JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 PAGES 2483^2521 2011 doi:10.1093/petrology/egr053 Consequences of Channelized and Diffuse Melt Transport in Supra-subduction Zone Mantle: Evidence from the Voykar Ophiolite (Polar Urals) V. G. BATANOVA1,2,3*, I. A. BELOUSOV3, G. N. SAVELIEVA4 AND A. V. SOBOLEV1,2,3 1 INSTITUT DES SCIENCES DE LA TERRE, UNIVERSITE J. FOURIER, GRENOBLE 1, 1381, RUE DE LA PISCINE, 38400 ST-MARTIN D’HERES, FRANCE 2 MAX-PLANCK-INSTITUT FU«R CHEMIE, ABT. BIOGEOCHEMIE, POSTFACH 3060, 55020 MAINZ, GERMANY 3 VERNADSKY INSTITUTE OF GEOCHEMISTRY AND ANALYTICAL CHEMISTRY, RUSSIAN ACADEMY OF SCIENCES, KOSYGIN STR. 19, 119991, MOSCOW, RUSSIA 4 GEOLOGICAL INSTITUTE, RUSSIAN ACADEMY OF SCIENCES, PYZHEVSKII, 7, MOSCOW, 119017 RUSSIA RECEIVED DECEMBER 22, 2010; ACCEPTED OCTOBER 7, 2011 The well-preserved, 6 km thick mantle section of the Voykar ophiolite in the Polar Urals contains numerous dunite bodies as well as dunite and pyroxenite veins within the host harzburgites. These rocks provide evidence of a composite asthenosphere^lithosphere history of partial melting, plastic deformation, multi-stage melt migration and melt^rock interaction. We investigated the petrology and geochemistry of multiple samples of the different mantle lithologies to define the sequence of mantle melting and melt migration events, as well as the composition of the percolating melts. Spinel harzburgites sampled far from dunite bodies and pyroxenite veins have fairly homogeneous bulk-rock, olivine and Cr-spinel compositions and are interpreted as residues after 14^16% of partial melting, most probably at a mid-ocean ridge. Near the contacts with the dunite bodies and pyroxenite veins, spinel peridotites demonstrate distinct compositional changes marking different stages of melt migration in a supra-subduction environment. At the earliest stage, which probably took place in the lithosphere^asthenosphere boundary of the forearc mantle at temperature between 1050 and 12008C and a pressure of 1^1·7 GPa, the dunite bodies formed as a result of stress-driven focused melt flow. The latest stage melts moved in cracks under a conductive cooling regime within the lithospheric mantle section when it was horizontally displaced towards the *Corresponding author.Telephone: 33 (0)4 47 514104. Fax: 33 (0)4 76 51 40 58. E-mail: [email protected] trench. The trace element composition of the melts that migrated through the mantle section during dunite formation have geochemical characteristics like those of high-Ca boninites. The role of the slab-derived component progressively increased through time and late-stage, pyroxenite-forming melts were conspicuously rich in SiO2 and H2O. These low-viscosity melts impregnated the surrounding harzburgites, modifying or obliterating their primary composition. KEY WORDS: mantle peridotite; melt transport; dunite channels; clinopyroxene; amphibole; boninite melts; supra-subduction I N T RO D U C T I O N Processes operating within the Earth’s upper mantle close to the lithosphere^asthenosphere boundary control the manner in which the lithosphere forms and evolves. Numerous studies of ophiolitic and abyssal peridotites published in the last two decades have convincingly demonstrated that compositional heterogeneities observed in mantle rocks are largely controlled by two main ß The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@ oup.com JOURNAL OF PETROLOGY VOLUME 52 processes: partial melting and melt migration (e.g. Rampone et al., 1997, 2008; Batanova et al., 1998; Parkinson & Pearce, 1998; Batanova & Sobolev, 2000; Hellebrand et al., 2002b; Piccardo, 2003; Seyler et al., 2004, 2007; Brunelli et al., 2006; Piccardo et al., 2007). Whereas the effects and extent of partial melting are relatively easy to decipher from petrological indicators (e.g. Dick & Bullen, 1984; Hellebrand et al., 2001), the compositional changes of mantle peridotites imposed by magma migration depend mainly on the mechanisms of melt transport and the composition of the migrating melts (e.g. Carlson, 1992). Recent studies suggest that the porous flow of melt is the dominant mode of melt migration in the mantle (e.g. McKenzie, 1984). On the other hand, it is widely accepted that melt extraction from the mantle beneath mid-ocean ridges (MOR) occurs by focused flow along chemically isolated channels (e.g. Nicolas, 1986, 1990; Spiegelman & Kenyon, 1992; Hart, 1993; Kelemen et al., 1995a). In their pioneering work, Kelemen and co-authors showed that mantle dunites form by the complete dissolution of pyroxene in peridotite during reactive melt flow along high-permeability channels (e.g. Aharonov et al., 1995; Kelemen et al., 1995a, 1995b, 1997). The transition from diffuse porous melt flow to channel flow is assumed to occur as a result of reactive infiltration instability (e.g. Daines & Kohlstedt, 1994; Kelemen et al., 1997) and/or under the influence of stress (e.g. Stevenson, 1989; Holtzman et al., 2003; Holtzman & Kohlstedt, 2007; Kohlstedt & Holtzman, 2009). The results of experiments suggest that dunite channels form beneath mid-ocean ridges at pressures from 1·25 to 0·5 GPa (Lambart et al., 2009). At pressures higher than 1·25 GPa, diffuse porous flow seems to prevail, and at pressures below 0·5 GPa (within the crust), flowage is dominantly along open fractures. Focused magma ascent does not rule out diffuse porous flow of small amounts of melt at low melt/rock ratios in the shallow mantle, the process that leads to melt impregnation and refertilization of mantle peridotites (e.g. Dijkstra et al., 2003; Brunelli et al., 2006; Seyler et al., 2007; Rampone et al., 2008). Many ophiolites are thought to form during rifting in supra-subduction zone (SSZ) settings (forearc, immature island arc or back-arc) (e.g. Dilek, 2003; Pearce, 2003). In such settings, the flowage of fluid and/or melt flux derived from the subducted slab will be influenced by the thermal structures of the SSZ mantle. The input of these fluids induces melting in the mantle wedge and changes (weakens) its rheology. The mantle sections of SSZ ophiolites commonly display structures resulting from asthenospheric high-temperature plastic flow or reaction between migrating melts and the surrounding mantle peridotite. Additionally, they provide information about mantle melting and melt transport in the mantle wedge. Mapping and sampling of SSZ ophiolite NUMBER 12 DECEMBER 2011 mantle sections is especially important because the study of mantle material from modern subduction settings is otherwise restricted to xenoliths in arc-related lavas or forearc peridotites dredged on the ocean floor or recovered from drill cores (e.g. Ishii et al., 1992; Parkinson & Pearce, 1998; Pearce et al., 2000; Parkinson et al., 2003; Ionov, 2010). Such sets of samples do not allow the investigation of the spatial relationships between the various lithologies or the scale and distribution of mantle heterogeneities. Here we describe the petrology, mineralogy and trace-element geochemistry of clinopyroxenes and amphiboles from the mantle section of the northern part of the Voykar ophiolite in the Polar Urals. The following features of Voykar ophiolite demonstrate that it represents a unique geological setting (e.g. Savelieva et al., 2007). It comprises extensive continuous sections of well-exposed and exceptionally fresh mantle peridotite; numerous, well-preserved outcrops of the crustal section of layered olivine^pyroxene rocks, layered gabbro^norite, isotropic hornblende gabbro, dolerite dike complexes and metamorphic rocks of eclogite^glaucophane, amphibolite, blueschist and albite^lawsonite facies in the soles of the ophiolitic allochthons. However, despite the fact that the main geological features and particularly the plastic deformation structures of the mantle section of the Voykar ophiolite have been well studied since the 1980s (e.g. Savelieva et al., 1980; Savelieva, 1987), chemical analysis of the mantle lithologies performed with modern techniques is limited to the determination of Sm^Nd and Rb^Sr isotopic compositions and the rare earth element contents of four harzburgite samples (Sharma et al., 1995; Sharma & Wasserburg, 1996). Here we use new data to investigate the nature of mantle melting processes, reactive melt transport and melt^peridotite interaction processes, and their role in the origin and distribution of mantle heterogeneities in the SSZ mantle wedge as well as the origin and composition of migrating melts. G E O L O G I C A L B AC KG RO U N D A N D M A N T L E S T RU C T U R E S The Voykar complex is one of the best exposed and largest ophiolites in the Urals with a strike length of over 200 km (e.g. Saveliev & Savelieva, 1977; Yefimov et al., 1978; Savelieva, 1987). According to traditional geodynamic reconstructions for the Polar sector of the Uralides, ophiolites represent oceanic lithosphere that formed in Early^Middle Paleozoic back-arc and inter-arc marginal basins (Saveliev, 1996; Savelieva et al., 2002). The ophiolites and overlying and intruding island-arc complexes were thrust over the continental margin (sedimentary shelf complexes and sedimentary^volcanic complexes of the continental slope) of the East European Platform in the 2484 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 1. (a) Map showing the geographical position of the Voykar ophiolite. (b) Schematic geological map of the northern part of the Voykar ophiolite; rectangle indicates the location of (c). (c) Map showing the detailed study area in the upper reaches of the Khoyla river (modified after Savelieva et al., 1980, 2008). Areas (R, K and G) outlined by dashed lines represent the main sampling localities referred to in Table 1. Late Paleozoic (Saveliev & Samygin, 1980; Puchkov, 2002; Savelieva et al., 2002). The Voykar ophiolite (Fig. 1a and b) comprises a mantle peridotite section (up to 6 km thick) and a crustal section. The crustal section is composed of a layered dunite^wehrlite^clinopyroxenite complex (up to 600 m in total thickness); gabbro, gabbro^norite and olivine gabbro (up to 1100 m in total thickness); and isotropic gabbros closely associated with a complex of sub-parallel dolerite dikes (total thickness of the complex is 1000 m of which 400 m is represented by dikes). Recent dating of the mantle and crustal sections of the Voykar ophiolite suggests that the two sections did not form simultaneously. A U^Pb age obtained by sensitive high-resolution ion microprobe analysis of zircons from chromitites from the Voykar mantle section is 585 6 Ma (Savelieva et al., 2006, 2007), whereas a U^Pb zircon age for a plagiogranite found within the sheeted dyke complex is 490 7 Ma (Khain et al., 2007). Tonalites intruding the gabbros and dolerites in the eastern part of the Voykar ophiolite (Fig. 1b), and marking early overthrusting of the oceanic crust (Savelieva, 1987) have yielded an Rb^Sr isochron age of 395 5 Ma (Buyakayte et al., 1983). Thus, the magmatic processes occurring in the mantle section were much older than the formation of the crust. This is consistent with observations from other ophiolites; for example, the Internal Liguride (Rampone et al., 1998), Xigaze (Gopel et al., 1984), Trinity (Jacobsen et al., 1984; Gruau et al., 1995) and Troodos ophiolites (Sobolev & Batanova, 1995; Batanova & Sobolev, 2000; Buchl et al., 2004) and demonstrates that some ophiolites consist of mantle and crustal sections that are not genetically linked by a simple melt^residue relationship. The Vendian age of zircon from the chromitites (Savelieva et al., 2006, 2007) and the Ordovician age of zircon from the plagiogranites in the sheeted dike complex suggest that the Paleozoic island-arc complexes of the 2485 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 1. Continued. Polar Urals are underlain by tectonically juxtaposed fragments of Paleozoic and Late Proterozoic oceanic lithosphere (Samygin & Ruzhentsev, 2003; Savelieva et al., 2008). Samples for this study were collected from the northern part of the Voykar complex (Fig. 1b and c), which is predominantly composed of mantle peridotites covering an area 80 km long and 30 km wide. The sole of the peridotite sheet dips gently eastward, and the thickness of the peridotite section increases from 0·5^0·8 km in the west to 6^8 km in the east. The mantle sequence is represented by spinel peridotites, mainly harzburgites, with numerous dunite bodies that make up about 20% of the peridotite section (Savelieva, 1987; Savelieva et al., 2008). Chromitite 2486 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 1: Description and petrological information for the samples studied Sample Rock Description Estimated modal composition Al2O3 (%) wr Fo ol Cr-no. Mg-no. fO2 (Yb)N spl op FMQ cpx LOI UTM N UTM E 63 58·180 pu211/1 Spl Hz no clear relations to veins ol(68) op(25) cpx(4) spl(2) hb(1) 1·16 91·02 0·40 91·1 0·83 3·25 0·03 pu215/7 Spl Hz no clear relations to veins ol(76) op(20) cpx(2) spl(2) 1·02 90·73 0·29 90·8 0·63 5·02 4·35 pu6 10/2 Spl Hz 1 m from pxt S2 vein ol(68) op(24) cpx(5) spl (2) hb(1) 1·38 90·66 0·29 90·7 0·39 5·74 3·87 pu6 13 Spl Hz no clear relations to veins ol(66) op(27) cpx(5) spl(2) 1·54 91·23 0·27 91·0 0·40 4·93 2·74 66 32·570 pu6 16/2 Spl Hz no clear relations to veins ol(72) op(22) cpx(4) spl(2) 1·20 90·82 0·33 91·1 0·06 3·49 0·55 66 34·074 63 59·094 pu6 54/1 Spl Hz no clear relations to veins ol(70) op(23) cpx(5) spl(2) 1·58 90·88 0·25 90·8 0·66 6·26 50·01 66 30·488 64 18·606 pu6 39/2 Spl Hz relic in Du (S1) (Fig. 2c) ol(68) op(27) cpx(2) spl(2) hb(1) 1·10 91·12 0·42 91·3 1·06 2·91 3·67 66 32·580 63 58·096 pu6 25/1 Spl Hz no clear relations to veins ol(70) op(23·5) cpx(4·5) spl(2) 1·32 90·58 0·29 90·6 0·56 4·80 7·08 66 32·724 64 00·993 pu6 12/2 Spl Hz adj. web vein (S2) ol(71) op(24) cpx(3) spl(2) 0·71 90·15 0·48 90·5 0·42 3·26 4·36 66 32·494 63 58·025 pu7 59/10c Spl Hz 9 cm from pxt vein (S2) ol(70) op(26) cpx(2) spl(2) 0·55 90·58 0·51 90·8 0·12 2·42 50·01 66 32·744 64 19·175 pu7 59/10d Spl Hz 5 cm from pxt vein (S2) ol(47) op(50) cpx(2) spl(1) 1·03 90·59 0·53 90·8 0·12 2·62 50·01 66 32·744 64 19·175 pu6 24/1 Spl Hz no clear relations to veins ol(570) op(25) cpx(55) spl(2) n.a. 90·41 0·29 90·5 0·19 5·13 n.a. 66 33·033 64 00·829 pu6 35/2 Spl Hz 10 m from S1, S2 veins ol(570) op(20–25) cpx(55) spl(2) n.a. 91·01 0·26 90·9 0·12 4·91 n.a. 66 32·124 63 57·970 Profile: host harzburgite—dunite vein in the periphery of large dunite, first stage (S1) of melt percolation, (Fig. 2b), R pu7 15c6 Spl Hz 20 cm from dunite vein ol(470) op(420) cpx(41) spl(2) n.a. 91·62 0·46 91·8 0·48 2·22 n.a. 66 32·570 63 58·129 pu7 15c5 Spl Hz 5 cm from dunite vein ol(470) op(420) cpx(41) spl(2) n.a. 91·42 0·46 91·7 0·36 2·65 n.a. 66 32·570 63 58·129 pu7 15c4 Spl Hz adjacent to dunite ol(470) op(420) cpx(41) spl(2) n.a. 91·42 0·49 0·06 3·12 n.a. 66 32·570 63 58·129 pu7 15c3 Du adjacent to Spl Hz ol(495) spl(55) cpx(51) n.a. 91·43 0·59 – n.a. 1·02 4·23 n.a. 66 32·570 63 58·129 pu7 15c2 Du 10 cm from Spl Hz ol(495) spl(55) cpx(51) n.a. 91·43 0·65 – 1·00 3·54 n.a. 66 32·570 63 58·129 pu7 15c1 Du 15 cm from Spl Hz ol(495) spl(55) cpx(51) n.a. 91·59 0·66 – 1·18 3·28 n.a. 66 32·570 63 58·129 Dunites, first stage (S1) of melt percolation pu6 39/1 Du large body (Fig. 2c), R ol(98·5) spl(1·5) cpx(51) 0·51 91·31 0·42 – 1·38 4·33 7·1 66 32·580 63 58·096 pu6 38/1 Du large body, R ol(98·3) spl(1·3) cpx(0·4) 0·47 92·53 0·53 – 0·71 7·31 4·88 66 32·574 63 58·139 pu6 37/1 Du vein 20 cm, R ol(495) spl(55) cpx(51) n.a. 90·45 0·36 – 1·06 6·27 n.a. 66 32·574 pu6 41 Du vein 20 cm, R ol(495) spl(55) n.a. 91·27 0·59 – 1·14 4·42 n.a. 66 32·568 63 58·140 pu7 13/1 Du vein 20–30 cm, R ol(495) spl(55) cpx(51) n.a. 92·27 0·61 – 0·74 4·74 n.a. 66 32·547 63 58·300 pu6 35/1 Du vein 30–35 cm, K ol(495) spl(55) cpx(51) n.a. 90·76 0·44 – 0·75 8·11 n.a. 66 32·124 63 57·970 pu215/4 Du adjacent to Opxt vein ol(97·3) spl(2) cpx(0·7) 0·40 90·38 0·32 91·1 0·07 5·91 7·59 63 59·220 pu6 21/1 Du* large body, adj opxt vein, G ol(94·5) spl(5·5) 0·82 88·88 0·70 – 1·21 – 1·99 66 34·337 pu6 23/1 Du adjacent to Opxt vein, G ol(99) spl(1) 0·28 90·96 0·70 – 1·63 – 3·92 66 34·206 63 59·970 pu6 26/1 Du large body, G ol(495) spl(55) n.a. 92·24 0·68 – 1·66 – n.a. 66 34·250 64 00·584 pu6 27/1 Du large body, adj. Hz, G ol(495) spl(55) cpx(51) n.a. 91·47 0·68 – 1·47 2·50 n.a. 66 34·432 64 01·056 63 58·370 Profile: host harzburgite—20 cm thick composite dunite–pyroxenite vein, second stage of melt percolation (S2) (Fig. 2e), R pu6 11/4 Spl Hz adjacent to ZCV (S2) ol(82) op(12) cpx(4) spl(2) 0·84 90·51 0·37 90·6 0·16 4·46 2·55 66 32·529 pu6 11/3c Web rim adjacent to Spl Hz cpx(475) opx(520) ol(55) hb(51) n.a. 