38 ो 2009 ᑈ 12 ᳳ 12 ᳜ ⿔᳝䞥ሲᴤ᭭ϢᎹ Vol.38, No.12 December 2009 RARE METAL MATERIALS AND ENGINEERING CaH2-TiO2-Al ԧ㋏ࠊ TiAl ড়䞥ডᑨᴎࠊⱘ䅼 ڜڲ 1ēܑ ཧ 1ēюစࢌ 2ēܑ໌ 1 (1. ≜䰇⧚Ꮉᄺˈ䖑ᅕ ≜䰇 110168) (2. ≜䰇㟾ϝ㧅≑䔺থࡼᴎࠊ䗴᳝䰤݀ৌˈ䖑ᅕ ≜䰇 110179) ᨬ 㽕˖䗮䖛⛁ᄺ䅵ㅫৃⶹˈ CaH2-TiO2-Al ԧ㋏Ё⫼䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥ᰃৃ㛑ⱘDŽ䆹ডᑨЎϔ㑻ডᑨˈ䞛 ⫼⎆-ডᑨḌൟ䅼݊ডᑨᴎࠊDŽ㒧ᵰ㸼ᯢˈTiO2 䖬ॳ៤㒃䞥ሲ Ti 䴲ᐌ䖙䗳ˈϡᰃডᑨⱘࠊℹ偸ˈ⬠䴶࣪ᄺড ᑨЎডᑨⱘࠊ⦃㡖DŽডᑨⱘ㸼㾖⌏࣪㛑Ў 76.84 kJ·mol-1DŽᔧ CaH2 ⱘ䞣Ў⧚䆎䅵ㅫ䞣ⱘ 1.5 סᯊডᑨ˗ߚܙAl ㉝ⱘ㉦ ᑺᇍডᑨ≵᳝ᕅડ˗ডᑨ⏽ᑺЎ 1423 Kǃডᑨᯊ䯈Ў 8 h ᯊˈTiAl ড়䞥ⱘ䕀࣪⥛䖥 100%DŽ ݇䬂䆡˖CaH2-TiO2-Al ԧ㋏˗TiAl ড়䞥˗ডᑨᴎࠊ Ё⊩ߚ㉏ো˖TF123.1+21 ᭛⤂ᷛ䆚ⷕ˖A ᳝ γ Ⳍ㒧ᵘⱘ TiAl ড়䞥ˈ⬅Ѣ݊ᆚᑺᇣǃᔎᑺ ᭛ゴ㓪ো˖1002-185X(2009)12-2151-04 佪ߚܜ㾷៤ Ca Ϣ H2ˈCa Al Ў⎆ᗕˈϨ Ca 㪌⇨य़ 催ǃᡫ㷩ব㛑ᔎǃ催⏽ᄺᗻ㛑ᡫ⇻࣪ᗻӬᓖ 䕗催ˈTiǃTiO2ǃCaOǃTi3AlǃTiAl TiAl3 ഛЎᗕDŽ ㄝ⡍⚍ˈᏆ䍞ᴹ䍞ᓩ䍋⾥ᄺ⬠ᎹϮ⬠Ҏⱘ݇ ৃ㛑থ⫳ⱘডᑨঞ݊ডᑨঢ়Ꮧᮃ㞾⬅㛑䅵ㅫབϟ˖ ⊼ [1,2] DŽᴀᅲ偠䞛⫼䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥DŽᅗᰃ ᇚ䖬ॳ TiO2 Ϣ⫳៤ TiAl ড়䞥㒧ড়ৠϔ䖛ЁˈⳈ ࠊߎ TiAl ড়䞥ⱘϔℹ⊩DŽ䆹ᮍ⊩䆒ᡩ䌘ᇥǃॳ ᴤ᭭៤ᴀԢǃ⫳ѻ਼ᳳⷁˈᑊϨᇍ⦃๗≵᳝∵ᶧDŽ ᅲ 偠 ҹ TiO2 ㉝ǃCaH2 ㉝ Al ㉝Ўॳ᭭DŽᇚ TiO2 Al ҹ 1:1˄䋼䞣↨ˈϟৠ˅ⱘ䜡↨ˈϢ䗖䞣ⱘ CaH2 CaH2=Ca+H2↑ TiO2(s)+2Ca(1)+1/3Al(1)=2CaO(s)+1/3Ti3Al(s) ˄1˅ -1 ∆G1=–370 530+39.205T (J·mol ) TiO2(s)+2Ca(1)+Al(1)=2CaO(s)+TiAl(s) ˄2˅ -1 ∆G2=–416 496+49.82T (J·mol ) TiO2(s)+2Ca(1)+3Al(1)=2CaO(s)+TiAl3(s) ˄3˅ -1 ∆G3=–506 014+87.95T (J·mol ) 1 Ўডᑨ˄1˅ǃ˄2˅˄3˅ⱘঢ়Ꮧᮃ㞾⬅㛑 ⏋ড়ഛࣔˈϔᅮय़ϟࠊ៤ሎᇌЎ 