻞㻔㻝㻕 㻝㻡㻔㻝㻕 㻙 㻡㻔㻙㻕 㻠㻠㻜㻔㻥㻡㻕 㻟㻝㻔㻞㻝㻕 㻙 㻤㻔㻝㻕 㻡㻔㻡㻕 㻝㻔㻙㻕 㻙 㻝㻔㻝㻕 㻟㻔㻞㻕 㻙 㻙 㻝㻞㻡㻔㻣㻟㻕 㻠㻔㻞㻕 㻙 㻙 㻙 㻙 㻙 㻙 㻙 㻙 㻙 㻞㻡㻔㻥㻕 㻱㻯㻌㼚㼡㼙㼎㼑㼞㻦㻌㻟㻚㻞㻚㻝㻚㻠㻘㻌㻟㻚㻞㻚㻝㻚㻢㻘㻌㻟㻚㻞㻚㻝㻚㻤㻘㻌㻟㻚㻞㻚㻝㻚㻞㻝㻘㻌㻟㻚㻞㻚㻝㻚㻝 㼀㼔㼑㼟㼑㻌㼐㼍㼠㼍㻌㼍㼞㼑㻌㼟㼡㼙㼙㼍㼞㼕㼦㼑㼐㻌㼒㼞㼛㼙㻌㻯㻭㼆㼥 㻴㼛㼙㼑㼜㼍㼓㼑㻌䠄㼔㼠㼠㼜㻦㻛㻛㼣㼣㼣㻚㼏㼍㼦㼥㻚㼛㼞㼓㻛㻕 㼍㼠㻌㻲㼑㼎㻚㻌㻞㻌㻞㻜㻝㻢 㻺㼡㼙㼎㼑㼞㼟㻌㼕㼚㻌㼜㼍㼞㼑㼚㼠㼔㼑㼟㼑㼟㻌㼍㼞㼑㻌㼟㼡㼙㼙㼍㼞㼕㼦㼑㼐㻌㼍㼠㻌㻲㼑㼎㻌㻝㻢㻌㻞㻜㻜㻣 2014 㼀㼔㼑㻌㼚㼡㼙㼎㼑㼞㻌㼛㼒㻌㻳㻴㻌㼒㼍㼙㼕㼘㼥㻌㼓㼑㼚㼑㼟㻌㼑㼤㼕㼟㼠㼕㼚㼓㻌㼕㼚㻌㼠㼔㼑㻌㼣㼔㼛㼘㼑㻌㼓㼑㼚㼛㼙㼑㻌㼟㼑㼝㼡㼑㼚㼏㼑䠄㼜㼍㼞㼠㼕㼍㼘䠅 GH family No. Butyrivivrio fibrisolvens 16/4 Butyrivivrio proteoclasticus B316 Clostridium thermocellum ATCC27405 Fibrobacter succinogenes S85 Prevotella ruminicola 23 Ruminococcus albus 7 Selenomonas ruminantium TAM6421 Homo sapiens 㻝 㻟 㻝 㻞 㻞 㻟 㻡 㻟 㻢 㻠 㻥 㻝㻜 㻠 㻝 㻞 㻝㻜 㻞 㻟 㻝㻞 㻝㻜 㻝㻞 㻠 㻟 㻡 㻝㻟 㻢 㻝 㻞 㻥 㻞 㻤 㻥 㻝㻜 㻝㻝 㻝㻟 㻝㻢 㻝㻤 㻞㻡 㻞㻢 㻞㻤 㻟㻝 㻟㻡 㻟㻢 㻟㻤 㻠㻟 㻠㻣 㻥㻞 㻥㻠 㻥㻡 㻥㻣 㻝 㻞 㻞 㻥 㻞 㻝 㻡 㻞 㻝 㻞 㻝㻡 㻟 㻝 㻟 㻢 㻝㻠 㻞 㻝 㻡 㻞 㻡 㻞 㻟 㻝 㻝㻝 㻞 㻝 㻝 㻝㻢 㻡 㻝 㻞 㻞 㻠 㻟 㻢 㻟 㻢 㻥 㻤 㻠 㻟 㻡 㻞 㻡 㻝㻠 㻝 㻝 㻝 㻝 㻠 㻡 㻞 㻝 㻟 㻝 㻡 㻢 㻞 㻝 㻝 㻞㻜 㻤 㻝 㻞 㻢 㻝 㻤 㻡 㻡 㻡 㻞 㻡 㻤 㻝 㻝 㻢 㻣 㻞 㻝 㻝 㻡 㻝 㻝 㻝 㻝 㻝 㻝 㻣 㻤 㻝㻜 㻡 㻡 㻣 㼀㼛㼠㼍㼘 㻣㻡 㻝㻝㻝 㻣㻠 㻝㻜㻜 㻝㻟㻡 㻝㻜㻜 㻟㻢 㻥㻤 㼀㼔㼑㼟㼑㻌㼐㼍㼠㼍㻌㼍㼞㼑㻌㼟㼡㼙㼙㼍㼞㼕㼦㼑㼐㻌㼒㼞㼛㼙㻌㻯㻭㼆㼥 㻴㻼㻌䠄㼔㼠㼠㼜㻦㻛㻛㼣㼣㼣㻚㼏㼍㼦㼥㻚㼛㼞㼓㻛㻕 㼍㼠㻌㻲㼑㼎㻚㻌㻞㻌㻞㻜㻝㻢 Many typhoons had occurred in the west Pacific 2013 autumn 䠄 Enteric CH H4 perspective (2005) 䠅 Indon Thai* esia* Philip pine* Malay Austr sia* alia NZ Japan World 238.4 64.8 87.8 26.9 21.1 4.2 127.8 6449 6.4 3.2 1.5 2.2 4.3 1.2 1.1 92 CH4(enteric)/CH4(agric) 23% 22% 27% 15% 87% 97% 46% 59% CH4(agric)/CH4(total) 51% 91% 66% 15% 60% 91% 64% 51% CH4(total)/GHG(total) 15% 23% 31% 32% 20% 35% 1.9% 18% GHG(agric)/GHG(total) 9.4% 8.0% 33% 4.8% 16% 48% 2.2% N2O䠖9% Population, million CH4䠖18% CO2䠖72% Agricultural sector䠖40% CH4(total), Tg/yr Natural gas etc䠖30% From UNFCCC 1994 % ¾ About 20% of GHG emission is methane ¾ About 40% of