89·97 0·36 90·0 0·14 3·70 n.a. 66 32·529 63 58·370 pu6 11/3d Du vein center ol(495) cpx(55) spl(53) n.a. 89·96 0·51 – 0·28 3·70 n.a. 66 32·529 63 58·370 63 57·925 Profile: host harzburgite—40 cm thick composite dunite–pyroxenite vein, second stage of melt percolation (S2) (Fig. 2f), K pu6 33/5 Spl Hz 70 cm from ZCV ol(71) op(25) cpx(1) spl(2) hb(1) 1·10 91·23 0·37 91·6 0·12 2·73 4·75 66 31·774 pu7 33/5 Spl Hz 40 cm from ZCV ol(69·5) op(25) cpx(2·5) spl(2) hb(1) 1·47 91·50 0·29 91·6 0·78 6·26 4·13 66 31·772 63 57·915 pu6 33/4 Spl Hz adjacent to ZCV ol(66) op(25) cpx(5) spl(2) hb(2) 1·08 90·27 0·44 90·9 0·10 3·05 3·39 66 31·774 63 57·925 pu6 33/2 Web adjacent to Spl Hz cpx(65) op(23) ol(10) spl(2) 3·29 90·10 0·38 90·1 0·15 4·28 2·48 66 31·774 63 57·925 pu6 33/1 Web band in Du, vein center cpx(68·5) op(11·5) ol(17·8) spl(2·2) 3·34 90·21 0·38 90·0 0·10 4·26 2·25 66 31·774 63 57·925 pu7 33/3 Du vein center ol(96) cpx(2) spl(2) 0·65 90·31 0·46 – 0·46 3·70 6·65 66 31·772 63 57·915 pu6 33/3 Du vein center ol(95·4) cpx(1·4) spl(3·2) 0·93 90·56 0·51 – 1·02 4·00 6·15 66 31·774 63 57·925 pu7 33/1 Hb Cpxt late vein cutting ZCV cpx(4) op(11) ol(13·6) hb(75) 9·67 86·13 – 87·2 – 3·79 3·22 66 31·772 63 57·915 (continued) 2487 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 1: Continued Sample Rock Description Estimated modal composition Al2O3 (%) wr Fo ol Cr-no. Mg-no. fO2 (Yb)N spl op FMQ cpx LOI UTM N UTM E Pyroxenite veins, second stage (S2) of melt percolation pu7 59/10b Opxt cont. Cpxt, within Hz op(73) cpx(6) ol(20) spl(1) 1·56 90·60 0·51 90·9 0·11 2·24 50·01 66 32·744 64 19·175 pu7 59/10a Cpxt vein 5 cm, within Hz cpx(71) op(27) ol(1) spl(1) 2·43 90·47 0·55 90·8 0·11 2·27 0·19 66 32·744 64 19·175 pu 214/7 Web vein, within Hz, R cpx(66) op(28·5) ol(5) hb(0·5) 2·20 86·06 – 86·7 – 2·08 0·31 pu6 12/1 Cpxt vein 70 cm, within Hz, R cpx(85) op(13) hb(1) spl(1) 2·39 85·63 0·46 85·1 0·76 2·16 0·16 66 32·494 63 58·025 pu6 17/2 Cpx vein 2–3 m within dunite,G cpx(80) op(9) ol(9·5) hb(1) spl(0·5) 2·11 84–86 0·39 86·0 0·85 1·93 0·83 66 34·151 63 59·271 pu6 20/4 Cpxt 51 m, within dunite, G cpx(86) op(12) ol(2) hb(tr.) spl(tr.) 2·15 85·96 0·44 87·2 1·48 1·79 0·36 66 34·446 63 59·193 pu6 7 Web vein 50 cm within Hz, R op(50) cpx(48) ol(1) hb(1) 2·22 84–85 – 86·1 – 2·28 0·42 pu6 5 Web vein 50 cm within Hz, R op(448) cpx(448) ol(53) hb(51) n.a. 85–86 0·22 86·9 0·31 n.a. n.a. pu7 16/1o Web vein 25 cm within Hz, R op(470) cpx(525) ol(55) hb(51) n.a. 86·04 0·29 87·0 0·46 4·83 n.a. 66 32·587 63 58·093 pu7 14/2 Web vein 15 cm within Hz, R op(55) cpx(470) ol(420) hb(51) n.a. 87·05 – 88·0 – 2·48 n.a. 66 32·578 63 58·119 pu7 31/1 Cpxt v. 40 cm, Hz, (Fig. 2d), K op(520) cpx(480) hb(51) n.a. – 0·52 86·5 – 1·56 n.a. 66 31·741 63 58·452 Concentration of oxides and loss on ignition (LOI) in wt %; Fo ol and Mg-number op ¼ 100 [(Mg/(Mg þ Fe2þ)]; (Yb)N, chondrite normalized; Cr-number Spl ¼ Cr/(Cr þ Al); fO2 FMQ, oxygen fugacity relative to FMQ, after Ballhaus et al. (1991). Spl Hz, spinel harzburgite; Du, dunite; Web, Opxt, Cpxt, websterite, ortho- and clinopyroxenite respectively; Hb Cpxt, pyroxenite containing more than 50% magmatic magnesiohornblende; cont., contact; n.a., not analysed; —, phase not found; R, K and G, sampled areas shown in Fig. 1c; pu7 10/59b, 1–2 cm thick rim of opx located between clinopyroxenite vein and host harzburgite; UTM N UTM E, Universal Transverse coordinate system longitude and latitude; S1 and S2, early and late stages of melt percolation (see text). *Du sample enriched by chromite. pods and lenses are associated with the dunites. Systematic structural mapping of the mantle section shows that the peridotites record several plastic deformation episodes that correspond to mantle processes associated with the generation of oceanic lithosphere above a subduction zone (Savelieva et al., 1980, 2008). The earliest stage of near-horizontal plastic flow could correspond to an asthenospheric current flowing away from a ridge axis after the rotation of the ascending flow. Similar flow patterns are frequently observed in ophiolites belonging to the ‘harzburgitic sub-type’ (Ceuleneer et al., 1988). A second stage of high-temperature plastic deformation has produced large-scale flow folds within the spinel peridotite as a result of diapiric ascent of mantle material into the lithosphere. The dunite bodies (up to 10 km2 in size) are located within the axial zones of these large-scale flow folds formed by harzburgite banding (Fig. 1c). As indicated by petrofabric analysis, it is clear that the dunite and surrounding spinel peridotite were deformed simultaneously in the same stress field. It has been shown that the dunite was produced by replacement of spinel peridotite during peridotite^melt reaction. There are numerous signs of the replacive origin of the dunite, such as the presence of relics of spinel harzburgite within the dunite (Fig. 2a^c) (Savelieva et al., 2008; Batanova & Savelieva, 2009). The dunite bodies appear to have been formed in zones weakened by stress-driven melt migration (Savelieva et al., 2008). Networks of cross-cutting dunite veins have been documented in the marginal zones of the larger dunite bodies (Savelieva et al., 2008). Pyroxenite veins of highly variable morphology, size and composition are widespread within the Voykar mantle section, usually associated with large dunite bodies. Thick pyroxenite veins extend into the surrounding harzburgites for about 3 km from the large dunite bodies. The veins cut both dunite and host harzburgite and could be related to the latest stages of melt percolation (Savelieva et al., 2008). Several generations of pyroxenite veins were recognized within a single peridotite outcrop by Savelieva et al. (1980, 2008). A detailed description of the various generations of veins, their compositional peculiarities and relationships is beyond the scope of this paper and will be reported elsewhere (Belousov et al., in preparation). This study focuses on the two stages of melt percolation observed in the Voykar mantle section: (1) an early stage (S1) during which the large dunite bodies were formed, and (2) a later stage (S2) when numerous pyroxenite and zoned, composite dunite^pyroxenite veins were emplaced. There probably was no abrupt interface between these two stages. SAMPLE DESCR I PTION A N D P E T RO G R A P H Y More than 50 samples of harzburgite, dunite and pyroxenite were collected from an area in which a 2488 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 2. Photographs of the field relationships between the mantle lithologies of the Voykar ophiolite indicating the locations of the samples: (a) dunite vein network in harzburgite; (b) a 30 cm wide dunite vein within harzburgite; the numbers at the side of the holes refer to pu07-15 labelled samples in Tables 1^4; (c) a harzburgite relic within a large dunite body; (d) a coarse-grained pyroxenite vein in harzburgite; (e, f) zoned composite dunite^pyroxenite veins (ZCV) in harzburgite. Geological hammer denotes the scale. three-dimensional interconnected dunite vein network developed around large dunite bodies and penetrated into the harzburgite (Fig. 2a) (Savelieva et al., 1980, 2008; Batanova & Savelieva, 2009). To understand the compositional changes produced in the host peridotite during the formation of dunite (S1) and pyroxenite veins (S2), we sampled spinel harzburgite at different distances from S1 and S2 ‘intrusive’ bodies (Table 1). Samples were taken from different parts of large dunite bodies (Fig. 1c and 2c), along a profile through the surrounding harzburgite and a 2489 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 2: Whole-rock compositions of Voykar mantle lithologies Sample (pu): 211/1 215/7 6 10/2 6 13 6 16/2 6 54/1 6 39/2 6 25/1 6 12/2 7 59/10c 7 59/10d 6 39/1 6 38/1 6 41 215/4 6 21/1 6 23/1 Rock: Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Spl Hz Du Du Du Du Du Du SiO2 44·38 42·99 44·08 44·74 43·74 44·17 43·78 44·05 47·52 40·40 40·49 39·64 40·39 38·67 40·39 TiO2 0·02 0·02 0·03 0·02 0·02 0·03 0·02 0·02 0·02 0·01 0·02 0·01 0·02 0·02 0·02 0·02 0·01 Al2O3 1·16 1·02 1·38 1·54 1·20 1·58 1·10 1·32 0·71 0·55 1·03 0·51 0·47 0·74 0·40 0·82 0·28 MgO 44·45 45·94 43·91 43·60 44·77 44·04 44·31 44·36 44·92 45·46 41·75 49·20 50·45 48·83 48·11 46·25 49·45 45·06 43·75 FeO 7·89 8·58 8·19 7·64 8·19 7·97 7·78 8·38 8·90 8·58 7·84 8·63 7·51 8·83 9·50 11·49 8·87 MnO 0·13 0·14 0·14 0·12 0·13 0·13 0·13 0·13 0·14 0·13 0·14 0·13 0·12 0·14 0·14 0·16 0·13 CaO 1·24 0·67 1·56 1·61 1·21 1·34 0·87 1·30 0·85 0·55 0·89 0·33 0·12 0·26 0·17 0·12 0·17 Na2O b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. K2O b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. P2O5 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr2O3 0·42 0·31 0·42 0·41 0·43 0·43 0·44 0·44 0·40 0·34 0·56 0·43 0·43 1·19 0·92 2·21 0·37 NiO 0·31 0·32 0·29 0·30 0·31 0·31 0·28 0·31 0·29 0·31 0·25 0·36 0·40 0·35 0·35 0·26 0·34 LOI 0·03 4·35 3·87 2·74 0·55 50·01 3·67 7·06 4·36 50·01 50·01 7·10 4·88 5·09 7·59 1·99 3·92 (ppm) Sc 10 4 8 10 8 7 6 9 6 6 12 2 5 1 V 47 33 42 52 45 45 35 39 29 25 50 15 10 25 18 52 11 Cr 2724 1880 2482 2539 2595 2621 2508 2764 2225 2246 4106 2265 2487 6203 4399 12928 1898 Co 117 124 120 118 120 122 116 117 122 128 110 134 128 132 137 153 141 Ni 2358 2338 2126 2230 2385 2365 2078 2187 2064 2407 1820 2496 2859 2559 2497 2003 2449 Cu Zn n.d. 48 n.d. 47 n.d. 45 n.d. n.d. 42 47 n.d. 46 n.d. 40 19 26 11 8 9 48 46 49 54 44 7 59/10b 7 59/10a n.d. n.d. n.d. 39 b.d.l. n.d. 3 n.d. 47 46 73 n.d. 45 Sample (pu): 6 11/4 6 33/5 7 33/5 6 33/4 6 33/2 6 33/1 7 33/3 6 33/3 7 33/1 214/7 6 12/1 6 17/2 6 20/4 6 7 Rock: Spl Hz Spl Hz Spl Hz Spl Hz Web Web Du Du Hb Cpxt Opxt Cpxt Web Cpxt Cpxt Cpxt Web SiO2 42·38 44·68 44·28 45·11 49·74 49·57 40·04 39·38 50·28 51·36 52·54 53·52 53·19 52·73 53·27 53·84 TiO2 0·02 0·03 0·02 0·02 0·10 0·11 0·01 0·02 0·08 0·03 0·06 0·05 0·06 0·06 0·06 0·05 Al2O3 0·84 1·10 1·47 1·08 3·29 3·34 0·65 0·93 9·67 1·56 2·43 2·20 2·39 2·11 2·15 2·22 MgO 46·09 45·02 44·64 42·76 24·67 24·26 47·78 47·94 23·45 37·13 22·56 22·39 19·29 20·84 18·96 25·34 FeO 8·65 7·76 7·81 8·39 4·72 4·66 9·74 9·69 5·20 6·99 3·68 5·37 4·50 4·84 4·21 6·24 MnO 0·13 0·11 0·12 0·13 0·11 0·11 0·14 0·14 0·11 0·14 0·10 0·14 0·13 0·13 0·12 0·15 15·66 11·56 CaO 1·12 0·66 0·90 1·77 15·83 16·42 0·57 0·35 9·45 1·92 17·54 19·72 18·37 20·23 Na2O 0·02 b.d.l. b.d.l. b.d.l. 0·09 0·05 b.d.l. b.d.l. 1·27 b.d.l. 0·11 b.d.l. 0·04 0·02 0·03 b.d.l. K2O 0·01 b.d.l. b.d.l. b.d.l. 0·01 0·01 b.d.l. b.d.l. 0·13 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. P2O5 0·02 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr2O3 0·43 0·32 0·46 0·46 1·24 1·33 0·72 1·18 0·25 0·61 0·86 0·56 0·60 0·80 0·89 0·49 NiO 0·29 0·31 0·31 0·29 0·18 0·14 0·35 0·38 0·10 0·26 0·12 0·10 0·08 0·10 0·08 0·10 LOI 2·54 4·75 4·13 3·39 2·48 2·25 6·65 6·15 3·22 n.d. 0·19 0·31 0·16 0·83 0·36 0·42 (ppm) Sc n.d. 4 7 10 53 54 3 46 18 49 50 60 51 56 43 V n.d. 30 34 41 188 200 24 b.d.l. 32 185 65 162 156 186 149 160 140 3432 Cr 2865 1961 2698 2559 8605 9188 3541 5783 1802 4235 6217 3954 4271 5507 6301 Co 79 117 119 119 59 54 138 147 50 86 41 55 40 51 42 65 Ni 2187 2246 2203 2069 1294 1003 2450 2687 697 1868 870 777 572 750 592 728 11 4 187 115 77 148 9 241 120 336 188 263 248 183 45 44 34 31 46 48 30 43 23 30 24 24 20 38 Cu 25·5 Zn 67 n.d. 43 Oxides calculated on an anhydrous basis; b.d.l., below detection limit. 2490 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 3: Major and trace element compositions of olivines in Voykar mantle lithologies (sample numbers all prefixed pu) Sample n* Fo SiO2 CaO FeO CoO MgO NiO MnO Total ny Ca Ni Ti 211/1 20 91·02 40·66 0·006 8·83 0·016 50·23 0·391 0·129 100·29 3 43 3170 0·02 0·04 0·001 0·01 0·0002 0·10 0·002 0·0004 10 15 90·73 40·66 0·009 9·11 0·016 49·99 0·382 0·133 74 0·05 0·06 0·001 0·03 0·0002 0·14 0·001 0·0006 90·66 40·75 0·008 9·15 0·017 49·83 0·363 0·136 0·03 0·02 0·001 0·02 0·0002 0·04 0·001 0·0006 14 91·23 40·84 0·010 8·58 0·016 50·05 0·397 0·128 0·03 0·02 0·001 0·03 0·0002 0·03 0·001 0·0003 22 90·82 40·66 0·009 8·97 0·017 0·391 0·132 0·02 0·02 0·001 0·02 0·0002 0·02 0·001 0·0004 0·04 90·88 40·57 0·007 8·91 0·017 49·83 0·400 0·130 99·87 0·02 0·02 0·001 0·02 0·0003 0·03 0·001 0·0005 0·04 16 91·12 40·71 0·007 8·69 0·017 0·380 0·130 99·93 0·02 0·02 0·001 0·01 0·0003 0·04 0·001 0·0005 0·04 6 90·58 40·61 0·009 9·18 0·016 49·53 0·385 0·135 99·87 0·03 0·04 0·002 0·02 0·0005 0·05 0·001 0·0006 0·08 90·15 40·47 0·008 9·60 0·017 49·31 0·352 0·143 99·90 0·02 0·05 0·000 0·02 0·0006 0·03 0·001 0·0008 0·09 14 90·58 40·66 0·006 9·19 0·017 49·62 0·392 0·133 0·03 0·03 0·002 0·05 0·0001 0·05 0·002 0·0010 0·10 5 90·59 40·69 0·007 9·17 0·018 49·56 0·385 0·133 99·97 0·03 0·06 0·002 0·03 0·0007 0·05 0·007 0·0005 10 90·41 40·58 0·008 9·35 0·018 49·45 0·396 0·135 0·03 0·03 0·001 0·03 0·0003 0·04 0·002 0·0011 0·06 91·01 40·56 0·007 8·77 0·016 49·79 0·392 0·129 99·67 0·02 0·05 0·001 0·02 0·0003 0·05 0·003 0·0008 0·08 91·62 40·75 0·007 8·21 0·017 50·39 0·399 0·120 99·90 0·02 0·02 0·001 0·01 0·0002 0·04 0·001 0·0009 0·03 5 91·42 40·67 0·010 8·38 0·016 50·09 0·380 0·126 99·68 0·04 0·04 0·002 0·04 0·0002 0·09 0·003 0·0012 0·13 5 91·42 40·78 0·005 8·39 0·017 50·17 0·363 0·127 99·86 0·02 0·02 0·001 0·02 0·0004 0·05 0·002 0·0008 0·05 91·43 40·77 0·009 8·39 0·016 50·22 0·351 0·129 99·89 0·04 0·03 0·000 0·04 0·0004 0·05 0·001 0·0005 0·06 5 91·43 40·86 0·008 8·41 0·016 50·32 0·346 0·129 0·02 0·03 0·001 0·02 0·0005 0·05 0·001 0·0008 0·06 5 91·59 40·84 0·009 8·25 0·016 50·38 0·344 0·127 99·97 0·03 0·03 0·001 0·03 0·0007 0·05 0·001 0·0004 0·06 91·31 40·66 0·062 8·50 0·016 50·07 0·367 0·134 99·86 0·01 0·02 0·003 0·02 0·0002 0·04 0·001 0·0003 0·08 10 90·45 40·77 0·015 9·35 0·016 49·72 0·321 0·146 0·02 0·05 0·001 0·02 0·0003 0·05 0·001 0·0006 0·09 17 92·53 40·96 0·011 7·35 0·015 51·07 0·393 0·118 99·93 0·01 0·01 0·001 0·01 0·0002 0·02 0·001 0·0003 0·04 91·27 40·72 0·026 8·56 0·016 50·19 0·350 0·133 0·02 0·02 0·003 0·02 0·0003 0·05 0·002 0·0007 s 215/7 15 s 6 10/2 15 s 6 13 s 6 16/2 s 6 54/1 19 s 6 39/2 s 6 25/1 s 6 12/2 6 s 7 59/10c s 7 59/10d s 6 24/1 s 6 35/2 6 s 7 15C6 4 s 7 15C5 s 7 15C4 s 7 15C3 5 s 7 15C2 s 7 15C1 s 6 39/1 20 s 6 37/1 s 6 38/1 s 6 41 s 10 49·8 50 Cu Zn Mn Sc Co V Li 7·1 0·51 31·7 975 2·1 132 0·66 0·88 0·5 0·05 0·5 2 0·1 1 0·03 0·02 3048 6·4 0·51 38·5 1034 2·3 134 1·09 1·22 19 2 0·2 0·05 0·2 8 0·1 1 0·37 0·08 79 2673 8·9 6·3 0·63 36·7 1012 2·0 136 0·66 1·17 7 12 0·4 1·3 0·02 1·2 4 0·1 1 0·06 0·05 3 73 3072 3·7 0·78 30·5 984 2·1 133 0·72 0·83 7 15 0·1 0·03 0·1 3 0·02 0·3 0·06 0·15 4 84 3134 2·6 4·5 0·47 34·3 1028 2·4 138 0·75 1·00 18 24 0·2 1·0 0·02 1·3 6 0·1 2 0·08 0·09 57 3143 8·8 0·62 27·7 990 1·8 131 0·62 0·97 4 14 0·4 0·06 1·5 6 0·03 1 0·02 0·04 3 47 2941 2·5 0·60 33·3 992 1·6 133 0·41 0·99 3 6 0·1 0·03 0·7 5 0·1 0·3 0·005 0·07 3 56 3023 3·7 0·57 34·8 1030 1·7 135 0·48 0·87 10 15 0·3 0·03 0·2 6 0·1 0·1 0·02 0·09 54 2759 6·7 0·56 39·1 1111 2·0 137 0·46 1·32 9 2 0·4 0·06 1·1 7 0·1 0·4 0·05 0·08 47 2825 7·0 0·61 36·4 1022 2·0 135 0·44 1·04 11 22 0·3 0·01 1·9 8 0·04 1 0·03 0·05 64 3163 5·3 4·6 0·43 34·7 1059 2·1 145 0·75 1·19 2 33 0·8 1·0 0·01 1·9 13 0·1 1 0·06 0·05 56 3076 9·9 0·64 32·2 991 1·5 133 0·56 0·92 12 11 0·5 0·02 0·6 5 0·1 0·2 0·08 0·06 56 3049 4·9 4·0 0·43 34·8 946 1·6 127 0·48 0·82 12 4 0·4 1·6 0·03 1·3 5 0·1 1 0·05 0·11 3 60 2877 3·1 2·3 0·49 30·7 977 1·6 125 0·35 0·86 9 27 0·1 0·4 0·01 2·3 7 0·1 1 0·01 0·07 3 44 2797 5·3 3·2 0·43 34·1 994 1·9 128 0·38 1·02 15 20 0·3 1·3 0·05 0·7 7 0·2 1 0·04 0·08 65 2676 9·6 1·5 0·47 25·5 1000 2·7 122 0·23 0·99 12 22 0·9 0·1 0·01 3·1 10 0·1 2 0·02 0·09 3 46 2667 11·0 1·5 0·47 23·2 1001 2·6 123 0·19 1·22 2 9 0·6 0·4 0·01 0·8 5 0·1 1 0·01 0·07 3 53 2647 11·0 1·9 0·46 20·6 993 2·5 121 0·20 1·23 11 9 0·4 0·4 0·03 2·3 3 0·0 1 0·00 0·04 398 2990 9·4 3·9 0·51 37·9 1028 3·9 136 0·54 0·80 31 12 0·3 0·5 0·03 1·3 2 0·2 0·4 0·03 0·06 4 101 2691 13·1 3·3 0·52 20·6 1127 4·0 139 0·36 1·20 8 14 0·6 0·6 0·04 0·5 5 0·1 1 0·04 0·07 4 108 3161 14·1 2·8 0·50 26·6 908 3·0 127 0·36 0·98 14 47 0·7 0·8 0·04 3·3 2 0·1 2 0·04 0·10 216 2906 9·6 3·3 0·44 29·6 1035 3·6 139 0·37 1·11 40 30 0·4 1·0 0·03 2·5 8 0·1 1 0·05 0·03 0·15 100·31 3 0·17 100·25 3 0·05 100·00 0·04 100·00 100·03 3 3 3 Al 0·07 100·24 100·09 100·31 100·14 0·07 4 3 3 3 4 5 (continued) 2491 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 3: Continued Sample n* Fo SiO2 CaO FeO CoO MgO NiO MnO Total ny Ca Ni Ti 7 13/1 6 92·27 40·57 0·004 7·59 0·015 50·84 0·372 0·115 99·51 3 29 2864 0·02 0·07 0·001 0·02 0·0005 0·04 0·001 0·0005 0·12 10 21 90·76 40·75 0·025 9·06 0·016 49·92 0·353 0·141 165 2977 16·2 0·03 0·01 0·002 0·03 0·0003 0·04 0·001 0·0010 0·04 10 18 0·9 90·38 40·51 0·014 