10 mm×10 mm× ᳆㒓ˈ∆G1>∆G2>∆G3DŽৃⶹ˖ CaH2-TiO2-Al ԧ㋏Ёˈ 50 mm ⱘḋഫDŽᇚ㺙᳝䆹ḋഫⱘഽථᬒܹⳳぎডᑨ఼ 1112~1600 K ϟ䖬ॳᠽᬷডᑨ佪⫳ܜ៤ TiAl3DŽ⬅Ѣ ˈݙ⇽⇨ֱᡸϟˈࡴ⛁㟇ϔᅮⱘ⏽ᑺ˄1112~1600 K˅ˈ TiO2 Ϣ Al ⱘ䜡↨Ў 1:1ˈTiAl3 Ϣ Ti ᇚ䖯ϔℹডᑨ⫳ ᑊֱ⏽ϔᅮⱘᯊ䯈ˈՓ݊থ⫳䖬ॳᠽᬷডᑨˈ⫳៤ TiAl ៤ TiAlDŽ ড়䞥DŽ TiAl3(s)+2Ti(s)=3TiAl(s) ᇚডᑨৢⱘ䆩ḋ䱣♝ैދ㟇ᅸ⏽ˈ⋫এ CaO ঞ –300 –320 ডᑨ⫳៤ TiAlড়䞥㉝ⱘ䋼䞣 α = × 100% ⧚䆎⫳៤ TiAlড়䞥㉝ⱘ䋼䞣 –340 –380 ∆G3 –400 –420 1100 1300 1500 T/K CaH2-TiO2-Al ԧ㋏Ёˈ 1112~1600 K ϟˈ䖬 ḍ᭛⤂[4]ৃⶹ˖ 1112~1600 K ডᑨ⏽ᑺϟˈCaH2 ∆G2 –360 ⛁ᄺߚᵤ ॳᠽᬷডᑨ㛑⫳៤ TiǃCaOǃTi3AlǃTiAl TiAl3 [3]DŽ ∆G1 ∆G/kJ·mol-1 ԭⱘ Caˈ㦋ᕫ TiAl ড়䞥DŽ ḍϟᓣ䅵ㅫ TiAl ড়䞥㉝ⱘ䕀࣪⥛ α˖ ˄4˅ 1 ডᑨ(1)ǃ(2)ǃ(3)ⱘঢ়Ꮧᮃ㞾⬅㛑 Fig.1 ∆G of reaction (1), (2), (3) ᬊࠄ߱〓᮹ᳳ˖2008-11-20˗ᬊࠄׂᬍ〓᮹ᳳ˖2009-06-02 㗙ㅔҟ˖䛁ᑓᗱˈཇˈ1963 ᑈ⫳ˈमˈᬭᥜˈ≜䰇⧚Ꮉᄺᴤ᭭⾥ᄺϢᎹᄺ䰶ˈ䖑ᅕ ≜䰇 110168ˈ⬉䆱˖024-24680841ˈE-mail: [email protected] g2152g ⿔᳝䞥ሲᴤ᭭ϢᎹ 38 ो ∆G4=–77 794–0.75T (J·mol-1) 100 90 K ⏽ᑺ㣗ೈ∆ˈݙG4<0ˈℸ TiAl3 Ϣ Ti ডᑨ⫳៤ TiAl 80 α/% 2 Ўডᑨ˄4˅ⱘঢ়Ꮧᮃ㞾⬅㛑DŽ 1112~1600 ᰃৃ㛑ⱘDŽ 70 3 Ў 1:1 ⱘ TiO2 Al Ϣ䗖䞣ⱘ CaH2 1423 K 60 ϟֱ⏽ 8 h ⱘ䖬ॳᠽᬷѻ⠽ⱘ XRD 䈅DŽ䆹⫳៤⠽ᰃ 50 1.0 1.2 1.4 1.6 1.8 2.0 TiAl ড়䞥DŽ䇈ᯢ CaH2-TiO2-Al ԧ㋏Ёˈ 1112~ x 1600 K ϟˈ䞛⫼䖬ॳᠽᬷডᑨৃҹࠊ TiAl ড়䞥㉝DŽ 4 ⧚䆎࣪ᄺ䅵䞣↨ᇍ䕀࣪⥛ⱘᕅડ ডᑨᴎࠊⱘ䅼 Fig.4 TiO2 㹿䖬ॳ៤ Ti 䖬ॳডᑨ䖛ЁˈCaH2 1053 K ᯊߚ㾷៤ Ca H2ˈCa ᇚ TiO2 䖬ॳ៤㒃䞥ሲ TiDŽ䆹ডᑨ䖯㸠ᕫ䴲 ᐌ䖙䗳ˈϡᰃᭈϾডᑨⱘࠊ⦃㡖DŽ 䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥Ўϔ㑻ডᑨ 䖬ॳࠖ CaH2 