CALCULUS I HOMEWORK 11 Not Due 1. Compute the antiderivative (a) f (x) = 3x(2 − x)24 Solution: Let u = 2 − x. Then du = −dx and x = 2 − u. Making the substitution, Z Z 24 3x(2 − x) dx = 3(2 − u)u24 (−du) Z Z 24 = −6 u du + 3 u25 du u26 u25 +3 +C 25 26 6 3 = − (2 − x)25 + (2 − x)26 + C 25 26 (b) Compute the antiderivative 4x f (x) = 1 + 4x = −6 Solution: Let u = 1 + 4x . Then du = (ln 4)4x dx. Making the substitution Z Z 1 du 4x dx = 1 + 4x ln 4 u 1 = ln u + C ln 4 1 ln(1 + 4x ) + C = ln 4 (c) Compute the antiderivative f (x) = ln x2 , x 1 x>0 2 CALCULUS I HOMEWORK 11 Solution: Let u = ln x2 = 2 ln x. Then du = 2 dx x . Making the substitution Z Z 1 ln x2 dx = u du x 2 1 2 = u +C 4 1 = (ln x2 )2 + C 4 (d) Compute the antiderivative x+1 f (x) = , x > −2 x+2 Solution: Let u = x + 2. Then du = dx and x = u − 2. Making the substitution Z Z (u − 2) + 1 x+1 dx = du x+2 u Z 1 = 1− du u = u − ln u + C = x + 2 − ln(x + 2) + C (e) Compute the antiderivative 2x2 1 + 2x2 f (x) = Solution: There is a trick to deal with these types of integrals. You can add and subtract 1 to the numerator. Z Z 2x2 2x2 + 1 − 1 dx = dx 1 + 2x2 1 + 2x2 Z 2 2x + 1 1 = − dx 1 + 2x2 1 + 2x2 Z 1 √ = 1− dx 1 + ( 2x)2 √ 1 = x − √ arctan( 2x) + C 2 2. Compute the derivative (a) Z f (x) = 2 x2 2 e−t dt CALCULUS I HOMEWORK 11 3 Solution: By the Chain Rule and the Fundamental Theorem of Calculus, Z x2 d 2 4 d 4 e−t dt = e−x x2 = 2xe−x . dx 2 dx (b) Z x2 dt √ f (x) = 2 + t4 x Solution: Let c be any number between x and x2 . By the Chain Rule and the Fundamental Theorem of Calculus, Z c Z x2 Z x2 dt dt d dt d √ √ √ = + dx x dx 2 + t4 2 + t4 2 + t4 x c Z x Z x2 dt dt d d √ √ + = − dx c 2 + t4 dx c 2 + t4 1 1 = −√ +√ (2x) 4 2+x 2 + x8 (c) Z e x2 f (x) = ln(t)dt e−x 2 Solution: Let c be any number between e−x and ex . By the Chain Rule and the Fundamental Theorem of Calculus, Z c Z ex2 Z e x2 d d ln(t)dt = ln(t)dt + ln(t)dt dx e−x dx e−x c Z e−x Z ex2 d d = − ln(t)dt + ln(t)dt dx c dx c d d 2 2 = − ln(e−x ) e−x + ln(ex ) ex dx dx −x 3 x2 = −xe + 2x e 3. Compute the integral (a) Compute the integral Z π cos x dx −π 4 CALCULUS I HOMEWORK 11 Solution: Integrating Z π −π π cos x dx = sin x −π = sin π − sin(−π) = 0 (b) Compute the integral Z 2 √ x 2x − 1 dx 1 Solution: Let u = 2x − 1. Then du = 2dx and x = 21 (u + 1). Making the substitution Z u=3 Z x=2 √ √ du 1 (u + 1) u x 2x − 1 dx = 2 u=1 2 x=1 Z u=3 1 3/2 (u + u1/2 ) du = 4 u=1 1 3 2 5/2 2 3/2 = u + u 4 1 5 3 1 2 5/2 2 3/2 1 2 5/2 2 3/2 = 3 + 3 − 1 + 1 4 5 3 4 5 3 1 2 1/2 1 1/2 4 = 3 3 + 33 − 10 6 15 4 7√ 3− = 5 15 (c) Compute the integral Z π 2 sin x cos(cos x) dx 0 Solution: Let u = cos x. Then du = − sin xdx. Making the substitution Z x= π Z u=0 2 sin x cos(cos x) dx = − cos udu x=0 u=1 Z 1 = cos u du 0 1 = sin u 0 = sin(1) CALCULUS I HOMEWORK 11 5 (d) Compute the integral Z 1 0 dx √ (1 + 2 x)2 √ √ Solution: Let u = 1 + 2 x. Then du = x−1/2 dx and x = 21 (u − 1). It √ follows that dx = xdu = 12 (u − 1)du. Making the substitution Z x=1 Z u=3 dx 1 1 √ 2 = (u − 1) du 22 u (1 + 2 x) x=0 u=1 Z 1 3 −1 (u − u−2 ) du = 2 1 1 3 −1 = ln u + u 2 1 1 1 1 = ln 3 + − ln 1 + 1 2 3 2 ln 3 1 = − 2 3 (e) Compute the integral Z π ln(1 + ex ) ex dx 1 + ex 0 1 x Solution: Let u = ln(1 + ex ). Then du = 1+e x e dx, Making the substitution Z x=π Z u=ln(1+π) x x ln(1 + e ) e dx = u du 1 + ex x=0 u=ln 2 ln(1+π) 2 u = 2 ln 2 1 2 2 = (ln(1 + π)) − (ln 2) 2 4. Find the limit 1 lim h→0 h Solution: Use l’Hopital’s rule. Rh cos tdt lim 0 h→0 h Z h cos tdt. 0 = = lim d dh Rh 0 h→0 lim cos h h→0 = 1. cos tdt 1 6 CALCULUS I HOMEWORK 11 5. Let Z F (x) = x 2x sin t dt. t At what value of x in the interval (0, 3π 2 ) does F (x) attain a local minimum? Solution: Taking the derivative Z c Z 2x sin t sin t d 0 dt + dt F (x) = dx t t x c Z x Z 2x sin t sin t d − dt + dt = dx t t c c sin x sin 2x +2 = − 2x x 1 sin 2x − sin x = x Setting F 0 (x) = 0 gives the equation sin x = sin 2x = 2 sin x cos x. If sin x = 0, the only solution in (0, 3π 2 ) is x = π. If sin x 6= 0, we must solve 1 cos x = . 2 3π π The solution in (0, 2 ) is x = 3 . Hence the critical points of F (x) in (0, 3π 2 ) are x = π and x = π3 . • On (0, π3 ), F 0 > 0 so F is increasing (can test x = π4 ) • On ( π3 , π), F 0 < 0 so F is decreasing (can test x = π2 ) π 0 • On (π, 3π 2 ), F > 0 so F is decreasing (can test x = π + 4 ) It follows that x = π is a local minimum.
© Copyright 2026 Paperzz