9·37 0·017 49·38 0·366 0·142 99·80 98 2899 0·02 0·05 0·001 0·02 0·0004 0·03 0·001 0·0005 0·08 11 4 10 88·88 40·39 0·013 10·81 0·020 48·45 0·266 0·163 4 79 0·03 0·05 0·002 0·03 0·0002 0·05 0·001 0·0011 12 90·96 40·70 0·031 8·85 0·017 49·95 0·338 0·139 4 0·01 0·03 0·002 0·01 0·0002 0·03 0·001 0·0003 92·24 40·91 0·072 7·62 0·015 50·79 0·372 0·125 0·02 0·03 0·004 0·02 0·0004 0·03 0·001 0·0003 11 91·47 40·76 0·063 8·34 0·017 0·357 0·137 0·02 0·02 0·003 0·02 0·0002 0·05 0·000 0·0005 0·05 6 90·51 40·52 0·011 9·26 0·016 49·56 0·367 0·138 99·88 0·03 0·09 0·002 0·03 0·0003 0·10 0·003 0·0008 0·18 89·97 40·36 0·006 9·73 0·018 48·96 0·408 0·150 99·94 0·05 0·03 0·001 0·05 0·0006 0·05 0·003 0·0009 0·07 10 89·96 40·41 0·009 9·76 0·017 49·09 0·320 0·152 0·03 0·02 0·001 0·02 0·0004 0·03 0·001 0·0007 22 91·23 40·74 0·009 8·61 0·017 50·24 0·404 0·122 0·01 0·01 0·001 0·01 0·0002 0·04 0·001 0·0003 91·50 40·98 0·011 8·35 0·016 50·46 0·394 0·122 0·01 0·06 0·001 0·01 0·0003 0·06 0·001 0·0006 90·27 40·67 0·007 9·50 0·018 49·48 0·371 0·140 0·02 0·02 0·001 0·02 0·0003 0·03 0·002 0·0005 0·04 90·10 40·40 0·012 9·62 0·015 49·13 0·373 0·144 99·71 0·03 0·03 0·001 0·03 0·0006 0·05 0·007 0·0009 0·07 9 90·21 40·64 0·016 9·57 0·017 49·47 0·338 0·147 0·02 0·03 0·001 0·02 0·0004 0·02 0·001 0·0005 10 90·31 40·68 0·015 9·47 0·016 49·55 0·339 0·145 0·02 0·04 0·001 0·02 0·0003 20 90·56 40·69 0·011 9·23 0·016 0·02 0·03 0·001 0·02 0·0003 3 86·13 39·75 0·012 13·41 0·15 0·11 0·007 0·14 4 90·60 40·59 0·004 9·16 0·018 0·05 0·03 0·001 0·05 11 90·47 40·31 0·009 9·24 0·02 0·03 0·001 0·02 5 86·06 40·03 0·015 13·47 0·08 0·11 0·004 0·08 4 85·63 39·83 0·015 13·81 0·03 0·05 0·001 0·04 86·38 40·04 0·011 0·05 0·03 0·001 s 6 35/1 10 s 215/4 6 s 6 21/1 s 6 23/1 s 6 26/1 11 s 6 27/1 s 6 11/4 s 6 11/3c 10 s 6 11/3d s 6 33/5 s 7 33/5 10 s 6 33/4 19 s 6 33/2 6 s 6 33/1 s 7 33/3 s 6 33/3 s 7 33/1 s 7 59/10b s 7 59/10a s 214/7 s 6 12/1 s 6 17/2 s 4 50·2 0·04 0·001 0·0006 0·333 0·139 0·03 0·001 0·0004 46·72 0·374 0·203 49·7 100·16 100·34 Cu Zn Mn Sc Co V Li 4·7 0·49 28·5 888 2·4 122 0·18 1·31 0·2 0·02 2·7 6 0·0 1 0·00 0·04 1·6 0·53 31·2 1098 3·6 137 0·37 1·12 0·6 0·03 0·6 4 0·0 0·2 0·04 0·06 5·9 0·60 30·4 1090 3·0 134 0·24 1·39 0·1 0·02 1·0 6 0·1 0·4 0·01 0·02 2063 5·7 0·38 32·5 1245 3·2 147 0·28 1·13 6 35 0·2 0·01 1·8 15 0·1 2 0·03 0·08 230 2672 5·7 1·9 0·43 41·9 1080 3·7 138 0·31 0·85 29 7 0·3 0·9 0·03 2·0 7 0·0 1 0·04 0·04 468 2951 7·9 3·0 0·43 32·1 966 3·9 129 0·32 0·96 38 12 0·6 0·3 0·04 0·4 2 0·2 0·4 0·01 0·05 412 2867 7·9 3·2 0·42 40·8 1063 3·8 133 0·41 0·97 22 15 0·5 0·5 0·01 1·2 6 0·1 1 0·05 0·07 59 2872 6·3 0·66 33·6 1056 1·9 136 0·56 1·19 13 24 0·5 0·01 1·2 7 0·1 0·5 0·08 0·04 34 3162 5·3 2·9 0·45 25·5 1160 1·4 136 0·37 1·01 4 25 0·2 0·5 0·02 2·8 8 0·0 2 0·04 0·07 4 76 2502 7·9 2·7 0·38 27·0 1175 2·4 140 0·40 1·16 8 30 0·2 0·4 0·02 0·3 7 0·0 1 0·04 0·06 4 66 3162 9·6 3·6 0·42 40·5 954 1·8 139 0·53 1·34 11 15 0·5 0·7 0·03 0·8 4 0·1 1 0·03 0·07 4 3 0·11 100·25 0·06 100·24 4 0·06 100·23 100·07 4 3 4 0·04 100·23 0·03 Al 100·34 0·12 100·25 100·24 4 3 3 0·04 63 2868 5·1 3·0 0·36 38·8 1086 2·1 143 0·58 1·12 15 9 0·2 0·6 0·01 0·6 7 0·0 1 0·04 0·03 83 3019 7·3 0·53 26·6 1101 1·7 130 0·58 0·91 14 45 0·9 0·04 3·0 11 0·2 0 0·10 0·05 95 2678 8·4 0·41 26·7 1146 3·9 139 0·39 0·99 8 36 0·2 0·09 0·1 8 0·1 2 0·02 0·03 73 2659 6·3 0·42 22·8 1067 3·4 128 0·29 1·29 14 21 0·4 0·03 1·5 5 0·1 1 0·04 0·09 111 2729 4·5 3·0 0·56 77·6 1425 1·6 204 0·54 1·04 13 15 0·2 0·5 0·05 1·1 3 0·1 1 0·05 0·10 72 2377 4·5 2·8 0·53 54·9 1450 1·7 172 0·84 0·58 14 26 0·6 0·3 0·11 4·5 17 0·1 4 0·38 0·05 100·22 0·07 100·13 3 0·06 100·48 0·09 0·004 0·0030 0·18 49·57 0·383 0·132 99·87 0·0002 0·06 0·001 0·0006 0·05 0·017 49·23 0·389 0·133 99·32 0·0002 0·03 0·002 0·0006 0·025 46·65 0·295 0·204 0·0007 0·11 0·003 0·0057 0·025 46·16 0·317 0·201 0·0004 0·08 0·001 0·0011 13·13 0·024 46·73 0·305 0·187 0·04 0·0002 0·03 0·001 0·0012 0·06 100·73 0·21 100·37 4 0·15 100·62 0·04 4 (continued) 2492 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 3: Continued Sample n* Fo SiO2 CaO FeO CoO MgO NiO MnO Total 6 17/2 5 84·72 39·80 0·033 14·61 0·015 45·45 0·322 0·212 100·44 0·03 0·04 0·009 0·03 0·0092 0·02 0·007 0·0011 5 85·96 39·97 0·041 13·46 0·024 46·25 0·421 0·186 0·03 0·03 0·009 0·05 0·0003 0·05 0·006 0·0007 6 7 1 84·31 40·32 0·047 14·99 0·015 45·2 0·282 0·213 101·08 6 7 4 85·46 39·77 0·011 13·92 0·023 45·89 0·324 0·201 100·15 0·12 0·14 0·00 0·09 0·002 0·15 0·02 0·00 5 86·41 40·27 0·012 13·09 0·023 46·72 0·224 0·204 0·03 0·04 0·00 0·03 0·0004 0·04 0·00 0·00 2 85·36 40·08 0·031 14·02 0·024 45·87 0·238 0·216 0·22 0·10 0·00 0·20 0·001 0·15 0·01 0·00 5 86·04 39·96 0·007 13·44 0·021 46·47 0·226 0·207 0·04 0·03 0·00 0·03 0·001 0·05 0·00 0·00 87·05 39·93 0·014 12·52 0·022 47·20 0·316 0·179 0·04 0·04 0·00 0·04 0·0004 0·05 0·00 0·00 s 6 20/4 s s 6 5 s 6 5 s 7 16/1o s 7 14/2 s 5 ny Ca Ni Ti 3 92 2866 16 133 58 1643 7·1 5 18 0·3 112 2448 23 24 Al Cu Zn Mn Sc Co V Li 3·0 0·66 80·4 1336 1·3 200 0·52 0·93 0·4 0·06 0·9 4 0·0 4 0·02 0·15 4·4 0·52 34·8 1567 1·7 146 0·51 0·84 0·3 0·04 0·7 4 0·1 1 0·03 0·06 8·9 2·7 0·53 53·0 1433 1·7 172 0·47 0·82 4·8 1·1 0·00 12·2 72 0·2 2 0·16 0·02 0·06 100·36 0·12 0·20 100·56 0·06 100·50 0·03 100·33 3 0·07 100·18 0·08 3 *Number of olivine grains analysed by EPMA. yNumber of olivine grains analysed by LA ICP-MS. Oxides are in wt %; trace elements in ppm; s, standard error ¼ standard deviation of mean/ˇn. narrow dunite vein (Fig. 2b) and from various pyroxenite and zoned composite dunite^pyroxenite veins (Table 1). Spinel peridotite The positions of the samples relative to the dunite bodies (S1) and pyroxenite veins (S2) are shown in Table 1. The exposures usually are two-dimensional and it is not always clear that veins do not exist beneath the sample locations. The spinel peridotites are mainly clinopyroxene-bearing harzburgites or clinopyroxene-poor lherzolites, which display foliation and banding formed by orthopyroxene-rich or -poor bands. Two types of banding are observed: well-defined and strongly contrasting 10^15 cm wide bands, and diffuse thicker (metre-wide) bands. The harzburgites display a well-expressed lineation. The foliation is less distinct in comparison with banding and lineation. The rocks are usually coarse-grained and show a variety of deformational textures: protogranular, tabular equigranular (mosaic) with polygonal grain boundaries or irregular porphyroclastic textures. Harzburgites with protogranular (coarse-grained) textures dominate: olivine grains are 4^6 mm, enstatite 3^4 mm, diopside 0·3^1·0 mm, chromian spinel varies from 0·3 to 2 mm; the amount of neoblasts is less than 10^15%. The deformation textures of the Voykar spinel peridotites have been analysed in detail by Savelieva et al. (1980, 2008). All of the studied samples exhibit evidence of deformation including: lattice preferred orientation (LPO) of olivine, kink-bands in olivine, foliation and alignment of elongated olivine and Cr-spinel grains, and a lineation defined by large stretched enstatite and neoblasts of pyroxenes and olivine. The degree of serpentinization of the spinel peridotite varies from 0 to 20^30%, rarely up to 50%. Peridotites with equigranular, polygonal textures are usually almost free of low-temperature alteration (Fig. 3a). The modal composition of the spinel peridotites is given in Table 1. The amount of clinopyroxene varies from 1 to 6 vol. %. The morphology of the clinopyroxene depends strongly on the position of the sample relative to dunite (S1) and pyroxenite (S2) veins. Large grains of clinopyroxene (up to 2^3 mm) are very rare and restricted to a few samples of harzburgite. Most clinopyroxene grains have been recrystallized and, as a rule, form neoblasts (Fig. 3a). Harzburgite samples located in the contact zone of dunite bodies (S1) or within dunite (relics of harzburgite) contain 1^2 vol. % of clinopyroxene, which forms small rim-like interstitial grains. The amount of clinopyroxene in harzburgite adjacent to S2 pyroxenite veins and zoned, composite, dunite^ pyroxenite veins is about 3^6 vol. %. Within the reaction zone between the host harzburgite and the pyroxenite veins the clinopyroxene occurs as interstitial, poikilitic grains between olivines (Fig. 3b). This newly formed clinopyroxene cements equigranular recrystallized olivine grains and obviously formed after recrystallization. 2493 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 4: Spinel major element compositions in Voykar mantle lithologies Sample (pu): 211/1 215/7 6 10/2 6 13 6 16/2 6 54/1 6 39/2 6 25/1 6 12/2 9 11 13 3 13 15 13 25 6 SiO2 0·02 0·02 0·12 0·06 0·08 0·08 0·08 0·06 0·07 TiO2 0·08 0·07 0·07 0·03 0·03 0·06 0·04 0·06 0·13 Al2O3 34·22 41·62 41·42 43·05 38·32 44·63 32·51 41·80 27·87 Cr2O3 33·44 25·61 25·67 24·16 28·15 22·47 35·80 25·35 37·70 V2O3 0·24 0·16 0·16 0·16 0·21 0·15 0·16 0·14 0·21 FeO 15·78 14·23 14·50 13·20 14·86 13·57 15·92 13·88 18·35 4·34 n: Fe2O3 1·88 2·10 2·44 2·29 3·18 1·99 1·68 2·26 MnO 0·22 0·18 0·17 0·16 0·18 0·16 0·21 0·17 0·26 MgO 13·89 15·60 15·64 16·45 14·97 16·39 13·74 15·92 11·77 NiO 0·12 0·16 0·16 0·19 0·16 0·20 0·09 0·17 0·09 ZnO 0·23 0·28 0·24 0·24 0·22 0·23 0·24 0·23 0·26 100·11 100·02 100·69 100·09 100·46 100·02 100·57 100·04 101·07 Total Mg-no. 0·611 0·661 0·658 0·690 0·642 0·683 0·606 0·672 0·533 s 0·004 0·003 0·004 0·001 0·003 0·002 0·004 0·002 0·003 Cr/(Cr þ Al) 0·396 0·292 0·294 0·274 0·330 0·253 0·425 0·289 0·476 s 0·006 0·004 0·005 0·006 0·004 0·004 0·004 0·002 0·002 Fe3þ/Fetotal 0·097 0·117 0·132 0·135 0·162 0·116 0·087 0·128 0·175 0·007 0·002 0·002 0·003 s FMQ s Sample (pu): n: 0·004 0·002 0·003 0·003 0·002 0·83 0·63 0·39 0·40 0·06 0·66 1·06 0·56 0·42 0·06 0·04 0·04 0·09 0·03 0·05 0·04 0·02 0·02 7 59/10c 7 59/10d 6 24 6 35/2 7 15c6 7 15c5 7 15c4 7 15c3 7 15c2 10 4 4 5 5 4 5 5 4 0·10 SiO2 0·02 n.a. 0·03 0·07 0·04 0·06 0·06 0·08 TiO2 0·10 0·11 0·06 0·07 0·10 0·07 0·10 0·21 0·28 Al2O3 25·66 24·42 41·44 43·91 30·34 30·16 27·59 20·77 17·51 Cr2O3 40·25 41·74 25·61 23·33 37·95 37·85 39·77 43·96 47·58 V2O3 0·21 0·21 0·18 0·14 0·16 0·16 0·16 0·16 0·14 FeO 19·23 19·77 14·58 13·22 15·32 15·73 16·76 19·45 20·33 Fe2O3 3·37 3·37 2·84 2·78 2·29 2·49 3·16 5·26 5·22 MnO 0·30 0·30 0·18 0·16 0·22 0·23 0·25 0·32 0·34 MgO 10·71 10·29 15·53 16·67 13·96 13·63 12·78 10·32 9·55 NiO 0·08 0·07 0·19 0·22 0·10 0·10 0·09 0·08 0·06 ZnO 0·29 0·32 0·26 0·21 0·22 0·23 0·24 0·23 0·21 100·21 100·60 100·88 100·74 100·71 100·69 100·97 100·83 101·31 Total Mg-no. 0·498 0·481 0·655 0·692 0·619 0·607 0·576 0·486 0·456 s 0·002 0·007 0·005 0·001 0·006 0·006 0·006 0·004 0·008 Cr/(Cr þ Al) 0·513 0·534 0·293 0·263 0·456 0·457 0·492 0·587 0·646 s 0·002 0·007 0·006 0·002 0·002 0·003 0·002 0·003 0·003 Fe3þ/Fetotal 0·136 0·133 0·149 0·159 0·118 0·125 0·145 0·196 0·188 s 0·001 0·005 0·007 0·004 0·003 0·001 0·003 0·005 0·006 FMQ 0·12 0·12 0·19 0·12 0·48 0·36 0·06 1·02 1·00 s 0·02 0·04 0·12 0·06 0·04 0·04 0·07 0·05 0·04 (continued) 2494 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 4: Continued Sample (pu): 7 15c1 6 39/1 6 38/1 6 37/1 6 41 7 13/1 6 35/1 215/4 06 21/1 4 16 4 5 5 5 4 7 11 SiO2 0·06 0·10 0·07 0·08 0·06 0·09 0·08 0·01 0·09 TiO2 0·26 0·17 0·19 0·17 0·26 0·12 0·31 0·08 0·21 Al2O3 16·68 30·84 25·01 34·77 20·55 19·57 29·41 38·92 13·79 Cr2O3 47·85 32·68 41·24 28·50 43·70 46·26 34·96 27·36 48·06 V2O3 0·14 0·16 0·15 0·14 0·16 0·12 0·14 0·17 0·19 FeO 20·65 15·49 17·39 16·84 19·42 20·12 16·55 14·07 23·45 n: Fe2O3 5·60 6·89 3·81 5·71 5·82 3·84 4·96 3·45 7·50 MnO 0·35 0·22 0·27 0·28 0·31 0·43 0·30 0·20 0·39 MgO 9·17 13·95 12·05 13·28 10·34 9·55 13·03 15·45 6·99 NiO 0·07 0·19 0·09 0·15 0·09 0·05 0·13 0·14 0·06 ZnO 0·20 0·16 0·25 0·17 0·19 0·29 0·14 0·26 0·18 101·04 100·87 100·65 100·09 100·90 100·43 100·01 100·20 101·03 Total Mg-no. 0·442 0·616 0·552 0·584 0·487 0·458 0·584 0·662 0·347 s 0·010 0·004 0·007 0·009 0·006 0·007 0·007 0·007 0·005 Cr/(Cr þ Al) 0·658 0·416 0·525 0·355 0·588 0·613 0·444 0·321 0·700 s 0·010 0·002 0·004 0·012 0·007 0·006 0·008 0·009 0·003 Fe3þ/Fetotal 0·196 0·284 0·164 0·234 0·212 0·146 0·212 0·180 0·224 s 0·003 0·007 0·008 0·005 0·004 0·002 0·002 0·012 0·002 FMQ 1·18 1·38 0·71 1·06 1·14 0·74 0·75 0·07 1·21 s 0·04 0·06 0·12 0·03 0·04 0·05 0·04 0·12 0·02 6 23/1 6 26/1 6 27/1 6 11/4 6 11/3c 6 11/3d 6 33/5 7 33/5 6 33/4 4 11 5 4 4 4 9 14 10 0·08 Sample (pu): n: SiO2 0·09 0·09 0·11 0·06 0·07 0·06 0·09 0·05 TiO2 0·22 0·27 0·28 0·12 0·09 0·22 0·10 0·07 0·10 Al2O3 13·76 15·32 15·29 35·76 35·62 25·62 35·90 42·16 30·73 Cr2O3 48·47 48·45 48·33 31·29 29·74 39·41 31·18 26·12 35·95 V2O3 0·17 0·15 0·18 0·19 0·16 0·19 0·14 0·12 0·21 FeO 21·29 17·85 18·95 16·00 16·43 19·46 15·47 12·99 17·61 3·14 Fe2O3 7·84 7·34 7·18 2·93 3·57 3·95 2·74 1·84 MnO 0·36 0·32 0·33 0·21 0·28 0·36 0·19 0·16 0·23 MgO 8·37 10·87 10·21 14·13 13·56 10·69 14·39 16·70 12·55 NiO 0·09 0·11 0·10 0·13 0·15 0·07 0·14 0·19 0·10 ZnO 0·20 0·13 0·18 0·26 0·19 0·19 0·31 0·20 0·25 100·97 100·99 101·14 101·08 99·86 100·22 100·76 100·62 101·06 Total Mg-no. 0·412 0·521 0·490 0·612 0·595 0·495 0·624 0·696 0·560 s 0·009 0·004 0·006 0·007 0·001 0·007 0·002 0·003 0·001 Cr/(Cr þ Al) 0·703 0·679 0·680 0·370 0·359 0·508 0·368 0·294 0·440 s 0·001 0·008 0·004 0·008 0·007 0·005 0·003 0·002 0·002 Fe3þ/Fetotal 0·249 0·269 0·254 0·141 0·164 0·154 0·138 0·113 0·138 s 0·004 0·007 0·013 0·005 0·005 0·002 FMQ 1·63 1·66 1·47 0·16 0·14 0·28 0·12 0·78 0·10 s 0·07 0·07 0·10 0·09 0·08 0·06 0·04 0·05 0·01 0·003 0·003 0·001 (continued) 2495 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 4: Continued Sample (pu): 6 33/2 6 33/1 7 33/3 6 33/3 7 59/10b 7 59/10a 6 12/1 6 17/2 6 20/4 5 15 8 12 3 5 2 3 3 SiO2 0·07 0·08 0·15 0·08 0·02 0·09 0·09 0·11 TiO2 0·09 0·13 0·16 0·16 0·10 0·11 0·13 0·12 0·18 Al2O3 35·04 34·95 29·05 25·06 25·72 23·50 26·90 31·42 26·19 Cr2O3 31·59 31·37 36·26 38·99 40·69 42·18 34·24 29·82 30·61 V2O3 0·19 0·20 0·20 0·19 0·21 0·21 0·28 0·26 0·36 FeO 16·26 16·88 18·83 19·31 19·11 19·73 22·40 21·70 24·72 n: n.a. Fe2O3 3·08 3·04 4·20 5·76 3·38 3·39 7·24 6·90 9·75 MnO 0·22 0·22 0·27 0·29 0·29 0·31 0·30 0·28 0·35 MgO 13·84 13·44 11·72 10·89 10·88 10·10 8·98 9·82 7·12 NiO 0·15 0·12 0·10 0·10 0·08 0·07 0·13 0·17 0·17 ZnO 0·18 0·21 0·21 0·18 0·34 0·30 0·18 0·31 0·18 100·71 100·74 101·15 101·10 100·80 99·93 101·04 101·01 100·07 Total Mg-no. 0·602 0·586 0·526 0·501 0·504 0·477 0·417 0·447 0·339 s 0·015 0·009 0·006 0·003 0·028 0·006 0·017 0·004 0·033 Cr/(Cr þ Al) 0·378 0·376 0·456 0·511 0·515 0·546 0·461 0·389 0·440 s 0·019 0·006 0·002 0·001 0·002 0·004 0·008 0·002 0·020 Fe3þ/Fetotal 0·145 0·139 0·167 0·212 0·138 0·134 0·225 0·223 0·263 s 0·005 0·004 0·003 0·002 0·006 0·003 0·009 0·007 0·010 FMQ s Sample (pu): 0·15 0·10 0·46 1·02 0·11 0·11 0·76 0·85 1·48 0·13 0·09 0·06 0·03 0·08 0·02 0·14 0·06 0·05 65 7 16/1o 7 31/1 n: 5 5 3 SiO2 0·08 0·03 TiO2 0·07 0·10 0·11 Al2O3 45·70 40·58 24·97 Cr2O3 18·75 24·41 41·00 V2O3 0·18 0·21 0·21 FeO 17·68 18·61 18·62 Fe2O3 3·24 3·25 3·50 MnO 0·27 0·23 0·33 MgO 13·74 12·76 11·02 NiO 0·15 0·11 0·08 ZnO 0·39 0·31 0·26 100·26 100·61 100·13 Total 0·02 Mg-no. 0·581 0·550 0·513 s 0·007 0·003 0·001 Cr/(Cr þ Al) 0·216 0·288 0·524 s 0·005 0·002 0·003 Fe3þ/Fetotal 0·141 0·136 0·144 s 0·007 0·004 0·010 FMQ 0·31 0·46 0·11 0·04 s 2496 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 3. Photomicrographs of the mantle lithologies of the Voykar ophiolite showing the microstructures and textural relationships between minerals in cross-polarized light. (a) Mosaic texture of spinel harzburgite with polygonal olivine grains; (b) poikilitic newly formed Cpx enclosing polygonal olivine grains in a spinel harzburgite adjacent to a pyroxenite vein; (c) coarse-grained protogranular texture of dunite with elongated olivine grains; (d) reaction relationships between olivine, orthopyroxene, Cpx and amphibole (Amf) in an amphibole-bearing pyroxenite (pu07-33/1). Magmatic amphibole (1^2 vol. %) in harzburgites within the harzburgite^pyroxenite contact zones occurs as small interstitial grains or thin rims (as wide as 200 mm) around clinopyroxene. Thus spinel harzburgite in reaction zones around pyroxenite veins is characterized by crystallization of new clinopyroxene as well as amphibole. Dunite (S1) Dunite is composed of olivine (97^99 vol. %) and Cr-spinel (1^3 vol. %), and in some cases sulphides (less than 1%). Irregularly distributed clinopyroxene and orthopyroxene (up to 2%) are sometimes present. Small grains of clinopyroxene, less than 0·3 mm length, are usually associated with Cr-spinel. The samples vary from coarse-grained to very coarse-grained (41 cm) and are characterized by protogranular textures (Fig. 3c). Cr-spinel is euhedral and sometimes forms chains. The degree of serpentinization is about 20^50%. Pyroxenite (S2) These samples are veins of