ᖙ乏䖛䞣DŽḍডᑨ˄1˅ˈ䖬ॳ 1 mol ⱘ TiO2 䳔㽕 2 mol ⱘ CaH2DŽnTiO2:n2Ca=1:xDŽ݊Ё x=1 ᰃ⧚䆎࣪ᄺ䅵䞣↨ˈߚ߿প x=1.0ˈ1.5ˈ1.7 2.0ˈ 1423 Kˈֱ⏽ᯊ䯈 8 h 䖯㸠ᅲ偠DŽTiAl ড়䞥䕀࣪⥛ Ϣ CaH2 ࡴܹ䞣ⱘ݇㋏བ 4 ᠔⼎DŽ⬅ 4 ৃⶹˈ䱣ⴔ CaH2 䞣ⱘࡴˈTiAl ড়䞥ⱘ䕀࣪⥛DŽᔧ CaH2 ⱘ ࡴܹ䞣Ў⧚䆎䅵ㅫ䞣ⱘ 1.5 סᯊˈTiAl ড়䞥ⱘ䕀࣪⥛ 䖒ࠄ 95% ҹϞDŽПৢݡࡴ CaH2 ⱘ䞣ˈTiAl ড়䞥ⱘ 䕀࣪⥛᮴ᯢᰒDŽডᑨ䖛Ё CaH2 ⱘࡴܹ䞣Ў⧚ 䆎䅵ㅫ䞣ⱘ 1.5 ↨ס䕗䗖ᅰDŽℸᯊ TiAl ড়䞥ⱘ䕀࣪⥛ Ϣডᑨ⠽⌧ᑺ᮴݇ˈ䇈ᯢ䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥ড ᑨᰃϔ㑻ডᑨ [5]DŽ Al ㉝ⱘᠽᬷ ҹϡৠ㉦ᑺⱘ Al ㉝Ўॳ᭭ˈᡞ 1:1 ⱘ TiO2 Al Ϣ 1.5 ⧚ס䆎䅵ㅫ䞣ⱘ CaH2 ϡৠⱘ⏽ᑺϟǃֱ⏽ϡ ৠⱘᯊ䯈䖯㸠䖬ॳᠽᬷডᑨDŽ㒧ᵰབ 5 ᠔⼎DŽৃҹ ⳟࠄ˖ডᑨ⏽ᑺঞֱ⏽ᯊ䯈ⳌৠⱘᴵӊϟˈAl ㉝ⱘ ㉦ᑺᇍ TiAl ড়䞥ⱘ䕀࣪⥛≵᳝ᕅડDŽЎডᑨ⏽ᑺ催 Ѣ Al ⱘ❨⚍ˈAl ҹ䴲ᗕⱘᔶᓣখϢডᑨˈᬙ Al ㉝ ⱘ㉦ᑺᇍডᑨ≵᳝ᕅડDŽ ⹂ᅮЏ㽕ᠽᬷܗ㋴ᰃⷨおᭈϾডᑨⱘ⸔DŽTi Ϣ Al ϸ㗙᳝ⴔⳌѦᠽᬷⱘ⫼ [6]ˈᔧ⏽ᑺԢѢ Al ⱘ❨⚍ ᯊˈTi Ϣ Al ⱘⳌѦᠽᬷ⫼ⳌᔧˈԚᰃ Ti Al Ёⱘ ⒊ᑺ䖰䖰ᇣѢ Al Ti Ёⱘ⒊ᑺˈ㗠 Al ᰃЏ㽕 ⱘᠽᬷऩ[ ܗ3]DŽᔧ⏽ᑺ催Ѣ Al ⱘ❨⚍㗠ԢѢ Ti ⱘ❨ ⚍ᯊˈḍߚᄤ䖤ࡼᄺৃⶹˈ⎆ᗕ Al ⱘߚᄤࡼ㛑ᇚᯢ –-78.6 ∆G/(kJ·mol) -1 –-78.5 ᰒᦤ催ˈAl ᰃЏ㽕ᠽᬷܗ㋴DŽ CaH2-TiO2-Al ԧ㋏Ёˈ –-78.7 䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥㉝ˈᰃ 1112~1600 K ϟ䖯 –-78.8 㸠ⱘˈℸ⏽ᑺҟѢ Alǃ Ti ❨⚍П䯈ˈᬙ Al ᰃЏ㽕ᠽ –-78.9 –-79.0 ᬷܗ㋴DŽ1423 K ⏽ᑺϟˈֱ⏽ 6 hˈAl Ti ᠽᬷⱘᔶ –-79.1 1100 1200 1300 1400 1500 1600 T/K 䴶᳝ϔ㭘ሖ Al 㝰ˈᎺջЎ㒃䩯ˈЁ䯈Ў Ti-Al ড়䞥ऎDŽ 2 ডᑨ˄4˅ⱘঢ়Ꮧᮃ㞾⬅㛑 Fig.2 ∆G of reaction (4) 30000 25000 䉠བ 6 ᠔⼎DŽ䆹ডᑨ⏽ᑺϟˈAl Ў⎆ᗕDŽেջ㸼 䇈ᯢ䆹ডᑨ⏽ᑺϟ Al ᰃЏ㽕ᠽᬷܗ㋴DŽ TiAl ড়䞥ⱘ⫳៤ ⬅⛁ᄺ䅵ㅫৃⶹˈTi Al ডᑨ⫳ܜ៤ TiAl3DŽ 100 Intensity/cps TiAl 20000 