methane is from Agriculture ¾ A higher contribution rate to methane from agriculture in the Southeast Asian countries is from rice paddies and enteric fermentation of livestock. Rice field Enteric fermentation Other agriculture Non agriculture * : inventory data of 1994 GHG data from UNFCCC 20 Balance of hydrogen-producing and hydrogen consuming reactions in the rumen • CO2 [2H] • • Butyrate • [2H] Fumarate [2H] Propionate Succinate hydrogen-consuming reactions CO2 CO2 Supply propionate enhancers, malate or fumarate Enhance nitrate/nitrite reduction Increase sulfate reduction Supply unsaturated fatty acids Enhance reductive acetate production Acetate (oxidative acetogenesis) hydrogen-producing reactions CH4 21 㻟㻜 㻝㻜 㻞㻜 㻡 㻝㻜 㻱㼍㼞㼘㼥 㻯㼛㼚㼠㼞㼛㼘 㻣㻜 㻢㻜 㻹㼑㼠㼔㼍㼚㼑㻌㼢㼟㻌㻰㻳 㻜㻚㻡 㻝㻚㻜 㻝㻚㻡 㻰㻳 㻔㼗㼓㻛㼐㼍㼥㻕 㼍䠾 㻠㻜 㻟㻜 ᑐ↷༊ 䝡䞊䝹⢑ ⏕⡿䝚䜹 Beer lees Rice bran 12% 12% 㻝㻞䠂ῧຍ༊ 㻝㻞䠂ῧ Vs.Y2Milk Yield = 8.19 + 300/ 300/FCM r = 0.82 50 40 30 20 10 0 b 䠾 㻞㻜 㻲㼑㼑㼐㼕㼚㼓 60 㻞㻚㻜 䠽a 㻡㻜 㻴㼑㼍㼐㼕㼚㼓 㻲㼘㼛㼣㼑㼞㼕㼚㼓 㻝㻞㻜㻜 㻝㻜㻜㻜 㻤㻜㻜 㻢㻜㻜 㻠㻜㻜 㻞㻜㻜 㻜 㻜㻚㻜 㻹㼑㼠㼔㼍㼚㼑㻌㻔㻸㻛㼗㼓㻌㻰㻻㻹㻕 [2H] Malate Acryl CoA • 㻝㻡 Methane production [2H] Oxaloacetate [2H] Acetyl CoA 㻠㻜 㻞㻜㻑㼞㼑㼐㼡㼏㼠㼕㼛㼚 㻞㻜 litter/ 䝯䝍䞁Ⓨ⏕㔞 (liter/kg (FCM) Lactate Formate 㻟㻜㻑㼞㼑㼐㼕㼏㼠㼛㼜㼙 㻡㻜 㻹㼑㼠㼔㼍㼚㼑㻌㼜㼞㼛㼐㼡㼏㼠㼕㼛㼚 㻼㼑㼞㻌㻝㼗㼓㻌㼙㼕㼘㼗㻌㼜㼞㼛㼐㼡㼏㼠㼕㼛㼚 Pyruvate CO2 Increasing methods for hydrogen consuming reactions 㻔㼘㼕㼠㼠㼑㼞㻛㼗㼓 㻰㻻㻹䠅 [2H] 㻤㻜 㻹㼑㼠㼔㼍㼚㼑㻌㻼㼞㼛㼐㼡㼏㼠㼕㼛㼚 [2H] 㼁㼟㼍㼓㼑㻌㼛㼒㻌㻌㻮㼥㻙㼜㼞㼛㼐㼡㼏㼠㼟 㻴㼕㼓㼔㻌㻲㼍㼠㻌㻲㼑㼑㼐㼕㼚㼓 㻯㼔㼍㼚㼓㼑㻌㼏㼡㼘㼠㼕㼢㼍㼠㼕㼛㼚㻌㼠㼕㼙㼑 CO2 㻹㼑㼠㼔㼍㼚㼑 㻔㼓㻛㼗㼓㻌㻰㻳㻕 Hexose Cellulose Hemicellulose Starch Technology to reduce the environmental impact 0 5 10 15 20 25 30 35 FCM (kg/day) (kg/᪥䠅 䠐䠂⬡⫫⿵ṇங㔞 For Animal and Plant 䞉Breeding 䞉Reproduction 䞉Cultivation Feeding etc. Integrated technology is needed
© Copyright 2026 Paperzz