clinopyroxenite (diopsidite) and olivine websterite (diopside^enstatite rock) that cut large dunite bodies or surrounding harzburgite. The modal composition and thickness of clinopyroxenite, websterite and zoned composite dunite^pyroxenite veins (Fig. 2d^f) are given in Table 1. Reactive relationships between the surrounding harzburgite and the pyroxenite veins are frequently observed (Fig. 2d). Most samples 2497 JOURNAL OF PETROLOGY VOLUME 52 contain accessory amounts of Cr-spinel (or Cr-magnetite). Small amounts of magmatic amphibole are observed in almost all of the pyroxenites. Textures vary from coarse to giant (45 cm) irregularly grained. Relics of olivine replaced by orthopyroxene are found in most samples. The relationship between orthopyroxene and clinopyroxene is also frequently reactive. Zoned composite dunite^pyroxenite veins (ZCV) of S2 Two veins of zoned composite dunite^pyroxenite within host spinel peridotite were sampled and studied in detail (Fig. 2e and f). Contact rims of olivine^Cr-spinel websterite separate the spinel harzburgite from the central parts of the veins, which are composed predominantly of coarse equigranular dunite or pyroxene-bearing dunite. All of the rocks contain globules of Cu^Fe^Ni sulphide (up to 1vol. %) associated with Cr-spinel. The zoned dunite pyroxenite vein shown in Fig. 2f is about 40 cm thick and consists of coarse-grained dunite that includes bands and schlieren of websterite. Thick rims (5^7 cm) of websterite line the contact with the surrounding harzburgite (Fig. 2f). This vein is in turn cut by a vein of amphibole pyroxenite. Samples were taken from the dunite (pu7 33/3, pu6 33/3), a pyroxenite band within the dunite (pu6 33/1) and the pyroxenite rim adjacent to the surrounding harzburgite (pu6 33/2) (Table 1). Harzburgite samples were taken 0 cm (pu6 33/4), 40 cm (pu7 33/5) and 70 cm (pu6 33/5) away from contact with the vein. The sample of the late vein of amphibole pyroxenite (pu7 33/1) contains up to 50% of magmatic amphibole and shows evidence of a reaction relationship between the minerals (olivine, orthopyroxene, clinopyroxene and amphibole). The relics of olivine are partly replaced by orthopyroxene. Orthopyroxene, in turn, is replaced by clinopyroxene, which is rimmed by amphibole (Fig. 3d). A N A LY T I C A L M E T H O D S The major element and trace element concentrations of the whole-rocks (Table 2) were determined using a Phillips PW 1404 X-ray fluorescence spectrometer at the Department of Earth Sciences, University of Mainz, Germany. Electron microprobe analysis (EPMA) of the minerals was performed using a Jeol JXA 8200 SuperProbe at the Max Planck Institute for Chemistry (Mainz, Germany). The compositions of olivines were analysed at an accelerating voltage of 20 kV and a beam current of 300 nA, following a special procedure suggested by Sobolev et al. (2007) that allows 20^30 ppm (2s error) precision and accuracy for Ni, Ca, Mn, Al, Ti, Cr, and Co, and 0·02 mol % for the forsterite component in olivine. For each sample 5^20 grains of olivine were analysed. The average values for NUMBER 12 DECEMBER 2011 each sample together with the 1s standard error are reported in Table 3. The composition of Cr-spinel was measured at 20 kVand a 80 nA beam current. The calibration of was made using a synthetic oxide standard set (P&H Developments Ltd., Calibration Standards for Electron Probe Microanalysis, Standard Block GEO) for all elements except Mn (on rhodonite). Ferric iron in spinel was calculated assuming perfect stoichiometry. Repeated measurements of the chromite USNM 117075 (Jarosewich et al., 1980) standard and spinel samples Bar 8601-10 and Dar 8502-2 whose Fe3þ/Fetotal ratio had been measured by Mo«ssbauer spectroscopy (Ionov & Wood, 1992) have shown that the selected method provides Fe3þ/Fetotal ratios accurate to within the measurement error (Supplementary Data Table 1, available for downloading at http://www.petrology. oxfordjournals.org). The average values for each sample and errors are given in Table 4. The compositions of pyroxenes and amphibole were measured using a routine method with an acceleration potential of 20 kV and beam current of 20 nA (Supplementary Data Table 2). International natural mineral standards from the Smithsonian Institution were used (Jarosewich et al., 1980). The ZAF correction procedure was applied for all minerals. Trace element abundances in clinopyroxene and olivine and some orthopyroxene grains were obtained using a laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) system at the Max Planck Institute for Chemistry (Mainz, Germany). This system includes a NewWave, Merchantek UP213 UV Nd^YAG laser coupled to a Finnigan-MAT Element-2 magnetic sector field ICP-MS system. Samples were ablated using 60^90 mm spots, a repetition rate of 10 Hz and laser energy of 6 J cm2 in a He atmosphere. The measurements were calibrated using the NIST SRM 612 and KL2-G reference glasses (Jochum et al., 2000), and Ca as a reference element for clinopyroxene and Si for olivine and orthopyroxene (Supplementary Data Table 3). Typical external precision is better than 4% (RSD) for most elements. For each sample 3^5 grains of olivine (Table 3) and 5^15 grains of clinopyroxene were analysed (Table 5). R E S U LT S Bulk-rock chemistry Major and selected trace element data for the studied samples are given in Table 2. The spinel peridotites have refractory compositions comparable with the most depleted abyssal peridotites (Fig. 4a and b); they are interpreted as residua after melt extraction. The concentrations of Al2O3 and CaO vary in the range 0·7^1·6 wt % and 0·7^1·8 wt % respectively. The observed variations in Al2O3, CaO and MgO concentrations in the spinel harzburgites correlate with their modal compositions, 2498 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 5: Trace element abundances in Cpx determined by LA-ICP-MS, in ppm Sample (pu): n: Li s 211/1 16 s 215/7 n.a. s 6 10/2 10 n.a. s 6 13 4 3·69 0·25 s 6 16/2 5 n.a. s 6 54/1 11 10 n.a. 7 n.a. Sc 71 1 71 1 72 1 74 1 73 1 66 Ti 484 7 613 9 884 27 422 9 256 4 761 s 6 39/2 3 n.a. 0·5 9 s 6 25/1 s 6 12/2 4 6·74 1·08 2·31 0·08 68 2 73 1 77 1 292 14 563 23 525 16 V 268 2 258 3 249 4 267 2 288 3 249 2 210 8 260 10 191 5 Mn 527 3 596 9 600 6 564 10 597 10 516 5 512 9 624 27 593 17 Co Ni 17·8 335 0·2 2 20·0 363 0·3 19·6 6 0·2 308 19·7 3 0·6 367 20·3 9 0·5 384 17·3 8 331 0·4 20·2 4 379 1·2 25 20·3 350 1·9 23 18·2 315 0·4 6 Sr 0·96 0·03 4·51 0·25 6·25 0·16 0·86 0·03 3·89 0·07 0·23 0·01 5·17 0·39 7·41 0·38 4·88 0·18 Y 3·47 0·05 5·83 0·06 7·67 0·22 5·52 0·06 3·37 0·04 7·45 0·11 2·89 0·20 5·72 0·24 3·34 0·17 Zr 0·17 0·01 0·67 0·04 3·07 0·14 0·08 0·00 0·13 0·01 0·10 0·01 1·16 0·10 0·85 0·05 1·40 0·04 La 0·011 0·001 0·030 0·002 0·055 0·003 0·008 0·002 0·037 0·001 b.d.l. 0·037 0·003 0·036 0·002 0·014 0·002 Ce 0·037 0·002 0·127 0·006 0·293 0·010 0·025 0·002 0·114 0·003 0·008 0·001 0·162 0·019 0·136 0·011 0·074 0·009 Pr 0·006 0·001 0·025 0·002 0·072 0·006 0·003 0·0002 0·017 0·001 0·004 0·0002 0·028 0·004 0·030 0·005 0·020 0·003 Nd 0·051 0·003 0·153 0·010 0·543 0·024 0·031 0·004 0·072 0·003 0·030 0·002 0·173 0·023 0·204 0·021 0·183 0·017 Sm 0·047 0·004 0·088 0·017 0·287 0·022 0·069 0·008 0·034 0·007 0·090 0·011 0·067 0·012 0·113 0·012 0·124 0·015 Eu 0·023 0·002 0·035 0·004 0·132 0·006 0·024 0·002 0·013 0·002 0·053 0·002 0·038 0·004 0·052 0·003 0·047 0·003 Gd 0·191 0·011 0·287 0·017 0·666 0·039 0·222 0·009 0·117 0·005 0·421 0·012 0·177 0·015 0·317 0·021 0·260 0·020 Tb 0·053 0·001 0·078 0·002 0·148 0·005 0·075 0·004 0·035 0·002 0·117 0·002 0·044 0·005 0·082 0·003 0·060 0·003 Dy 0·530 0·009 0·789 0·018 1·242 0·043 0·764 0·013 0·416 0·008 1·096 0·019 0·409 0·033 0·831 0·026 0·519 0·031 Ho 0·135 0·002 0·219 0·005 0·297 0·006 0·211 0·005 0·121 0·003 0·279 0·004 0·112 0·008 0·212 0·013 0·128 0·006 Er 0·455 0·005 0·738 0·022 0·917 0·018 0·734 0·010 0·453 0·016 0·929 0·016 0·374 0·020 0·733 0·020 0·445 0·017 Tm 0·075 0·002 0·109 0·005 0·134 0·004 0·115 0·004 0·071 0·002 0·148 0·004 0·063 0·007 0·115 0·005 0·071 0·003 Yb 0·527 0·009 0·815 0·017 0·933 0·030 0·800 0·023 0·567 0·011 1·018 0·014 0·472 0·021 0·822 0·068 0·530 0·018 Lu 0·081 0·002 0·124 0·003 0·139 0·004 0·117 0·005 0·087 0·002 0·156 0·003 0·075 0·004 0·125 0·008 0·074 0·003 Hf 0·019 0·001 0·052 0·004 0·104 0·005 b.d.l. 0·035 0·001 0·035 0·005 0·027 0·001 0·093 0·003 7 15C3 s 7 15c2 s 7 15c1 s s Sample (pu): 759/10c n: Li 3 8·07 s 6 24 4 1·53 3·52 s 6 35/2 4 0·26 2·41 b.d.l. s 7 15C6 0·07 3·35 s 7 15C5 4 4 0·24 4·54 s 7 15C4 5 0·40 2·88 4 0·26 2·01 4 0·28 2·15 4 0·25 2·09 0·16 Sc 59 2 68 1 72 1 64 1 71 2 78 3 86 4 94 4 85 3 Ti 343 11 564 28 1309 75 470 13 309 9 433 9 589 15 537 34 557 5 V 165 2 284 4 267 5 195 3 197 3 175 5 144 3 115 8 106 2 Mn 646 24 531 4 460 14 507 19 528 9 478 13 410 16 446 13 436 3 Co Ni 21·2 368 1·4 15 19·1 353 0·5 7 16·3 311 0·4 9 17·8 325 1·0 16 18·4 321 0·4 6 17·5 295 0·4 11 15·7 266 0·1 3 14·8 255 0·4 8 14·1 241 0·1 6 Sr 5·19 0·25 3·50 0·13 2·42 0·20 6·11 0·48 7·46 0·18 8·13 0·45 11·34 0·56 10·29 0·99 11·21 Y 3·30 0·25 5·96 0·22 5·73 0·51 3·44 0·10 3·54 0·10 3·88 0·29 4·72 0·06 3·26 0·29 3·33 0·55 0·15 Zr 0·75 0·06 2·00 0·13 1·54 0·06 4·00 0·19 1·73 0·08 3·08 0·21 4·95 0·05 3·50 0·50 4·02 0·09 La 0·022 0·002 0·044 0·004 0·007 0·001 0·073 0·004 0·075 0·004 0·068 0·006 0·108 0·007 0·065 0·011 0·061 0·003 Ce 0·116 0·010 0·218 0·014 0·056 0·007 0·354 0·024 0·309 0·001 0·281 0·022 0·417 0·020 0·263 0·037 0·255 0·005 Pr 0·031 0·003 0·053 0·002 0·022 0·003 0·082 0·007 0·056 0·004 0·054 0·004 0·075 0·003 0·048 0·006 0·044 0·002 Nd 0·240 0·011 0·397 0·015 0·197 0·016 0·532 0·043 0·352 0·011 0·373 0·029 0·455 0·024 0·258 0·030 0·280 0·017 (continued) 2499 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 5: Continued s Sample (pu): 759/10c s 6 24 3 n: s 6 35/2 4 s 7 15C6 4 s 7 15C5 4 7 15C4 4 s s 7 15C3 5 s 7 15c2 4 s 7 15c1 4 4 Sm 0·151 0·015 0·189 0·011 0·188 0·010 0·239 0·020 0·179 0·010 0·175 0·023 0·195 0·008 0·123 0·007 Eu 0·058 0·003 0·084 0·003 0·073 0·007 0·087 0·006 0·064 0·010 0·065 0·005 0·076 0·004 0·050 0·004 0·036 0·003 Gd 0·294 0·007 0·403 0·024 0·467 0·038 0·428 0·023 0·342 0·015 0·354 0·033 0·369 0·023 0·221 0·036 0·234 0·012 Tb 0·064 0·001 0·094 0·004 0·109 0·010 0·087 0·004 0·069 0·004 0·076 0·006 0·077 0·002 0·046 0·006 0·050 0·002 Dy 0·516 0·041 0·865 0·036 0·921 0·065 0·605 0·034 0·570 0·026 0·612 0·054 0·683 0·017 0·435 0·053 0·431 0·020 Ho 0·121 0·012 0·222 0·008 0·224 0·018 0·126 0·002 0·127 0·003 0·145 0·009 0·165 0·003 0·123 0·010 0·123 0·006 Er 0·401 0·031 0·746 0·028 0·724 0·060 0·372 0·009 0·406 0·020 0·486 0·025 0·626 0·015 0·434 0·045 0·428 0·034 Tm 0·057 0·006 0·114 0·004 0·110 0·008 0·055 0·002 0·063 0·002 0·070 0·004 0·099 0·002 0·074 0·007 0·073 0·003 Yb 0·418 0·027 0·834 0·039 0·798 0·058 0·361 0·014 0·430 0·011 0·507 0·028 0·687 0·064 0·575 0·046 0·533 0·025 Lu 0·057 0·005 0·126 0·005 0·119 0·010 0·053 0·001 0·066 0·002 0·076 0·006 0·104 0·002 0·087 0·008 0·079 0·006 Hf 0·050 0·001 0·056 0·006 0·115 0·002 0·153 0·008 0·058 0·002 0·105 0·007 0·198 0·013 0·187 0·022 0·212 0·006 s Sample (pu): 6 39/1 6 38/1 n: Li 1 n.a. 4 s 6 37/1 2 n.a. s 6 41 7 n.a. s 7 13/1 2 n.a. 3·61 s 6 35/1 3 0·19 s 215/4 10 n.a. s 6 11/4 4 n.a. 2·85 0·135 0·012 s 6 11/3c 4 0·34 7 33/1 1 n.a. 2·04 Sc 115 107 1 113 3 91 3 89 1 115 5 66 1 74 2 64 Ti 611 929 24 1136 97 595 13 378 5 1509 103 1102 18 795 26 773 12 V 148 163 3 236 7 147 4 132 1 238 14 277 3 249 4 241 3 244 Mn 231 407 9 441 19 429 18 392 1 420 32 607 11 626 11 660 23 657 Co Ni 15·0 267 14·9 302 0·4 7 18·7 281 0·04 6 17·5 296 0·4 5 14·0 287 0·4 16 16·3 272 0·2 6 20·0 424 0·6 9 19·6 333 1·1 9 22·6 367 0·3 1·5 10 68 699 18·3 390 Sr 6·08 7·14 0·13 2·96 0·04 7·57 0·15 1·18 0·00 13·15 1·19 6·16 0·11 4·39 0·09 7·28 0·10 Y 5·06 7·74 0·21 5·56 0·18 4·61 0·10 4·37 0·29 9·96 0·37 9·04 0·16 5·89 0·08 5·44 0·08 6·75 5·20 Zr 1·91 3·70 0·08 1·69 0·14 2·37 0·08 1·74 0·07 8·91 0·57 2·51 0·06 1·79 0·04 1·77 0·02 1·23 La 0·076 0·043 0·003 0·035 0·003 0·088 0·004 0·006 0·0002 0·105 0·005 0·076 0·002 0·036 0·003 0·048 0·002 0·054 Ce 0·289 0·180 0·012 0·138 0·009 0·313 0·010 0·034 0·002 0·501 0·010 0·325 0·007 0·176 0·005 0·196 0·055 0·240 Pr 0·060 0·037 0·001 0·030 0·003 0·049 0·002 0·009 0·001 0·124 0·001 0·072 0·002 0·048 0·0004 0·065 0·001 0·055 Nd 0·332 0·235 0·022 0·197 0·007 0·258 0·008 0·081 0·002 0·880 0·014 0·546 0·014 0·376 0·014 0·515 0·007 0·453 Sm 0·133 0·144 0·006 0·091 0·009 0·107 0·007 0·052 0·006 0·417 0·003 0·362 0·014 0·247 0·011 0·305 0·011 0·275 Eu 0·073 0·060 0·003 0·048 0·0001 0·047 0·002 0·029 0·005 0·172 0·012 0·165 0·005 0·105 0·006 0·138 0·005 0·100 Gd 0·331 0·356 0·013 0·259 0·003 0·242 0·008 0·150 0·019 0·839 0·004 0·865 0·027 0·508 0·017 0·617 0·016 0·548 Tb 0·076 0·096 0·003 0·065 0·002 0·062 0·002 0·045 0·003 0·191 0·0001 0·191 0·004 0·117 0·003 0·123 0·002 0·115 Dy 0·724 0·942 0·024 0·670 0·008 0·590 0·012 0·487 0·052 1·547 0·045 1·510 0·039 0·923 0·011 0·972 0·015 0·854 Ho 0·195 0·275 0·010 0·199 0·006 0·170 0·005 0·157 0·008 0·377 0·021 0·338 0·007 0·226 0·003 0·216 0·005 0·193 Er 0·708 1·023 0·024 0·784 0·023 0·614 0·012 0·606 0·014 1·314 0·038 1·051 0·030 0·704 0·012 0·624 0·012 0·611 Tm 0·103 0·176 0·007 0·138 0·006 0·096 0·003 0·103 0·0004 0·191 0·013 0·141 0·004 0·103 0·004 0·088 0·007 0·084 Yb 0·703 1·189 0·042 1·019 0·027 0·719 0·024 0·770 0·020 1·318 0·107 0·961 0·018 0·725 0·009 0·601 0·017 0·616 Lu 0·093 0·161 0·005 0·150 0·001 0·099 0·004 0·105 0·002 0·193 0·016 0·136 0·002 0·101 0·002 0·084 0·002 0·090 Hf 0·072 0·136 0·003 0·074 0·006 0·131 0·004 0·101 0·005 0·373 0·024 0·126 0·005 0·098 0·005 0·086 0·005 0·064 (continued) 2500 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 5: Continued s Sample (pu): 6 11/3d n: Li 4 s 6 33/5 n.a. n.a. 1 56 1 63 Ti 660 13 765 10 969 V 205 2 198 2 219 Mn 678 8 514 8 539 Ni 21·6 303 0·2 4 17·7 343 0·3 6 s 6 33/2 16 4·82 69 s 6 33/4 7 Sc Co s 7 33/5 4 s 6 33/1 10 4 n.a. 0·22 n.a. 63 1 66 1 69 1 70 1 84 2 57 1 10 413 6 792 12 843 19 678 11 442 8 370 12 2 211 3 258 3 263 4 236 2 181 4 150 7 13 631 7 683 15 688 13 665 7 465 12 603 21 0·8 21·3 9 0·4 356 22·5 6 0·9 409 2·15 s 7 59/10b 10 0·20 19·0 n.a. s 6 33/3 10 0·2 328 n.a. s 7 33/3 11 22·0 10 1·0 364 20·6 9 0·5 352 17·6 10 314 5·59 0·4 5 0·48 20·9 382 0·9 11 Sr 7·12 0·12 1·80 0·13 5·24 0·18 9·35 0·21 6·96 0·07 8·06 0·15 7·17 0·12 17·87 0·38 5·18 0·32 Y 4·96 0·07 4·17 0·15 8·38 0·16 3·87 0·06 6·04 0·09 6·20 0·15 5·00 0·09 4·36 0·11 3·17 0·16 Zr 1·53 0·05 6·84 0·13 0·86 0·08 1·08 0·02 1·61 0·03 1·40 0·05 1·16 0·03 2·26 0·06 0·75 0·06 La 0·043 0·002 0·008 0·001 0·021 0·001 0·055 0·002 0·056 0·001 0·048 0·002 0·052 0·002 0·113 0·004 0·020 0·001 Ce 0·225 0·002 0·043 0·002 0·093 0·002 0·237 0·005 0·273 0·004 0·237 0·008 0·230 0·006 0·433 0·012 0·113 0·009 Pr 0·054 0·003 0·017 0·001 0·022 0·001 0·052 0·001 0·066 0·001 0·063 0·003 0·053 0·001 0·082 0·003 0·029 0·003 Nd 0·460 0·009 0·230 0·022 0·161 0·010 0·338 0·009 0·502 0·011 0·497 0·014 0·411 0·008 0·527 0·017 0·231 0·018 Sm 0·281 0·005 0·258 0·038 0·162 0·004 0·179 0·009 0·312 0·008 0·308 0·013 0·244 0·006 0·185 0·016 0·134 0·008 Eu 0·110 0·006 0·120 0·009 0·083 0·004 0·070 0·002 0·126 0·004 0·138 0·007 0·097 0·002 0·083 0·004 0·065 0·005 Gd 0·514 0·021 0·532 0·027 0·556 0·016 0·343 0·011 0·623 0·015 0·661 0·024 0·507 0·013 0·366 0·017 0·296 0·022 Tb 0·110 0·002 0·103 0·008 0·143 0·003 0·071 0·002 0·125 0·003 0·144 0·004 0·107 0·002 0·079 0·003 0·061 0·003 Dy 0·843 0·025 0·753 0·049 1·271 0·024 0·620 0·013 1·003 0·021 1·099 0·032 0·848 0·016 0·637 0·019 0·512 0·013 Ho 0·199 0·004 0·156 0·008 0·317 0·005 0·149 0·004 0·231 0·005 0·244 0·008 0·198 0·003 0·163 0·007 0·118 0·006 Er 0·616 0·016 0·471 0·020 1·039 0·019 0·478 0·010 0·691 0·017 0·738 0·020 0·612 0·011 0·556 0·017 0·378 0·017 Tm 0·082 0·002 0·073 0·002 0·154 0·003 0·075 0·002 0·102 0·003 0·098 0·004 0·090 0·002 0·089 0·003 0·055 0·003 Yb 0·602 0·026 0·443 0·010 1·017 0·020 0·496 0·011 0·696 0·010 0·693 0·025 0·601 0·014 0·650 0·014 0·365 0·023 Lu 0·085 0·002 0·064 0·002 0·141 0·004 0·076 0·002 0·099 0·002 0·100 0·004 0·089 0·002 0·093 0·004 0·053 0·005 Hf 0·077 0·004 0·222 0·008 0·082 0·005 0·053 0·002 0·087 0·002 0·089 0·004 0·073 0·002 0·125 0·004 0·048 0·003 Sample (pu): 7 59/1a n: Li s 4 4·66 15 0·40 n.a. 0·4 61 Sc 59 Ti 422 8 344 V 184 3 215 Mn 598 7 830 Co Ni 20·5 386 s 214/7 1·4 7 30·6 327 s 6 12/1 10 10 n.a. 0·5 1 54 4 356 4 365 2 229 3 195 11 884 21 840 0·4 32·8 368 0·8 7 29·5 361 s 6 20/4 20 n.a. 62 3 s 6 17/2 9 n.a. 0·4 s 6 7 7 16/1o s 4 n.a. 1·74 7 14/2 s 4 0·02 1·66 7 31/1 s 4 0·17 0·64 0·14 58 1 61 1 90 1 66 3 78 3 4 355 3 368 14 981 18 452 9 259 10 1 190 1 230 7 296 3 263 2 232 8 10 832 12 885 23 797 14 878 38 909 15 