0 20 α/% 15000 10000 5000 3 1373 K 21.6 ks 80 1373 K 14.4 ks 60 1273 K 14.4 ks 40 20 30 40 50 60 70 80 0 0 2θ/(°) Fig.3 Effect of x on α 1423 K ᘦ⏽ 8 h ḋકⱘ XRD 䈅 XRD pattern of the sample heated at 1423 K for 8 h 1000 2000 3000 Al Powdery Granularity/µm 5 Fig.5 Al ㉝㉦ᑺᇍ TiAl ড়䞥䕀࣪⥛ⱘᕅડ Effect of Al powder granularity on α 12 ᳳ 䛁ᑓᗱㄝ˖CaH2-TiO2-Al ԧ㋏ࠊ TiAl ড়䞥ডᑨᴎࠊⱘ䅼 g2153g ㉝ˈᬒഽථЁ˗ 1473 K ϟˈֱ⏽ 4 hDŽডᑨৢ ⺼এ㸼䴶 20 µm 㸼ሖࠊ៤ 1#䆩ḋˈ䖯㸠 X ᇘ㒓㸡ᇘẔ ⌟ˈ㒧ᵰབ 9 ᠔⼎DŽৃҹⳟࠄˈ䆹䆩ḋࣙⱘ៤ߚ ᳝˖ԧ Tiˈডᑨѻ⠽ TiAl3ǃTiAl ঞᠽᬷࠄ Ti ݙ䚼 ডᑨⱘ AlDŽAl ⱘᄬ䇈ᯢ Al ᠽᬷࠄ Ti ݙ䚼ৢᑊ≵ ᳝ेࠏϢ Ti ডᑨˈݙǃᠽᬷⱘ䗳ᑺѢ⬠䴶ডᑨⱘ 500 µm 6 Fig.6 䗳ᑺˈߚܙ䆕ᅲ⬠䴶ডᑨᰃ䖬ॳᠽᬷ⊩ࠊ TiAl ড়䞥 ডᑨⱘࠊ⦃㡖DŽ Al Ti ᠽᬷⱘ SEM ✻⠛ ᇍѢ⬠䴶࣪ᄺডᑨЎࠊ⦃㡖ᯊˈডᑨ䗳⥛ফ⏽ SEM image of Al diffusion to Ti ᑺᕅડ䕗ˈ⏽ᑺ䍞催ˈডᑨ䗳⥛䍞˗ডᑨᯊ䯈䍞 ⬅Ѣ Al ᰃЏ㽕ⱘᠽᬷऩˈܗডᑨሖ䴶ⱘ Al ঞ TiAl3 䭓ˈTiAl ড়䞥䕀࣪⥛䍞催DŽ䖭Ϣᅲ偠㒧ᵰⳌਏড়DŽҢ Ёⱘ Alˈ䗮䖛ѻ⠽ሖᠽᬷࠄডᑨ⬠䴶Ϣ Ti 㒻㓁ডᑨ 7 Ёৃҹⳟࠄ˖ᔧডᑨ⏽ᑺЎ 1423 Kˈডᑨᯊ䯈Ў ⫳៤ TiAl ড়䞥DŽ 8 h ᯊˈTiAl ড়䞥ⱘ䕀࣪⥛䖥 100%DŽ ডᑨ䗳⦃㡖ⱘ⹂ᅮ 㸼㾖⌏࣪㛑ⱘ䅵ㅫ 䞛⫼⎆-ডᑨḌൟᴹߚᵤ䖬ॳᠽᬷ⊩ࠊ TiAl ড় 䞥 ড ᑨ DŽ ϔ 㑻 ⎆ - ড ᑨ Ḍ ൟ ᭄ ᄺ 㸼 䖒 [7] ডᑨḌൟডᑨ䗳⥛ᮍৃҹ㸼⼎Ў˖ k′t=1–(1–α)1/3 ˄9˅ [7] ᓣ Ў˖ ḍ䰓㌃ሐРᮃ݀ᓣ 㸼㾖⌏࣪㛑䅵ㅫᓣЎ˖ 1/3 2/3 t=A1α+A2[1–(1–α) ]+ A3[1–(1–α) –2/3α] ˄5˅ ᓣЁ˖A1ǃA2ǃA3 Ўᕙᅮ㋏᭄DŽ Ea 1 1 ×( − ) RT T2 T1 ln ( k '2 / k '1 ) = − ᓣЁ˖ k' ——ডᑨ䗳⥛ᐌ᭄˗ ᭈϾডᑨ⬅ᠽᬷ⫼ࠊᯊ˖ t = A1α ˄6˅ 1/ 3 t = A2 [1 − (1 − α ) ] Ea ——⌏࣪㛑˗ -1 R ——⇨ԧᐌ᭄ˈR=8.314 J·(K·mol) ˗ ᭈϾডᑨ⬅⎆-⬠䴶࣪ᄺডᑨࠊᯊ˖ ˄7˅ ᭈϾডᑨ⬅ݙᠽᬷࠊᯊ˖ T——ডᑨ⏽ᑺDŽ ḍ 8 ∖ߎϡৠডᑨ⏽ᑺϟˈࡼᄺߑ᭄ t = A3 [1 − (1 − α )2 / 3 − 2 / 3α ] ˄8˅ f(α)=1–(1–α)1/3 ᇍডᑨᯊ䯈 t ⱘ᭰⥛ˈेডᑨ䗳⥛ᐌ᭄ ᡞ 1:1 ⱘ TiO2 Al Ϣ 1.5 ⧚ס䆎䞣ⱘ CaH2ˈ 2ǃ4ǃ6 8 hˈTiAl ড়䞥䕀࣪⥛Ϣডᑨ⏽ᑺঞֱ⏽ᯊ 䯈݇㋏བ 7 ᠔⼎DŽ ᇚ 7 Ё TiAl ড়䞥䕀࣪⥛ߚ߿ҷܹࡼᄺᮍ 1.0 f(α)=1–(1–α)1/3 1223ˈ1273ˈ1323ˈ1373 ঞ 1423 K ⏽ᑺϟˈֱ⏽ 0ǃ ˄6˅ǃ˄7˅ǃ˄8˅Ёˈডᑨᯊ䯈 t াϢᮍ˄7˅ 1423 1373 1323 1273 1223 0.8 0.6 K K K K K 0.4 0.2 0.0 ᳔䖥Ⳉ㒓݇㋏ˈབ 8 ᠔⼎DŽ䇈ᯢ⎆-⬠䴶࣪ᄺড 0 2 ᇚϔഫ㒃䩯ಯ਼य़Ϟ䪱㉝ˈ䴶ݡय़Ϟϔሖ CaH2 8 ডᑨᯊ䯈 t Ϣ f(α)=1–(1–α)1/3 ݇㋏ 8 60 40 1423 1373 1323 1273 1223 20 0 2 4 K K K K K 6 1200 1000 800 600 400 200 0 10 8 Time/h Relationship between α, reaction temperature T and 30 50 70 90 2θ/(°) 䕀࣪⥛Ϣডᑨ⏽ᑺঞֱ⏽ᯊ䯈ⱘ݇㋏ heat preservation time t Ti Al TiAl 3 TiAl Intensity/cps α/% 80 Fig.7 6 Fig.8 Relationship between the reaction time t and f(α)=1–(1–α)1/3 100 7 4 t/h ᑨᰃᭈϾডᑨⱘࠊ⦃㡖DŽ 0 ˄10˅ 9 Fig.9 1#䆩ḋⱘ XRD 䈅 XRD pattern for sample 1# g2154g ⿔᳝䞥ሲᴤ᭭ϢᎹ k′ˈҷܹᓣ˄10˅Ёˈ lnk′Ϣ 1/T ⱘ݇㋏᳆㒓བ 10 ᠔⼎DŽ 38 ो 4) 䞛⫼ϔ㑻⎆-ডᑨḌൟ䅼䖬ॳᠽᬷ⊩ ࠊ TiAl ড়䞥㉝ˈ⎆-⬠䴶࣪ᄺডᑨᰃᭈϾডᑨⱘ ⬅ 10 ∖ߎ ln k′ᇍ 1/T ⱘⳈ㒓᭰⥛ ࠊ⦃㡖DŽ㸼㾖⌏࣪㛑Ў 76.84 kJ·mol-1 l = –9.24118ˈ 㸼㾖⌏࣪㛑Ў˖ খ㗗᭛⤂ -1 ln(k′/s-1) Ea= –1000×l×R=76.84 kJ·mol DŽ [1] Qu H P, Wang H M. Materials Science and Engineering[J], 2007, 466: 187 –10.6 –10.8 –11.0 –11.2 –11.4 –11.6 –11.8 [2] Liu Xiaofeng (߬ᰧዄ), He Yuehui(䌎䎗䕝), Liu Yong(߬ ) et