Stokes and Divergence Theorems 1. Verify that Stokes theorem is

Stokes and Divergence Theorems
1. Verify that Stokes theorem is valid for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฅ๐‘ฆ, ๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘งโŒช and ๐‘† being the surface of intersection
between the plane ๐‘ฅ + ๐‘ฆ + ๐‘ง = 1 and the cylinder ๐‘ฅ 2 + ๐‘ฆ 2 = 9. Use the boundary of ๐‘† as the curve for the line integral.
2. Evaluate โˆฎ๐ถ ๐นโƒ‘ โˆ™ ๐‘‘๐‘Ÿโƒ‘ where ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ0, 0, ๐‘ฆ๐‘งโŒช and ๐ถ is the curve of intersection of ๐‘ง = 1 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘ฆ 2 and the planes
๐‘ฅ = 0, ๐‘ฆ = 0, and ๐‘ง = 0.
3. Evaluate the integral โˆฏ๐‘† ๐นโƒ‘ โˆ™ ๐‘‘๐‘†โƒ‘ for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฆ, โˆ’2, ๐‘ฅโŒช and surface ๐‘† the rectangular box given by
|๐‘ฅ| โ‰ค 2, 0 โ‰ค ๐‘ฆ โ‰ค 1, and 0 โ‰ค ๐‘ง โ‰ค 1.
4. Evaluate the integral โˆฌ๐‘† โˆ‡ × ๐นโƒ‘ โˆ™ ๐‘‘๐‘†โƒ‘ for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฅ 2 ๐‘ง, 0, 0โŒช and ๐‘† being the surface
๐‘ฅ = 4 โˆ’ ๐‘ฆ 2 โˆ’ ๐‘ง 2 with ๐‘ฅ โ‰ฅ 0.
Note: since any surface with the same boundary must be equivalent, you could choose to use a more simple surface
with the same boundaryโ€ฆ
5. Faradayโ€™s Law in electricity and magnetism states that
โˆฎ ๐ธโƒ‘โƒ‘ โˆ™ ๐‘‘๐‘Ÿโƒ‘ = โˆ’
๐ถ
๐‘‘
โƒ‘โƒ‘ โˆ™ ๐‘›ฬ‚ ๐‘‘๐ด
โˆฌ๐ต
๐‘‘๐‘ก
๐‘†
โƒ‘โƒ‘
โƒ‘โƒ‘ × ๐ธโƒ‘โƒ‘ = โˆ’ ๐œ•๐ต.
Use stokes theorem to prove that this is equivalent to one of Maxwellโ€™s Equations, namely โˆ‡
๐œ•๐‘ก
Stokes and Divergence Theorems
1. Verify that Stokes theorem is valid for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฅ๐‘ฆ, ๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘งโŒช and ๐‘† being the surface of intersection
between the plane ๐‘ฅ + ๐‘ฆ + ๐‘ง = 1 and the cylinder ๐‘ฅ 2 + ๐‘ฆ 2 = 9. Use the boundary of ๐‘† as the curve for the line integral.
2. Evaluate โˆฎ๐ถ ๐นโƒ‘ โˆ™ ๐‘‘๐‘Ÿโƒ‘ where ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ0, 0, ๐‘ฆ๐‘งโŒช and ๐ถ is the curve of intersection of ๐‘ง = 1 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘ฆ 2 and the planes
๐‘ฅ = 0, ๐‘ฆ = 0, and ๐‘ง = 0.
3. Evaluate the integral โˆฏ๐‘† ๐นโƒ‘ โˆ™ ๐‘‘๐‘†โƒ‘ for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฆ, โˆ’2, ๐‘ฅโŒช and surface ๐‘† the rectangular box given by
|๐‘ฅ| โ‰ค 2, 0 โ‰ค ๐‘ฆ โ‰ค 1, and 0 โ‰ค ๐‘ง โ‰ค 1.
4. Evaluate the integral โˆฌ๐‘† โˆ‡ × ๐นโƒ‘ โˆ™ ๐‘‘๐‘†โƒ‘ for the vector field ๐นโƒ‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = โŒฉ๐‘ฅ 2 ๐‘ง, 0, 0โŒช and ๐‘† being the surface
๐‘ฅ = 4 โˆ’ ๐‘ฆ 2 โˆ’ ๐‘ง 2 with ๐‘ฅ โ‰ฅ 0.
Note: since any surface with the same boundary must be equivalent, you could choose to use a more simple surface
with the same boundaryโ€ฆ
5. Faradayโ€™s Law in electricity and magnetism states that
โˆฎ ๐ธโƒ‘โƒ‘ โˆ™ ๐‘‘๐‘Ÿโƒ‘ = โˆ’
๐ถ
๐‘‘
โƒ‘โƒ‘ โˆ™ ๐‘›ฬ‚ ๐‘‘๐ด
โˆฌ๐ต
๐‘‘๐‘ก
๐‘†
โƒ‘โƒ‘
๐œ•๐ต
Use stokes theorem to prove that this is equivalent to one of Maxwellโ€™s Equations, namely โƒ‘โˆ‡โƒ‘ × ๐ธโƒ‘โƒ‘ = โˆ’ ๐œ•๐‘ก