0·5 5 29·3 361 0·4 6 33·8 372 1·2 8 23·0 205 0·6 4 30·0 349 1·9 14 30·7 307 1·2 11 Sr 5·69 0·10 7·61 0·05 7·72 0·04 6·65 0·04 6·18 0·05 7·90 0·10 6·90 0·10 7·51 0·16 4·03 Y 3·23 0·11 2·74 0·03 2·73 0·06 2·60 0·05 2·48 0·04 2·85 0·06 7·48 0·27 3·25 0·13 1·80 0·13 0·06 Zr 0·92 0·04 0·56 0·01 0·57 0·02 0·50 0·02 0·41 0·01 0·65 0·04 2·16 0·04 0·71 0·05 0·34 0·02 La 0·027 0·001 0·021 0·001 0·022 0·001 0·024 0·001 0·020 0·001 0·023 0·001 0·045 0·002 0·033 0·002 0·011 0·001 Ce 0·146 0·005 0·109 0·001 0·120 0·003 0·120 0·003 0·102 0·001 0·125 0·003 0·256 0·005 0·158 0·005 0·059 0·003 Pr 0·037 0·002 0·029 0·001 0·032 0·001 0·033 0·001 0·027 0·001 0·030 0·001 0·072 0·003 0·039 0·002 0·014 0·0004 Nd 0·278 0·010 0·245 0·007 0·252 0·009 0·230 0·007 0·218 0·005 0·244 0·004 0·646 0·017 0·296 0·011 0·096 0·004 (continued) 2501 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 5: Continued Sample (pu): 7 59/1a n: 4 Sm 0·170 Eu 0·068 Gd s 214/7 s 6 12/1 s 6 17/2 s 6 20/4 s 67 s s s s 20 0·010 0·160 0·007 0·146 0·012 0·113 0·012 0·126 0·004 0·151 0·009 0·427 0·003 0·173 0·007 0·066 0·005 0·062 0·002 0·062 0·003 0·056 0·003 0·055 0·002 0·065 0·003 0·179 0·006 0·075 0·003 0·029 0·003 0·338 0·010 0·283 0·008 0·297 0·007 0·276 0·015 0·253 0·005 0·296 0·007 0·849 0·033 0·348 0·013 0·147 0·010 Tb 0·070 0·002 0·056 0·002 0·057 0·002 0·055 0·002 0·052 0·001 0·062 0·001 0·172 0·006 0·070 0·001 0·034 0·001 Dy 0·537 0·024 0·449 0·008 0·463 0·014 0·430 0·015 0·415 0·008 0·475 0·012 1·285 0·040 0·534 0·021 0·319 0·010 Ho 0·125 0·005 0·105 0·001 0·106 0·002 0·105 0·003 0·097 0·002 0·110 0·003 0·292 0·005 0·127 0·009 0·074 0·006 Er 0·374 0·011 0·338 0·008 0·329 0·010 0·308 0·010 0·292 0·006 0·347 0·013 0·847 0·025 0·386 0·013 0·240 0·010 Tm 0·053 0·003 0·046 0·002 0·043 0·003 0·046 0·004 0·042 0·001 0·053 0·003 0·119 0·003 0·057 0·002 0·036 0·002 Yb 0·369 0·014 0·337 0·008 0·350 0·010 0·314 0·011 0·290 0·006 0·370 0·011 0·785 0·035 0·403 0·021 0·253 0·008 Lu 0·056 0·003 0·052 0·001 0·052 0·002 0·048 0·001 0·045 0·001 0·054 0·003 0·110 0·005 0·061 0·003 0·041 0·004 Hf 0·052 0·003 0·033 0·002 0·035 0·002 0·027 0·002 0·024 0·001 0·038 0·003 0·111 0·004 0·039 0·001 0·025 0·001 The Fo content [Fo ¼100 Mg/(Mg þ Fe2þ)] of olivine in the harzburgites varies from 90·15 to 91·62 and depends 4 7 31/1 10 Major and trace element mineral compositions Olivine 4 7 14/2 10 particularly their orthopyroxene and clinopyroxene contents. The orthopyroxene-enriched band (pu07-59/10b) plots on the low-MgO side. A sample of spinel peridotite adjacent to the S2 composite dunite^pyroxenite veins has higher CaO and Al2O3 contents than the harzburgites located 40 and 70 cm from this vein. This sample contains a significant amount of newly formed clinopyroxene and could thus have been re-enriched during melt infiltration. Dunites formed during the early stage melt percolation (S1) are distinguished from the late dunites (S2) in composite dunite^pyroxenite veins by their low concentrations of CaO, which could be related to the higher modal contents of clinopyroxene in the latter. Compared with the surrounding spinel peridotites, the dunites of S1 and S2 have lower SiO2, Al2O3 and CaO concentrations (Al2O3 0·28^0·82 wt %, CaO 0·12^0·56 wt %) and a higher MgO content (46·2^50·4 wt %) (Fig. 4a and b). The small variations in the Al2O3 content of the dunites reflect varying amounts of accessory Cr-spinel. Pyroxenites have low concentrations of Al2O3, TiO2, Na2O and K2O (1·4^3·3 wt %, 0·03^0·11wt %, 50·10 wt % and 50·01wt %, respectively) (Table 2). Their CaO and MgO contents reflect the modal proportion of clinoand orthopyroxene (Fig. 4c and d). An exception to this trend is the pyroxenite (pu07-33/1), which contains 50% magmatic amphibole (magnesiohornblende) and high concentrations of all of the elements listed above. 9 7 16/1o 15 4 0·015 strongly on the position of the sample relative to the dunite bodies and pyroxenite veins (Table 3). The Fo content of olivines from harzburgite samples located far from visible contacts with ‘melt pathways’ shows limited variations from 90·41 to 91·23. The Fo content of olivine increases in harzburgite samples adjacent to S1 dunites (up to 91·42^91·62), whereas it decreases to 90·15^90·51 in harzburgite adjacent to S2 pyroxenite and composite dunite^pyroxenite veins (Fig. 5a and b). Olivines from the S1 dunite show a wide range of Fo contents (88·88^92·61). The majority of dunite samples have higher Fo contents than those of the harzburgites (Fig. 5a). The large dunite bodies are internally inhomogeneous in terms of the Fo content of olivine (88·88^ 92·24). Low values of Fo in S1 dunite samples adjacent to orthopyroxenite veins cross-cutting large dunite bodies probably result from late-stage (S2) melt percolation (Table 1). The samples of S2 dunite in composite dunite^ pyroxenite veins are characterized by low Fo contents compared with the surrounding harzburgite and S1 dunite (Tables 1 and 3; Fig. 5). Olivine in the pyroxenite veins is divided into two groups, one with high (90·10^90·60) and the other with low (85^87) Fo contents. The olivines from websterite veins, composite dunite^pyroxenite veins and a thin clinopyroxenite vein (sample pu07-59/10a) belong to the first group. Olivine from most of the pyroxenite veins belongs to the second group. The olivine of the second group plots away from the olivine^spinel mantle array (OSMA) defined by Arai (1994) (Fig. 5a). Olivine in these clinopyroxenites occurs only as relics in clinopyroxene. The Fo content of the olivine relics varies from 1 to 2% Fo in a single thin section (Tables 1 and 3). 2502 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 4. Bulk-rock abundances of Al2O3 and CaO vs MgO in Voykar peridotites and pyroxenites; (a) and (b) refer to spinel peridotites and dunites; (c) and (d) refer to pyroxenites. The data for abyssal peridotites (small circles) are from http://www.petdb.org/. The partial melting trend shown is that for Mamonia spinel lherzolites (Batanova et al., 2008). PM, primitive mantle (Hofmann, 1988); Hz, spinel harzburgite; Hz relic in Du of S1, relic of spinel harzburgite within dunite body; Hz adj. vein of S2, spinel harzburgite adjacent to pyroxenite and zoned composite dunite^pyroxenite veins of late-stage (S2) melt percolation; Du of S1 and Du of S2, dunite formed during early (S1) and late (S2) stages of melt percolation. The concentrations of Ca and Ti in olivines from harzburgites are close to the detection limit even of high-precision EPMA, and Cr and Al concentrations are below it (Table 3). For samples of different mantle lithologies with similar Fo contents, olivine from dunites has relatively high Ca and Ti and low Al and Ni, and olivine from pyroxenites has low Ca, Ti, and Al similar to that of olivine from surrounding harzburgite (Table 3). Olivines from Voykar lithologies define the two groups distinguished by their Ni and Fo content (Fig. 6). Spinel harzburgites, dunites and some pyroxenites contain olivines with high Fo contents similar to those in mid-ocean ridge basalt (MORB); these are thought to form from a dominantly peridotitic protolith (Sobolev et al., 2007). Compared with the surrounding harzburgites, the Ni content of olivine tends to be low in dunites but higher in some pyroxenites. The second group includes olivine with relatively low Fo contents in pyroxenites. These plot within the field of high-Ni olivines from within-plate magmas formed under thick lithosphere (Sobolev et al., 2007), and olivines from subduction-related calc-alkaline series (Straub et al., 2008) (Fig. 6). These types of magmas have been inferred to contain a large fraction of melt derived from a hybrid pyroxenite source (Sobolev et al., 2007; Straub et al., 2008). Cr-spinel The spinel Cr-number [ ¼ Cr/(Cr þAl)] of spinels in harzburgite varies widely from 0·25 to 0·53 (Table 4). These variations are consistent with those in olivine (Fig. 5a and b) and depend upon the distance from the contacts of S1 dunite and S2 pyroxenite veins. In samples 2503 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 far from contacts with ‘melt pathways’ Cr/(Cr þAl) is 0·25^0·29, corresponding to a moderately depleted abyssal peridotite. Higher ratios in harzburgite adjacent to S1 dunite (up to 0·49) correlate positively with the Fo content of olivine. Thus the Fo^spinel Cr-number values in harzburgites near contacts with S1 bodies plot within the intersection of highly refractory abyssal harzburgites and SSZ peridotites (Fig. 5a). The olivine and spinel from harzburgite samples within the reaction zones of S2 pyroxenite and composite dunite^pyroxenite veins define a second trend in Fig. 5a and b in which spinel Cr-number shows a negative correlation with Fo content. The TiO2 content of spinel increases abruptly at the transition from S1 harzburgite to S1 dunite and from S2 harzburgite to pyroxenite and correlates positively with spinel Cr-number (Fig. 7a; Table 4). Oxygen fugacities were calculated using the method of Ballhaus et al. (1991) for P ¼1·4 GPa,T ¼10008C (estimated below). The results are given in Tables 1 and 4, quoted as log units relative to the fayalite^magnetite^quartz (FMQ) buffer. Spinel harzburgites have log fO2(FMQ) from 1·06 to þ0·42 and plot below the boundary of MOR harzburgites and SSZ harzburgites (Dare et al., 2009) (Fig. 7b). However, oxygen fugacities are higher in harzburgite samples located within the reaction zones of S1 and S2 ‘magmatic bodies’, shifting their composition toward the field of SSZ peridotites. Compared with harzburgites, S1 dunites and S2 websterites and dunites exhibit higher oxygen fugacities [up to þ1·7 log fO2(FMQ)] typical of SSZ harzburgites and dunites (Parkinson & Pearce, 1998; Parkinson & Arculus, 1999; Pearce et al., 2000) (Fig 7b). The oxygen fugacities of all samples increase as spinel Cr-number increases. Orthopyroxene Orthopyroxene compositions are presented in Supplementary Data Table 3 and are not discussed further here. Clinopyroxene Fig. 5. Variation of spinel Cr-number vs olivine Fo (mol %) for the Voykar mantle lithologies (spinel peridotites, dunites and pyroxenites): (a) relative to the fields of abyssal peridotites (after Dick, 1989; Johnson & Dick, 1992; Hellebrand et al., 2001; Seyler et al., 2003, 2007), SSZ peridotites (after Parkinson & Pearce, 1998; Pearce et al., 2000), the olivine^spinel mantle array (OSMA) of Arai (1994), and a partial melting trend based on experimental data obtained at 15 kbar by Jaques & Green (1980); (b) the variation across a transect through an S1 dunite vein (Fig. 2b) and zoned composite dunite^ pyroxenite S2 veins (Fig. 2e and f). The arrows show the direction of the compositional changes in the harzburgites adjacent to the S1 dunite, and pyroxenite S2 and composite dunite^pyroxenite vein ZCV respectively. Other symbols are the same as in Fig. 4. Clinopyroxene (Cpx) is found in all Voykar lithologies except for some S1 dunites. Major and trace element compositions are reported in Supplementary Data Table 2 and Table 5 respectively. The pyroxene is a Cr-diopside with low Na2O and TiO2 concentrations. Al2O3 contents of Cpx from harzburgites, S1 and S2 dunites and pyroxenites vary in the same range (1·5^3·9 wt %), whereas the Mg-numbers of Cpx in the pyroxenites are usually lower (88·8^93·3) than in the harzburgites and S1 dunites (93·3^95·5) (Supplementary Data Table 2). The trace element patterns of clinopyroxene from harzburgites (Fig. 8a and b) are characterized by a wide range of variation in light rare earth elements (LREE) and a more restricted range in the heavy REE (HREE). The REE concentrations of Cpx from harzburgite are within the field for abyssal peridotites, but at the same 2504 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 6. Variation of NiO wt % in olivine vs Fo (mol %) for the Voykar mantle lithologies. The fields of olivines from MORB and within-plate magmas formed under thick lithosphere (WPM-thick) are from Sobolev et al. (2005); the data for olivines of SSZ-related calc-alkaline volcanics are from the calc-alkaline Popocatepetl volcano, Mexican volcanic belt (Straub et al., 2008). The black diamonds are NiO compositions corrected for subsolidus re-equilibration (see discussion). contents of HREE, they are relatively enriched in LREE (Fig. 8a^d). Clinopyroxene in sample pu06-54/1 is exceptional in being similar to Cpx from abyssal peridotites for HREE, but having lower middle REE (MREE). We consider this sample as the least affected by melt percolation processes. Cpx from all harzburgite samples exhibits positive Sr anomalies that are typical features for pyroxenes from SSZ peridotites (Parkinson & Pearce, 1998). The Cpx of harzburgites adjacent to contacts with veins shows strong LREE enrichment and relative depletion in HREE, compared with Cpx from abyssal peridotites. Its trace element patterns are similar to those of Cpx from the pyroxenite veins (Fig. 8e and f). The variations in incompatible elements in Cpx across the margins of S2 pyroxenite veins (Fig. 2e and f) are shown in Fig. 9a^f. From these figures it is obvious that the trace elements in Cpx of the harzburgites must have re-equilibrated with the percolating melt or fluid that formed the pyroxenite veins. The degree of re-equilibration increases towards the contact of each vein. In the narrow reaction zone directly at the contacts the newly formed Cpx has the same trace element pattern as the pyroxenite veins Cpx (Fig. 9). This Cpx displays strong enrichment in LREE, Sr and Zr, and depletion in HREE, compared with the Cpx in harzburgite sample pu06-54/1, which we regard as the least affected by melt percolation processes. The trace element patterns of Cpx in the S1 dunites are highly variable (Fig. 10a and b) and do not depend on the size of the bodies. The LREE, Sr and MREE contents are similar to those of Cpx from the S2 pyroxenite veins. Because the dunite Cpx grains are characterized by positive Hf anomalies, negative Zr anomalies are not pronounced. The Cpx of some S1 dunites contains lower LREE abundances than Cpx from the S2 pyroxenites and dunites. Compared with Cpx from the host harzburgites, the HREE abundances in Cpx from the S1 dunites have similar or higher concentrations. This feature has also been observed in Cpx from dunites in other ophiolites (Suhr et al., 2003) and is in remarkable contrast to the Cr-number of spinel and Fo of olivine, which are both higher in the dunites than in the surrounding harzburgites. The trace element contents of Cpx from the S1 dunite pu06-35/1 (Fig. 10a and b) are markedly different from 2505 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 7. (a) Variation of Cr/(Cr þAl) vs TiO2 wt % and (b) log fO2 vs Cr/(Cr þAl) for spinel from the various lithologies of the Voykar mantle section. The field for abyssal peridotites is after Bryndzia & Wood (1990); that for SSZ peridotites is after Parkinson & Pearce (1998), Parkinson & Arculus (1999) and Pearce et al. (2000); the boundaries between mid-ocean ridge (MOR) and SSZ harzburgites and dunites are from Dare et al. (2009). The black arrows show the compositional changes of spinel and the variation of log fO2 along the harzburgite^ dunite vein transect shown in Fig. 2b. 2506 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 8. Chondrite-normalized trace element and REE patterns of clinopyroxenes from the Voykar harzburgite. (a, b) Cpx from harzburgites compared with those from the Voykar pyroxenite veins and abyssal peridotite field (after Johnson et al., 1990; Johnson & Dick, 1992; Hellebrand et al., 2001) as well as the single Cpx measurements that are close in HREE abundance to those from the Voykar harzburgites. (c, d) Cpx from harzburgites located far away from dunite and pyroxenite veins. The sample pu06-54/1 with the highest HREE and the lowest LREE is labelled. (e, f) Cpx from harzburgites adjacent to pyroxenite and dunite veins (contact zones). Chondrite normalization values are from Anders & Grevesse (1989). both Cpx in the surrounding peridotite and Cpx in the S2 pyroxenite veins. The variations of incompatible elements in Cpx across dunite^harzburgite transitions (Fig. 2b) are shown in Fig. 11. The trace element patterns of clinopyroxene from different pyroxenite veins (Fig. 10c and d) are remarkably parallel to each other and differ only in their concentrations: YbN varies from 1·6 to 4·9 and LaN from 0·05 to 0·24. All patterns are characterized by positive Sr and negative Zr, Hf and Ti anomalies. These patterns are similar to those of Cpx phenocrysts from sample of high-Ca boninites from the Troodos ophiolite upper pillow lavas (trds 5-36) (Supplementary Data Table 6) but show even higher Sr concentrations (see also Belousov et al., 2009). Thus, the Cpx patterns of all harzburgite samples indicate the influence of melt percolation. There is only a 2507 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 9. Chondrite-normalized trace element and REE patterns of clinopyroxene from samples collected across the following transects: (a, b) the zoned composite dunite^pyroxenite vein (ZCV) and the surrounding harzburgite shown in Fig. 2f; (c, d) the composite dunite^pyroxenite vein and the surrounding harzburgite shown in Fig. 2e; (e, f) the pyroxenite vein and adjacent harzburgite (samples pu06 12/1, pu06 12/2); the vertical arrow in (f) shows the trend of changes in the composition of the Cpx in harzburgite as a result of interaction with melt. The Cpx from the harzburgite sample pu06-54/1 regarded as the least affected by the melt percolation processes is highlighted. (a, b) sample position shown in Fig. 2f: harzburgite 70 cm from contact with zoned composite dunite^pyroxenite vein (ZCV) is sample pu06 33/5; harzburgite 40 cm from contact is sample pu07 33/5; harzburgite adjacent to vein is sample pu06 33/4; samples within vein: websterite, pu06-33/1 and 33/2; dunite, pu06 33/3 and pu07 33/3. (c, d) sample position shown in Fig. 2e: harzburgite adjacent to vein is pu06-11/4; websterite vein rim is pu06/11c; dunite adjacent to pyroxenite rim is pu06 11/3 cd; dunite vein center is pu06 11/3d. slight difference between the Cpx patterns of harzburgites that are far from contacts with pyroxenite and those in the contact zones. Cpx from harzburgites remote from contacts is characterized by higher HREE, a wider range of LREE and more fractionated LREE/HREE ratios compared with Cpx of harzburgites near vein contacts (Fig. 8c and d). The Cpx grains from the majority of samples of S1 dunite have trace element patterns similar to those of Cpx from S2 pyroxenites, suggesting that the S1 dunites were influenced by late-stage melts. 