al. Rare Metal Materials and Engineering(⿔᳝䞥ሲᴤ᭭Ϣ Ꮉ)[J], 2005, 34(2): 169 [3] Yue Yunlong(ኇѥ啭), Wu Haitao(ਈ⍋⍯), Wu Bo(ਈ ⊶) et 0.70 0.78 0.74 0.82 h103·(T/K)-1 al. Journal of Jinan University (Natural Edition)(⌢फᄺᄺ )[], 2005. 19(2): 106 [4] Liang Yingjiao(ṕ㣅ᬭ), Che Yinchang(䔺㤿ᯠ). Handbook of lnk′Ϣ 1/T ⱘ݇㋏᳆㒓 Thermodynamical Data for Inorganic Substance(᮴ᴎ⠽⛁ The relationship between lnk′ and 1/T ᄺ᭄[)ݠM]. Shenyang: Northeastern University Press, 10 Fig.10 References 1993 [5] Cheng Lanzheng(݄ᕕ), Zhang Yanghao(ゴ➩䈾). Physical 㒧䆎 Chemistry(⠽⧚ ࣪ᄺ)[M]. Shanghai: Shanghai Scientific & 1) TiO2 Ϣ Al ᣝ 1:1˄䋼䞣↨˅⏋ড়ˈܹࡴݡ䗖䞣 ⱘ CaH2ˈ 1112~1600 K ⏽ᑺϟ㛑ࠊᕫ TiAl ড়䞥DŽ Technical Press, 1998 [6] Xu Lei(ᕤ ⺞). Synthesis of Ti/TiAl3 Laminate Composites 2) CaH2-TiO2-Al ԧ㋏Ёˈ䖬ॳᠽᬷ⊩ࠊ TiAl and γ-TiAl Alloys by Reactive Diffusion Routes(Ti/TiAl3ሖ⢊ ড়䞥ᰃϔ㑻ডᑨˈCaH2 ߚ㾷៤ Ca Ϣ H2ˈCa 䖬ॳ TiO2 ড় ᴤ ᭭ Ϣ TiAl 䞥 ሲ 䯈 ࣪ ড় ⠽ ⱘ ড ᑨ ᠽ ᬷ ࠊ ᡔ ᴃ )[D]. ডᑨ䴲ᐌ䖙䗳ˈ⫳៤ TiDŽCaH2 ⱘࡴܹ䞣Ў⧚䆎䅵ㅫ䞣 Beijing: Graduate School of the Chinese Academy of Science, ⱘ 1.5 סᯊডᑨ㛑ߚܙ䖯㸠DŽ 2005 3) Al ㉝ᰃЏ㽕ᠽᬷܗ㋴˗Al ㉝ⱘ㉦ᑺᇍডᑨ≵ ᳝ᕅડDŽ [7] Hua Yixin(ढϔᮄ). Metallurgy Process Kinetics(ފ䞥䖛ࡼ ᄺᇐ䆎)[M]. Beijing: Metallurgy Industry Press, 2004 Discussion on Reaction Mechanism of TiAl Alloy Prepared in CaH2-TiO2-Al System Guo