2508 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 10. Chondrite-normalized trace element and REE patterns of clinopyroxene from the Voykar mantle dunites and pyroxenites. (a, b) Cpx grains from large dunite bodies and small dunite veins compared with those from pyroxenites and harzburgites. The normal (N)-MORB Cpx pattern is calculated using an average N-MORB (Kelemen et al., 2003) and Cpx/melt distribution coefficients from Hart & Dunn (1993). (c, d) Cpx from pyroxenite veins compared with Cpx phenocrysts in boninites from Troodos upper pillow lavas (UPLIII; Sobolev et al., 1996; Buchl et al., 2002). Amphibole Amphiboles occur in all the mantle lithologies of the Voykar complex, most commonly close to contacts with pyroxenite veins. They are ubiquitous in pyroxenites, but rarely observed in harzburgites and dunites. Several generations of amphiboles are usually present within a single sample of pyroxenite. The earliest amphibole has high Al (Al2O3 10^12 wt %) and Cr (Cr2O3 41wt %) and low Ti (TiO2 50·50 wt %), and is a magnesiohornblende according to the Leake et al. (2003) classification. The later generation of amphiboles gradually change in composition towards low Al and high Si contents. Amphiboles from harzburgites and dunites show the same compositional features as those from pyroxenites but have higher Mg-number (91^93) and correspond to tschermakite and magnesiohornblende. The trace element compositions of representative amphiboles are shown in Fig. 12. Amphiboles from the pyroxenites are strongly enriched in large ion lithophile elements (LILE) such as Rb, Ba and Sr compared with the high field strength elements (HFSE) Nb and Zr. The majority of the amphiboles have pronounced positive Pb anomalies relative to La and Ce. The trace element patterns of amphibole and Cpx from the same sample are parallel to each other, but concentrations in the amphibole are 3^5 times higher than those in the Cpx (Belousov et al., 2009). DISCUSSION The structural relations and compositional features of the Voykar mantle section allow distinction of two stages of melt migration that significantly modified the composition of the host peridotites. To understand the nature and mechanisms of melt^rock interactions in the studied peridotites, it is first necessary to recognize their original petrological and geochemical characteristics before they were affected by melt percolation. Spinel harzburgites: melting and melt migration The compositional heterogeneities within the spinel harzburgites clearly demonstrate that two processesçpartial 2509 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 11. Chondrite-normalized trace element (a) and REE patterns (b) of clinopyroxenes from samples collected across dunite veins and the surrounding harzburgite (see Fig. 2b). The field of Cpx from the Voykar pyroxenite veins is shown for comparison in (a). Sample position (Fig. 2b): harzburgite 20 cm from dunite is pu07 15C6, harzburgite 5 cm from dunite is pu07 15C5, harzburgite adjacent to dunite is pu07 15C4; samples within dunite vein: dunite 3 cm from harzburgite is pu07 15C3, dunite 10 cm from harzburgite is pu07 15C2, dunite 15 cm from harzburgite is pu07 15C1. melting and melt migrationçwere involved in their formation. Harzburgites sampled far from the contacts with dunite bodies and pyroxenite veins show narrow compositional ranges in the bulk-rocks, olivine and Cr-spinel, and plot in the compositional field of abyssal peridotites (Figs 4a, b and 5a). In addition, the oxygen fugacity during the formation of these harzburgites corresponds to that of abyssal peridotites (Fig. 7b). This suggests an initial origin of the harzburgites by partial melting at an oceanic spreading centre. The conditions of such melting are estimated in the next section. The mineral composition of harzburgites adjacent to contacts with veins, corresponding to the S1 and S2 stages of melt percolation, as well as the trace element compositions of Cpx in the majority of the harzburgite samples, however, show evidence for later re-equilibration with percolating melts (Figs 5, 7, 8 and 9). It is difficult to estimate specifically the influence of the early stage of melt percolation (related to dunite formation) on the trace element composition of harzburgite Cpx, because the dunites themselves were probably modified by late-stage melts. However, the study of Cpx compositions along the profile from host harzburgite into S2 veins (Fig. 9) clearly indicates the influence of late-stage melt percolation on the composition of Cpx. The Cpx grains from harzburgites adjacent to the contact with zoned composite dunite^pyroxenite veins and pyroxenite veins have trace element patterns that correspond nearly exactly to that in the pyroxenites (Fig. 9). This indicates that the Cpx in the harzburgites is almost completely re-equilibrated with the melts that produced the pyroxenite veins. As a consequence of its modification by melt, the harzburgite Cpx becomes richer in LREE, MREE, Zr and Sr, and poorer in HREE (Fig. 9e and f). The change in composition of the Cpx in harzburgites adjacent to pyroxenite veins is associated with an increase in the modal amount of Cpx as a result of the precipitation of newly formed Cpx grains from the migrating melts. Hence, the modification of harzburgite Cpx composition near contacts with the S2 pyroxenite veins is not related to an increase in the degree of melting of the peridotite but rather reflects the geochemical features of the percolating melts. Partial melting modelling The degree of partial melting of the original spinel harzburgite can be estimated by simulating the melting process using the REE composition of Cpx (e.g. Johnson et al., 1990). Such modelling is relevant only for peridotites that were not modified by later refertilization by percolating melts (see below). Among the studied harzburgites, only sample pu06 54/1 contains Cpx that is strongly depleted in LREE and Sr compared with HREEçthe features expected for near-fractional melting under a mid-ocean ridge (e.g. Johnson et al., 1990). Because the LREE and Sr concentrations of peridotite and hence its Cpx are expected to increase during reaction with melt, the low amounts in Cpx in harzburgite pu06 54/1 indicate that it has undergone only a low degree of refertilization by percolating melts. The clinopyroxene of pu06 54/1 can thus be regarded as a residual phase after partial melting 2510 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 12. Primitive mantle (PM)-normalized trace element patterns of the amphiboles from pyroxenite veins and the surrounding harzburgite. Amph in Hz and Amph in Pxt denote amphibole in harzburgite and pyroxenite, respectively. The normalizing values are from Hofmann (1988). and its trace element composition can be used to evaluate the extent of melt extraction and the conditions of partial melting. The Qpx from sample pu06 54/1 has a very low MREE/ HREE ratio similar to that reported for some clinopyroxenes in abyssal peridotites by Johnson et al. (1990), Hellebrand et al. (2002a) and Brunelli et al. (2006). As shown by those workers, the REE patterns of such clinopyroxenes provide evidence that melting started within the garnet stability field and then continued in the spinel stability field. We conducted our simulations of near-fractional melting modelling with the equation developed by Sobolev & Shimizu (1992). The input parameters (initial and melt modes, source composition, and the melt/peridotite partition coefficients) are listed in Supplementary Data Table 4. The best-fit data for MREE and HREE, Zr, Ti, and Y of the clinopyroxene in sample pu06-54/1 are shown in Fig. 13 and correspond to 6% near-fractional melting in the garnet stability field and 8^10% near-fractional melting in the spinel stability field, with a low residual porosity (0·1%). Thus, the total degree of partial melting for the Voykar peridotites could be as high as 16%. This result is consistent with their whole-rock and mineral chemistries. It should be noted, however, that the concentrations of Nd and Ce in peridotite pu06-54/1 Cpx are somewhat higher than predicted by the model. This might be the result of underestimated residual porosity in the model or of later small modification by percolating melts. Were the mantle peridotites subsequently re-melted in a supra-subduction zone environment? Although this process could have taken place, the degree of melting at that stage was not significant, judging from the geochemistry of the peridotites. More specifically, the HREE concentrations of the Cpx in the harzburgites and the Cr-number of spinel, at distances of more than 40 cm from the veins, are similar to those for unaffected harzburgite pu06-54 (Table 1; Fig. 9a and b). Because these parameters are sensitive to the extent of melting (e.g. Dick & Bullen, 1984; Johnson et al., 1990), we propose that its degree did not exceed 1^3%. P^T conditions estimates for the Voykar mantle section It is reasonable to assume that any information about the primary P^T conditions of the Voykar mantle section was overprinted during late-stage melt percolation events and subsequent cooling. Consequently, we can only estimate the P^Tconditions of the later events. The pressure of the late-stage (S2) melt percolation processes can only be evaluated indirectly, based on the fact that all mantle lithologies affected by this process (harzburgite, dunite and pyroxenite) contain small amounts of a high-Al amphibole (magnesiohornblende). Experimental data indicate that the amphibole stability field in mantle peridotite is fairly narrow (Grove et al., 2006), and that amphiboles are stable in association 2511 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 13. Chondrite-normalized REE patterns showing the results of the polybaric near-fractional melting modelling in the garnet followed by the spinel stability field. The dotted and dashed lines show the predicted compositions of the residual Cpx produced by near-fractional melting in the garnet (Ga) and spinel (Spl) stability fields. Percentages refer to the degree of melting in each field. Data for pu06 54/1 are shown for comparison. with olivine, pyroxenes and spinel at temperatures of 850^10508C and pressures of 0·8^1·7 GPa. The absence of plagioclase in the studied Voykar mantle lithologies, despite the fact that most of the pyroxenites are plagioclase-normative, allows us to further constrain the pressure within the range of 1^1·7 GPa. Equilibration temperatures (Table 7) for the studied lithologies have been obtained using various geothermometric methods (Wells, 1977; Brey & Kohler, 1990; Kohler & Brey, 1990; Witt-Eickschen & O’Neill, 2005; Ionov & Sobolev, 2008). The temperature estimates for the spinel harzburgites obtained using Mg^Fe exchange between clino- and orthopyroxene (Wells, 1977), the Ca-Opx method (Brey & Kohler, 1990) and Y distribution between pyroxenes (Witt-Eickschen & O’Neill, 2005) are in reasonable agreement and range from 830 to 10068C. However, temperatures based on Ca and Sc exchange between olivine and clinopyroxene (Kohler & Brey, 1990; Witt-Eickschen & O’Neill, 2005; Ionov & Sobolev, 2008) are lower, in the range of 700^9408C, 800^8208C and 720^8208C respectively. The equilibration temperatures calculated for S1 dunites vary within the range 700^10008C, and for S2 pyroxenite veins from 705 to 10398C (Table 7). Because at the estimated pressure range the ‘wet’ solidus of mantle peridotite is constrained by amphibole stability to a temperature around 10008C, temperature estimates below 10008C must reflect re-equilibration between minerals under subsolidus conditions. This suggests that the mantle section of the Voykar ophiolite was subjected to rapid solid-state diffusion processes down to temperatures as low as 7008C. Such low temperatures of mineral equilibration have been reported for SSZ-related peridotites (e.g. Parkinson & Pearce, 1998) and possibly indicate water-assisted diffusion and equilibration in the SSZ environment. However, the large-scale migration and reactive porous flow of the melts needed to create the large dunite bodies probably took place at higher temperatures, in the temperature interval 1050^12008C. The minimum temperature is constrained by the amphibole stability field at 1000^10508C (Grove et al., 2006) and corresponds to our maximum temperature estimates (around 10508C); hydrous melts below this temperature will react with Cpx producing significant amounts of amphibole, which did not happen in the Voykar mantle section. The maximum estimated temperature of formation of the Voykar dunites is based on the fact that the surrounding harzburgites do not show evidence of significant melting (see above). This corresponds to a temperature no higher than 12008C and a degree of hydrous melting below 3% (Grove et al., 2006). Two stages of melt migration processes; geochemistry of percolating melts In this section we discuss the composition and nature of the melts (fluids) in the two main stages of melt migration within the Voykar mantle section. 