Guangsi1, Hu Yan1, Cheng Yongjun2, Hu Xiaomei1 (1. Shenyang Ligong University, Shenyang 110168, China) (2. Shenyang Aerospace Mitsubishi Motors Engine Manufacturing CO., LTD, Shenyang 110179, China) Abstract: It is possible on thermodynamics to prepare TiAl alloy in CaH2-TiO2-Al system by Reduction-Diffusion method. It is a first-class reaction, whose mechanism was discussed by liquid-solid contracting core model. Results show that TiO2 is reduced to Ti rapidly, which is not the rate-controlling step of the reaction. The interfacial chemical reaction is the rate-controlling step of the reaction. The apparent activation energy of the reduction-diffusion reaction is 76.84 kJ/mol. There is sufficient reaction when the entering quantity of CaH2 is 1.5 times of theoretic quantity. Al powder granularity doesn’t influence the reaction. The transformation efficiency of TiAl alloy is about 100% when the reaction temperature is 1423 K and the reaction time is 8 h. Key words: CaH2-TiO2-Al system; TiAl alloy; reaction mechanism Biography: Guo Guangsi, Ph. D., Professor, College of Material Science and Engineering, Shenyang Ligong University, Shenyang 110168, P. R. China, Tel: 0086-24-24680841, E-mail: [email protected]
© Copyright 2025 Paperzz