2512 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 6: Amphibole major and trace element compositions in Voykar mantle lithologies Sample (pu): n: 6 39/2 s 6 33/5 s 7 33/5 s s 67 6 7 6 17/2 MHbl MHbl Tsch MHbl Tsch MHbl 7 33/1 MHbl 2 4 3 1 2 3 11 s SiO2 48·37 0·14 46·92 0·28 45·71 0·11 48·99 45·96 47·76 0·93 49·57 0·41 Na2O 1·75 0·02 1·57 0·04 2·12 0·03 1·55 1·83 1·26 0·16 1·55 0·12 CaO 12·68 0·03 12·61 0·02 12·62 0·06 12·07 12·45 12·73 0·09 12·02 0·06 K2O 0·01 0·01 50·01 50·01 0·05 0·33 0·15 0·06 0·15 0·01 FeO 2·44 0·00 2·88 0·04 2·80 0·05 5·17 4·90 4·71 0·15 4·09 0·03 MgO 19·65 0·07 19·01 0·32 18·49 0·05 19·71 17·94 18·35 0·35 19·69 0·20 Al2O3 10·44 0·18 11·83 0·17 13·12 0·09 8·79 12·07 10·56 0·85 9·02 0·46 0·01 TiO2 0·14 0·01 0·41 0·02 0·43 0·01 0·18 0·26 0·33 0·06 0·10 Cr2O3 1·98 0·03 1·86 0·03 1·78 0·03 0·68 1·27 0·99 0·20 0·37 0·02 MnO 0·05 50·01 0·04 50·01 0·04 50·01 0·08 0·06 0·07 50·01 0·08 50·01 NiO 0·10 0·01 0·10 50·01 0·10 50·01 0·10 0·10 0·09 50·01 Total 97·62 0·01 97·01 0·11 97·22 0·09 97·37 97·16 96·98 0·07 96·64 0·11 Mg-no. 93·48 0·03 92·15 0·11 92·18 0·11 87·18 86·71 87·40 0·54 89·57 0·17 n Li 2 4 3 1 3 11 5·0 0·4 n.a. Sc 114·8 2·2 93·5 Ti 883 47 V 444·0 10·7 440·1 7·2 485·0 4·3 547·3 650·8 744·1 13·6 272·0 6·5 Mn 380·6 4·0 351·6 7·2 356·3 3·4 514·4 542·7 600·8 16·2 639·8 17·4 31·0 0·3 Co Ni 848 5 Cu 0·33 0·03 Zn 7·3 0·7 0·621 Rb 2480 31·9 849 10·7 2·5 39 0·5 10 0·8 6·1 0·5 0·8 2·1 1·1 0·1 9·5 95·9 2·8 118·5 126·2 120·8 7·6 72·1 2671 32·1 890 48 0·2 5 0·27 0·06 8·4 0·2 0·091 0·055 1320 52·0 841 0·25 14·2 48·4 832 0·31 21·2 44·1 750 0·37 11·5 1·3 21 0·07 0·8 615 42·4 743 0·31 20·9 1·7 46 0·4 27 0·04 0·2 0·299 0·023 0·004 0·066 0·779 0·046 1·0 6·5 0·3 10·3 0·8 24·0 25·2 22·0 0·3 6·3 0·3 Y 9·9 0·2 13·2 0·5 20·3 1·0 9·7 8·8 11·6 0·6 3·5 0·3 Zr 2·9 0·1 15·1 0·6 0·4 0·0 1·7 1·8 3·1 0·2 0·6 0·0 Nb 0·082 0·020 0·034 0·005 0·060 0·012 0·143 0·216 0·070 0·016 0·031 0·002 Ba 5·70 3·82 0·18 0·01 0·72 0·53 1·44 3·77 0·30 La 0·155 0·003 0·026 0·001 0·037 0·002 0·077 0·072 0·083 0·006 0·018 0·002 Ce 0·635 0·005 0·123 0·007 0·085 0·009 0·401 0·351 0·411 0·020 0·072 0·005 Pr 0·117 0·004 0·042 0·002 0·012 0·001 0·095 0·096 0·106 0·006 0·015 0·001 Nd 0·679 0·025 0·649 0·012 0·122 0·008 0·764 0·711 0·773 0·049 0·099 0·006 Sm 0·202 0·043 0·740 0·026 0·326 0·008 0·498 0·468 0·476 0·030 0·067 0·004 Eu 0·120 0·004 0·345 0·012 0·195 0·005 0·207 0·194 0·219 0·002 0·027 0·001 Gd 0·585 0·017 1·553 0·045 1·201 0·049 0·897 0·832 1·052 0·051 0·168 0·011 Tb 0·138 0·006 0·295 0·015 0·316 0·014 0·179 0·168 0·220 0·014 0·046 0·003 Dy 1·29 0·03 2·16 0·08 2·91 0·13 1·57 1·33 1·87 0·06 0·45 0·03 Ho 0·365 0·010 0·479 0·023 0·737 0·034 0·354 0·328 0·442 0·025 0·126 0·009 Er 1·290 0·017 1·478 0·055 2·440 0·152 1·101 1·054 1·413 0·099 0·481 0·038 Tm 0·206 0·002 0·218 0·012 0·365 0·016 0·172 0·160 0·213 0·013 0·082 0·006 Yb 1·566 0·002 1·487 0·070 2·529 0·188 1·112 1·090 1·504 0·101 0·649 0·054 Lu 0·239 0·006 0·221 0·011 0·367 0·027 0·179 0·183 0·224 0·019 0·110 0·009 Hf 0·058 0·002 0·404 0·020 0·102 0·003 0·092 0·115 0·193 0·017 0·030 0·002 Pb 0·267 0·074 0·124 0·048 0·125 0·020 0·084 0·205 0·366 0·066 0·565 0·076 2513 114·37 0·930 144 13·1 26·70 2·306 2129 Sr MHbl, magnesiohornblende; Tsch, tschermakite. 0·452 1640 1·4 13·49 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Table 7: Equilibration temperatures calculated for the lithologies of the Voykar mantle section Sample (pu) Rock T W77 211/1 Spl Hz 914 215/7 Spl Hz 940 6 10/2 Spl Hz 6 13 T BK90 T KB90 T IS08 T Sc ol-cpx 898 816 807 783 996 787 817 800 876 957 796 814 775 Spl Hz 914 942 855 819 773 6 16/2 Spl Hz 947 943 928 815 804 6 54/1 Spl Hz 927 866 880 809 772 6 39/2 Spl Hz 904 962 824 811 744 6 25/1 Spl Hz 1001 971 936 816 758 T Y cpx/opx 870 6 12/2 Spl Hz 887 937 790 812 755 7 59/10c Spl Hz 887 931 789 809 820 7 59/10d Spl Hz 888 980 787 809 6 24/1 Spl Hz 919 930 838 814 795 932 6 35/2 Spl Hz 888 923 786 810 717 989 Profile: host harzburgite—dunite vein, S1, (Fig. 2b), R 7 15C6 Spl Hz 841 927 735 809 758 7 15C5 Spl Hz 898 1006 840 819 730 7 15C4 Spl Hz 805 752 7 15C1 Du 815 782 7 15C2 Du 813 773 7 15C3 Du 815 800 Dunites, first stage (S1) of melt percolation 6 39/1 Du 971 816 6 38/1 Du 821 771 6 37/1 Du 833 824 6 41 Du 865 858 7 13/1 Du 802 771 6 35/1 Du 215/4 Du 6 21/1 Du* 828 6 23/1 Du 881 6 26/1 Du 999 6 27/1 Du 974 906 931 829 862 802 832 889 Profile: host harzburgite—composite dunite–pyroxenite vein, S2, (Fig. 2e), R 6 11/4 Spl Hz 874 930 769 821 757 6 11/3c Web 883 877 821 807 733 6 11/3d Du 815 824 797 910 Profile: host harzburgite—composite dunite–pyroxenite vein, S2, (Fig. 2f), K 6 33/5 Spl Hz 950 1006 889 815 7 33/5 Spl Hz 832 947 701 822 6 33/4 Spl Hz 903 952 849 811 813 6 33/2 Web 907 1039 872 824 762 6 33/1 Web 881 962 796 837 934 7 33/3 Du 6 33/3 Du 7 33/1 Hb Cpxt 768 877 655 823 7 59/10b Opxt 875 991 770 800 7 59/10a Cpxt 840 949 708 816 214/7 Web 949 966 895 835 6 12/1 Cpxt 940 980 912 834 763 6 17/2 Cpx 938 925 943 822–885 806 917 834 820 858 Pyroxenite veins, S2 922 (continued) 2514 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Table 7: Continued Sample (pu) Rock T W77 T BK90 T KB90 T SI08 905 1034 857 910 918 970 870 821–927 T Sc ol–cpx 6 20/4 Cpxt 67 Web 65 Web 7 16/1o Web 876 964 772 811 705 7 14/2 Web 880 966 783 829 757 7 31/1 Cpxt T Y cpx–opx 725 825–879 826 923 1019 857 Spl Hz Tmax 1001 1006 936 822 820 989 Spl Hz Tmin 832 866 701 807 717 870 999 889 Du Tmax 802 771 Pxt Tmax 949 1039 943 910 934 922 Pxt Tmin 768 877 655 800 705 826 Du Tmin Equilibration temperatures calculated according to: W77, Wells (1977); BK90, Brey & Kohler (1990); KB90, Kohler & Brey (1990); IS08, Ionov & Sobolev (2008); Sc ol–cpx and Y cpx–opx, Witt-Eickschen & O’Neill (2005). The earlier stage of melt migration (S1) was related to the origin of the large dunite bodies (Savelieva et al., 2008). During this stage, stress-focused melt migration produced dunites as a result of peridotite^melt reaction. It has been shown (e.g. Kelemen et al., 1995a) that this reaction takes place when the reacted melts come from a deeper source and thus are unstable with respect to the host peridotite, being saturated in olivine and undersaturated in pyroxene. It has been demonstrated by both theory and experiment that the reaction of such melts with peridotites leads to the dissolution of pyroxenes and the crystallization of olivine (Kelemen et al., 1995a; Morgan & Liang, 2003). Indeed, the harzburgite samples adjacent to dunite or observed as ‘relics’ within the large dunite bodies have mineral (olivine and Cr-spinel) compositions similar to those of the dunites, thus marking the reaction zones. Olivine in the Voykar dunite bodies exhibits a broad range of compositions, from Fo 90·4 to 92·6 (Fig. 6). In addition to variations in the source composition of the infiltrating melts, this may reflect different original compositions of the reacted peridotites as well as variations in the ratios of resorbed and precipitated minerals during melt^rock interaction (Suhr et al., 2003). The observed decrease in Fo content in the dunites down to Fo88 within the contact zone of S2 orthopyroxenite veins (Tables 1 and 3) is probably due to modification of the dunite by late-stage melt or fluid. However, the olivine in most of the dunites has a forsterite content similar to that in peridotites far from the veins (and thus unaffected by melt migration). This leads us to hypothesize that the melts that reacted with the peridotites and formed the dunites were originally in equilibrium with a mantle source, which had an Mg-number similar to that of the host peridotites (Suhr et al., 2003). The NiO content of olivine in the dunites is usually lower than that of olivine in the host peridotites, reflecting the formation of an increasing amount of olivine during the replacement reaction (Suhr, 1999; Suhr et al., 2003). Most samples of S1 dunites exhibit high spinel Cr-number coupled with high oxygen fugacity values, which is typical for SSZ dunites formed by reaction of island-arc tholeiite or boninite magmas with mantle peridotite (e.g. Dare et al., 2009). The concentrations of trace elements in the melts that migrated through the Voykar mantle can be qualitatively evaluated by calculating the composition of the melts in equilibrium with the clinopyroxene from the S1 dunites and S2 pyroxenites by using clinopyroxene^melt partition coefficients, in this case for water-rich supra-subduction melts with low Al2O3 concentrations (Sobolev et al., 1996). We used variable partition coefficients based on the Al2O3 concentration in the Cpx (Supplementary Data Table 5). The composition of the melts in equilibrium with Cpx from the S1 dunite bodies is shown in Fig. 14a. The clinopyroxenes in the dunites are thought to have crystallized during the latest stages of melt migration when the cooling melt percolating inside the channels reached saturation in olivine and clinopyroxene (e.g. Kelemen et al., 1995a). These late-stage, water-saturated, silica-rich melts percolated along the dunite channels and chemically overprinted information about the melts that participated in the initial generation of the dunites. 2515 JOURNAL OF PETROLOGY VOLUME 52 NUMBER 12 DECEMBER 2011 Fig. 14. Chondrite-normalized trace element compositions of calculated melts in equilibrium with Cpx from the Voykar dunites (a) and pyroxenites (b) compared with those of high-Ca boninites and boninite-like melts. The field of primary Tonga high-Ca boninites is after Sobolev & Danyushevsky (1994), Troodos UPL high-Ca boninites and boninite-like volcanic rocks (red lines) from Cameron (1985); field of primary melts of the Troodos UPL is from Sobolev et al. (1993). This hypothesis is favoured by the observation that Cpx in most of the dunite bodies and veins has a composition close to that of the clinopyroxene in the pyroxenite veins. However, two samples (pu06 35/1, pu07 15c2) of S1 dunite contain Cpx grains that differ in their trace element composition from the Cpx of both the host harzburgites and the pyroxenite veins (Fig. 10a and b). This observation suggests that the dunites locally retained captured melt fractions corresponding to the early stage (S1) of melt migration and thus preserved information on the geochemical characteristics of their mantle source. As inferred from the composition of these Cpx grains, the mantle source that produced the melts was richer in HREE than the spinel harzburgites surrounding the dunite bodies. 2516 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Fig. 15. Schematic illustration showing the inferred position of the Voykar mantle section within the SSZ mantle. Thermal structure after Peacock & Wang (1999); the interval between isotherms is 4008C. 1, 2 and 3 indicate stages of formation of Voykar mantle section (see text). MORP, mid-ocean ridge protolith. Concentrations of incompatible elements in these melts have compositions close to those of boninite-like volcanic rocks from the Tonga^Mariana supra-subduction zone (Sobolev & Danyushevsky, 1994) and ophiolite complexes produced above subduction zones (Cameron, 1985; Sobolev et al., 1993). However, the melts calculated from the compositions of Cpx in the Voykar dunites, which probably were related to S1 melt percolation, have higher HREE concentrations than the high-Ca boninites of these complexes (Fig. 14a). This implies that the mantle component of the Voykar source was less depleted in moderately incompatible elements than the analogous source component of the high-Ca boninites of the Troodos ophiolite and the Tonga^Mariana system. A sheeted dyke complex composed of boninite-like rocks has been distinguished within the Voykar ophiolite (Simonov et al., 1998). The probable age of dunite formation is close to that of the chromitites in the dunite bodies, which is estimated at 585 6 Ma (Savelieva et al., 2006). The late stage (S2) of melt migration apparently correlates with the emplacement of the pyroxenite veins. Melt migration during this stage probably occurred along fractures (or channels) that are now marked by pyroxenite and zoned, composite dunite^pyroxenite veins. Most of the olivine in the pyroxenites has an elevated NiO content (Fig. 6). This may reflect in situ repartition of Ni into olivine from pyroxenes owing to decreasing temperature (Witt-Eickschen & O’Neill, 2005) or to a non-peridotitic (olivine-free) source for the original melts (Sobolev et al., 2005). To choose between these alternatives we estimated the scale of Ni redistribution using the partitioning of Ni/Mg between olivine and Cpx and Opx (Witt-Eickschen & O’Neill, 2005), assuming cooling from 1100 to 8008C. The predicted original NiO content in the olivine at 11008C is shown in Fig. 6. The results suggest that, despite a significant decrease, the original NiO content in the high-temperature olivine is still too high to be in equilibrium with typical mantle peridotite. Similar features have been reported in olivine from volcanic rocks in supra-subduction zone environments (Straub et al., 2008) and were explained by an origin of the parental melts from a hybridized mantle source formed as a result of transformation of mantle olivine to orthopyroxene under the influence of slab-derived fluids or melts. The reaction relations between the pyroxenite veins and their host harzburgite (Fig. 2d) and between minerals within the pyroxenite samples (Fig. 3d) suggest that the melts or fluids that produced them were oversaturated in silica. The occurrence of magmatic amphibole in the pyroxenites indicates that these melts contained significant amounts of water or even that they were a supercritical fluid (Bureau & Keppler, 1999; Audetat & Keppler, 2004). Such fluid-rich melts or fluids have a low viscosity, and this feature probably can account for their diffuse 2517 JOURNAL OF PETROLOGY VOLUME 52 migration from fractures into the host peridotites, which modified the composition of the latter. Calculated melts in equilibrium with the Cpx in the pyroxenite veins are shown in Fig. 14b. The Cpx in S2 dunite from zoned complex dunite^pyroxenite veins has a similar composition to that in the associated pyroxenite (Fig. 9a^d) and thus is not considered separately. The trace element patterns of these melts are also similar to those of high-Ca boninites. Thus, we conclude that the source of the Voykar melts gradually changed its composition and that slab-derived SiO2-rich, H2O-rich melts or fluids played a significant role during the late stage of melt^fluid migration. The incompatible trace element composition of the melts or fluids from both stages is similar and probably indicates a slab component. Tracking history of the Voykar mantle Taken together, our observations indicate at least three main stages in the evolution of the Voykar mantle section, as follows. (1) Mantle peridotites were initially produced as residues after moderate degrees (16%) of partial melting, probably at a spreading centre (oceanic or back-arc). (2) This mid-ocean-ridge-like peridotite protolith was involved in intensive high-temperature deformation and invasion by high-Ca boninite melts, which resulted in the formation of large bodies of replacive dunite. It has been suggested that such processes take place in the forearc mantle during the initial stages of subduction (Pearce et al., 1992; Morishita et al., 2011). Estimated P^T conditions of melt percolation allow us to infer that the Voykar mantle section was probably located above the melting region (Fig. 15). (3) The last stage involved transportation of water- and silica-rich melts or fluids, which reacted with the peridotites, producing pyroxenite and composite dunite^pyroxenite veins. These melts or fluids were probably transported in cracks, and percolated and modified the composition of the surrounding harzburgites and dunites. The amount of transported melt during this stage was significantly lower than during the dunite formation. We thus suggest that this later stage took place when the mantle section was horizontally displaced towards the trench (Fig. 15). The presence of blueschists at the sole of the ophiolitic allochthon, as well as significant amounts of olivine^antigorite rocks within the Voykar mantle section, also argue for the forearc position of the Voykar ophiolite (Savelieva et al., 2002). NUMBER 12 DECEMBER 2011 AC K N O W L E D G E M E N T S We acknowledge K.-P. Jochum, B. Stoll and D. Kuzmin for their assistance with the LA-ICP-MS and EPMA. We thank N. Mironov, Z. Lyaskovskaya and P. Suslov for their help in fieldwork in the Polar Urals in 2006^2007. The insightful reviews of N. Arndt, J. Pearce and two anonymous reviewers significantly improved the paper. We greatly appreciate the editorial handling by M. Wilson. FU NDI NG This work was supported by the project by the ANR, France, Chair of Excellence (ANR-09-CEXC-003-01), Gauss Professorship in Go«ttingen University and Russian President grant for leading Russian scientific schools (MX-3919.2010.5) to A.V.S., and grants of the Russian Foundation for Basic Research 10-05-00011, 09-05-01165 and 09-05-01193. S U P P L E M E N TA RY DATA Supplementary data for this paper are available at Journal of Petrology online. R E F E R E NC E S Aharonov, E., Whitehead, J. A., Kelemen, P. B. & Spiegelman, M. (1995). Channeling instability of upwelling melt in the mantle. Journal of Geophysical Research 100, 20433^20450. Anders, E. & Grevesse, N. (1989). Abundances of the elementsç meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197^214. Arai, S. (1994). Characterization of spinel peridotites by olivine^spinel compositional relationships: Review and interpretation. Chemical Geology 113, 191^204. Audetat, A. & Keppler, H. (2004). Viscosity of fluids in subduction zones. Science 303, 513^516. Ballhaus, C., Berry, R. F. & Green, D. H. (1991). High-pressure experimental calibration of the olivine^orthopyroxene^spinel oxygen geobarometerçimplications for the oxidation-state of the upper mantle. Contributions to Mineralogy and Petrology 107, 27^40. Batanova, V. G. & Savelieva, G. N. (2009). Melt migration in the mantle beneath spreading zones and formation of replacive dunites: a review. Russian Geology and Geophysics 50, 763^778. Batanova, V. G. & Sobolev, A. V. (2000). Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28, 55^58. Batanova, V. G., Suhr, G. & Sobolev, A. V. (1998). Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochimica et Cosmochimica Acta 62, 853^866. Batanova, V. G., Brugmann, G. E., Bazylev, B. A., Sobolev, A. V., Kamenetsky, V. S. & Hofmann, A. W. (2008). Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus. Chemical Geology 248, 195^212. Belousov, I. A., Batanova, V. G., Savelieva, G. N. & Sobolev, A. V. (2009). Evidence for the suprasubduction origin of mantle section rocks of Voykar ophiolite, Polar Urals. Doklady Earth Sciences 429, 1394^1398. 2518 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Brey, G. P. & Kohler, T. (1990). Geothermobarometry in 4-phase lherzolites. 2. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31, 1353^1378. Brunelli, D., Seyler, M., Cipriani, A., Ottolini, L. & Bonatti, E. (2006). Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). Journal of Petrology 47, 745^771. Bryndzia, L. T. & Wood, B. J. (1990). Oxygen thermobarometry of abyssal peridotitesçthe redox state and C^O^H volatile composition of the Earth sub-oceanic upper mantle. American Journal of Science 290, 1093^1116. Buchl, A., Brugmann, G., Batanova, V. G., Munker, C. & Hofmann, A. W. (2002). Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth and Planetary Science Letters 204, 385^402. Buchl, A., Brugmann, G. E., Batanova, V. G. & Hofmann, A. W. (2004). Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochimica et Cosmochimica Acta 68, 3397^3408. Bureau, H. & Keppler, H. (1999). Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth and Planetary Science Letters 165, 187^196. Buyakayte, M. I., Vinogradov, V. I., Kuleshov, V. V., Pokrovskiy, B. G., Saveliev, A. A. & Savelieva, G. N. (1983). Isotope geochemistry in ophiolites of the Polar Urals. Moscow: Nauka. Cameron, W. E. (1985). Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contributions to Mineralogy and Petrology 89, 239^255. Carlson, R. W. (1992). A matter of give and take. Nature 359, 16^17. Ceuleneer, G., Nicolas, A. & Boudier, F. (1988). Mantle flow patterns at an oceanic spreading centerçthe Oman ophiolite record. Tectonophysics 151, 1^26. Daines, M. J. & Kohlstedt, D. L. (1994). The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophysical Research Letters 21, 145^148. Dare, S. A. S., Pearce, J. A., McDonald, I. & Styles, M. T. (2009). Tectonic discrimination of peridotites using fO2^Cr# and Ga^Ti^FeIII systematics in chrome-spinel. Chemical Geology 261, 199^216. Dick, H. J. B. (1989). Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 71^105. Dick, H. J. B. & Bullen, T (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54^76. Dijkstra, A. H., Barth, M. G., Drury, M. R., Mason, P. R. D. & Vissers, R. L. M. (2003). Diffuse porous melt flow and melt^rock reaction in the mantle lithosphere at a slow-spreading ridge: a structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochemistry, Geophysics, Geosystems 4, doi:10.1029/2001GC000278. Dilek, Y. (2003). Ophiolite concept and its evolution. In: Dilek, Y. & Newcomb, S. (eds) Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Special Papers 373, 1^16. Gopel, C., Alle'gre, C. J. & Xu, R. H. (1984). Lead isotopic study of the Xigaze ophiolite (Tibet)çthe problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth and Planetary Science Letters 69, 301^310. Grove, T. L., Chatterjee, N., Parman, S. W. & Medard, E. (2006). The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters 249, 74^89. Gruau, G., Bernard-Griffiths, J., Lecuyer, C., Henin, O., Mace, J. & Cannat, M. (1995). Extreme Nd isotopic variation in the Trinity ophiolite complex and the role of melt/rock reactions in the oceanic lithosphere. Contributions to Mineralogy and Petrology 121, 337^350. Hart, S. R. (1993). Equilibration during mantle melting: A fractal tree model. Proceedings of the National Academy of Sciences of the USA 90, 11914^11918. Hart, S. R. & Dunn, T. (1993). Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology 113, 1^8. Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. (2001). Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677^681. Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. (2002a). Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology 43, 2305^2338. Hellebrand, E., Snow, J. E. & Muhe, R. (2002b). Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chemical Geology 182, 227^235. Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297^314. Holtzman, B. K. & Kohlstedt, D. L. (2007). Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain. Journal of Petrology 48, 2379^2406. Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B. & Kohlstedt, D. L. (2003). Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems 4, doi:10.1029/ 2001GC000258. Ionov, D. A. (2010). Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. Journal of Petrology 51, 327^361. Ionov, D. A. & Sobolev, A. V. (2008). Geochemical fingerprinting of the lithospheric mantle using high-precision olivine analyses. Geochimica et Cosmochimica Acta 72, A410^A410. Ionov, D. A. & Wood, B. J. (1992). The oxidation state of subcontinental mantle: oxygen thermobarometry of mantle xenoliths from central Asia. Contributions to Mineralogy and Petrology 111, 179^193. Ishii, T., Robinson, P. T., Maekawa, H. & Fiske, R. (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu^Ogasawara^Mariana forearc, Leg 125. In: Fryer, B. P., Pearce, J. A. & Stokking, L. B. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 125. College Station, TX: Ocean Drilling Program, pp. 445^485. Jacobsen, S. B., Quick, J. E. & Wasserburg, G. (1984). A Nd and Sr study of the Trinity peridotite: implications for mantle evolution. Earth and Planetary Science Letters 68, 361^378. Jaques, A. L. & Green, D. H. (1980). Anhydrous melting of peridotite at 0^15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287^310. Jarosewich, E. J., Nelen, J. A. & Norberg, J. A. (1980). Reference samples for electron microprobe analysis. Geostandards Newsletter 4, 43^47. Jochum, K. P., Dingwell, D. B. et al. (2000). The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in situ microanalysis. Geostandards Newsletter 24, 87^133. Johnson, K. T. M. & Dick, H. J. B. (1992). Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis-II fracture zone. Journal of Geophysical Research 97, 9219^9241. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. (1990). Melting in the oceanic upper mantleçan ion microprobe study of diopsides in 2519 JOURNAL OF PETROLOGY VOLUME 52 abyssal peridotites. Journal of Geophysical ResearchçSolid Earth and Planets 95, 2661^2678. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. (1995a). Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747^753. Kelemen, P. B., Whitehead, J. A., Aharonov, E. & Jordahl, K. A. (1995b). Experiments on flow focusing in soluble porous-media, with applications to melt extraction from the mantle. Journal of Geophysical Research 100, 475^496. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London 355, 283^318. Kelemen, P. B., Hanghoi, K. & Green, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick, R. L. (ed.) Treatise on Geochemistry. Amsterdam: Elsevier, pp. 593^659. Khain, E. V., Sal’nikova, E. B., Kotov, A. B., Burgath, K.-P., Fedatova, A. A., Kovach, V. P., Yakovleva, S. Z., Remizov, D. N. & Schaefer, F. (2007). U^Pb age of plagiogranites from the ophiolite association in the Voykar^Synya massif, Polar Urals. Doklady of the Russian Academy of Sciences 419, 392^397. Kohler, T. & Brey, G. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta 54, 2375^2388. Kohlstedt, D. L. & Holtzman, B. K. (2009). Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Annual Review of Earth and Planetary Sciences 37, 561^593. Lambart, S., Laporte, D. & Schiano, P. (2009). An experimental study of focused magma transport and basalt^peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contributions to Mineralogy and Petrology 157, 429^451. Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. & Whittaker, E. J. W. (2003). Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations. Canadian Mineralogist 41, 1355^1362. McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology 25, 713^765. Morgan, Z. & Liang, Y. (2003). An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters 214, 59^74. Morishita, T., Tani, K., Shukuno, H., Harigane, Y., Tamura, A., Kumagai, H. & Hellebrand, E. (2011). Diversity of melt conduits in the Izu^Bonin^Mariana forearc mantle: Implications for the earliest stage of arc magmatism. Geology 39, 411^414. Nicolas, A. (1986). A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology 27, 999^1022. Nicolas, A. (1990). Melt extraction from mantle peridotites: hydrofracturing and porous flow, with consequences for oceanic ridge activity. In: Ryan, M. P. (ed.) Magma Transport and Storage. New York: John Wiley, pp. 159^174. Parkinson, I. J. & Arculus, R. J. (1999). The redox state of subduction zones: insights from arc-peridotites. Chemical Geology 160, 409^423. Parkinson, I. J. & Pearce, J. A. (1998). Peridotites from the Izu^ Bonin^Mariana forearc (ODP leg 125): evidence for mantle melting NUMBER 12 DECEMBER 2011 and melt^mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577^1618. Parkinson, I. J., Arculus, R. J. & Eggins, S. M. (2003). Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contributions to Mineralogy and Petrology 146, 241^262. Peacock, S. M. & Wang, K. (1999). Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science 286, 937^939. Pearce, J. A. (2003). Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek, Y. & Newcomb, S. (eds) Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Special Papers 373, 269^293. Pearce, J. A., van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W. & Parkinson, I. J. (1992). Boninite and harzburgite from Leg 125 (Bonin^Mariana forearc): a case study of magma genesis during the initial stages of subduction. In: Fryer, B. P., Pearce, J. A. & Stokking, L. B. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 125. College Station, TX: Ocean Drilling Program, pp. 623^659. Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. & Leat, P. T. (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc^basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 36^53. Piccardo, G. B. (2003). Mantle processes during ocean formation: petrologic records in peridotites from the Alpine^Apennine ophiolites. Episodes 26, 193^199. Piccardo, G. B., Zanetti, A. & Muntener, O. (2007). Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos 94, 181^209. Puchkov, V. (2002). Paleozoic evolution of the east European continental margin involved in the Uralide orogeny. In: Brawn, D., Juhlin, C. & Puchkov, V. (eds) Mountain Building in the Uralides: Pangea to Present. Geophysical Monographs, American Geophysical Union 132, 9^31. Rampone, E., Piccardo, G. B., Vannucci, R. & Bottazzi, P. (1997). Chemistry and origin of trapped melts in ophiolitic peridotites. Geochimica et Cosmochimica Acta 61, 4557^4569. Rampone, E., Hofmann, A. W. & Raczek, I. (1998). Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle^crust link. Earth and Planetary Science Letters 163, 175^189. Rampone, E., Piccardo, G. B. & Hofmann, A. W. (2008). Multi-stage melt^rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contributions to Mineralogy and Petrology 156, 453^475. Samygin, S. G. & Ruzhentsev, S. V. (2003). The uralian paleoocean: model of inherited evolution. Doklady Akademii Nauk 393, 226^229. Saveliev, A. A. (1996). Mafic^ultramafic ophiolitic associations of the Urals: structure and formation conditions. Geotectonics 30, 190^199. Saveliev, A. A. & Samygin, S. G. (1980). Ophiolitic allochthons in the Polar and Subpolar Urals. In: Puscharovsky, Yu. M. & Yanshin, A. L. (eds) Tectonic evolution of the Earth’s crust and faults. Moscow: Nauka, pp. 9^30 (in Russian). Saveliev, A. A. & Savelieva, G. N. (1977). Ophiolites of the Voykar^ Syn’insk massif (Polar Urals). Geotectonics 11, 427^437. Savelieva, G. N. (1987). Gabbro^ultrabasite assemblages of the Urals ophiolites and their analogues in modern oceanic crust. Moscow: Nauka (in Russian). Savelieva, G. N., Denisova, E. A. & Scherbakov, S. A. (1980). Role of high-temperature deformation in formation of dunite bodies in harzburgite. Geotektonika 14, 175^182. 2520 BATANOVA et al. MELT TRANSPORT IN SSZ MANTLE Savelieva, G. N., Sharaskin, A. Y., Saveliev, A. A., Spadea, P., Pertsev, A. N. & Babarina, I. I. ((2002)). Ophiolites and zoned mafic^ultramafic massifs of the Urals: a comparative analysis and some tectonic implications. In: Brawn, D., Juhlin, C. & Puchkov, V. (eds) Mountain Building in the Uralides: Pangea to Present. Geophysical Monographs, American Geophysical Union 132, 111^137. Savelieva, G. N., Suslov, P. V., Larionov, A. N. & Berejnaya, N. G. (2006). The age of zircon from chromitites of ultramafic restite of ophiolite complexes as a reflection of a magmatic events in the upper mantle. Doklady Earth Sciences 411, 1401^1406. Savelieva, G. N., Suslov, P. V. & Larionov, A. N. (2007). Vendian tectono-magmatic events in mantle ophiolitic complexes of the Polar Urals: U^Pb dating of zircon from chromitite. Geotectonics 41, 105^113. Savelieva, G. N., Sobolev, A. V., Batanova, V. G., Suslov, P. V. & Brugmann, G. (2008). Structure of melt flow channels in the mantle. Geotectonics 42, 430^447. Seyler, M., Cannat, M. & Mevel, C. (2003). Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (528 to 688E). Geochemistry, Geophysics, Geosystems 4, doi:910110.1029/2002gc000305. Seyler, M., Lorand, J. P., Toplis, M. J. & Godard, G. (2004). Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology 32, 301^304. Seyler, M., Lorand, J. P., Dick, H. J. B. & Drouin, M. (2007). Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15820’N: ODP Hole 1274A. Contributions to Mineralogy and Petrology 153, 303^319. Sharma, M. & Wasserburg, G. J. (1996). The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. Geochimica et Cosmochimica Acta 60, 4537^4550. Sharma, M., Wasserburg, G. J., Papanastassiou, D. A., Quick, J. E., Sharkov, E. V. & Laz’ko, E. E. (1995). High 143Nd/144Nd in extremely depleted mantle rocks. Earth and Planetary Science Letters 135, 101^114. Simonov, V. A., Kurenkov, S. A. & Stupakov, S. I. (1998). Boninite series in the Polar Ural paleospreading complexes. Doklady Akademii Nauk 361, 232^235. Sobolev, A. V. & Batanova, V. G. (1995). Mantle lherzolites of the Troodos ophiolite complex, Cyprusçclinopyroxene geochemistry. Petrology 3, 440^448. Sobolev, A. V. & Danyushevsky, L. V. (1994). Petrology and geochemistry of boninites from the North Termination of the TongaTrenchçconstraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology 35, 1183^1211. Sobolev, A. V. & Shimizu, N. (1992). Ultra-depleted melts and the permeability of ocean mantle. Doklady Akademii Nauk 326, 354^360. Sobolev, A. V., Portnyagin, M. V., Dmitriev, L. V., Tsameryan, O. P., Danyushevsky, L. V., Kononkova, N. N., Shimizu, N. & Robinson, P. T. (1993). Petrology of ultramafic lavas and associated rocks of the Troodos massif, Cyprus. Petrology 1, 331^361. Sobolev, A. V., Migdisov, A. A. & Portnyagin, M. V. (1996). Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4, 307^317. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590^597. Sobolev, A. V., Hofmann, A. W. et al. (2007). The amount of recycled crust in sources of mantle-derived melts. Science 316, 412^417. Spiegelman, M. & Kenyon, P. (1992). The requirements for chemical disequilibrium during magma migration. Earth and Planetary Science Letters 109, 611^620. Stevenson, D. J. (1989). Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters 16, 1067^1070. Straub, S. M., LaGatta, A. B., Pozzo, A. & Langmuir, C. H. (2008). Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems 9, doi:Q0300710.1029/2007gc001583. Suhr, G. (1999). Melt migration under oceanic ridges: Inferences from reactive transport modelling of upper mantle hosted dunites. Journal of Petrology 40, 575^599. Suhr, G., Hellebrand, E., Snow, J. E., Seck, H. A. & Hofmann, A. W. (2003). Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochemistry, Geophysics, Geosystems 4, doi:10.1029/2008GC002012. Wells, P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62, 129^139. Witt-Eickschen, G. & O’Neill, H. S. (2005). The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chemical Geology 221, 65^101. Yefimov, A. A., Lennykh, V. I., Puchkov, V. N., Savelieva, G. N., Saveliev, A. A. & Yazeva, R. G. (1978). Guidebook Ophiolites of the Polar Urals. 4th Field Conference, IGCP Project 39. Moscow: Nauka. 2521
© Copyright 2026 Paperzz