EconomicGeology
Vol. 84, 1989, pp. 1003-1027
The Kupferschiefer:An Overview with an Appraisal
of the Different Types of Mineralization
D. J. VAUGHAN,
Departmentof Geology,The University,Manchester,M13 9PL, England
M. SWEENEY,
ManchesterBusinessSchool,The University,Manchester,M13 9PL, England
g. FRIEDRICH, R. DIEDEL,
Institutfiir Mineralogieund Lagerst/ittenlehre,
Technische
Hochschule
Aachen,Wiillnerstrasse
2, 5100 Aachen,WestGermany
AND C. HARANCZYK,
Institute of GeologicalSciences,
JagellonianUniversity,2a Oleandry Street,Krakdw, Poland
Abstract
The Kupferschiefer,
a thin (<4 m) bedof marinebituminous
marlof UpperPermian(Zechstein)age, occursover a large area of north-centralEuropeand has,in certainareas,been
exploitedfor silverandsomebasemetals,notablycopper,sincemedievaltimes.It hasbeen
regardedas the type exampleof a shale-hosted,
strata-boundsulfidedepositand theories
regardingthe originsof Kupferschiefermineralizationhave exertedconsiderableinfluence
on theoriesof ore genesis.
The Kupferschiefer
sediments
were depositedfollowinga rapidmarinetransgression
over
an area that had been subjectto a very long period of arid to semi-aridconditions.In many
areasthe Kupferschieferoverliesred-bedsediments(Rotliegende),but in othersit overlies
Carboniferoussandstones
andmarlsor the bleachedandreworkedequivalentsof earlierrocks
(Grauliegendeand Weissliegende).Within the Kupferschiefer,lithologiealvariationscanbe
related to detailedpaleogeography.
Overall a euxinie,sapropeliefaciespredominates,but
changesoccurin the regionof paleohighswhere more carbonateand elastic-richfaciesare
developed.Strongevidenceexistsfor the developmentof chemicalstratification
in the Zeehsteinsea(fromwhichthe Kupfersehiefer
wasdeposited)with oxidizingconditions
in theupper
part andreducingconditions
in the lowerpart.Everywherethe Kupferschiefer
gradesupward
into overlyingdolomitielimestones.
Althoughlargeareasof the Kupfersehiefer
containonlyaverageconcentrations
of baseand
preciousmetalscomparedto othershalesandmarls,in certainareasthe concentrations
reach
ore grade.Historically,the Mansfelddistrict(SEHarz Mountains)wasimportantfor copper
andsilvermining,but at present-dayminingis undertakenonlyin the Spremberg-Weisswasser
area (EastGermany)andin Lower Silesia(Poland).The oresin suchregionscontainsulfides
of Cu, Pb, andZn and maybe enrichedin a varietyof otherelements,notablyV, Mo, U, Ag,
As, Sb, Bi, andSe;Cd, T1,Au, Re, andthe platinum-group
metalsare alsoreported;lateral
andverticalzoningof Cu, Pb, andZn maybe observed;
andin someareas,a reddeningof the
rocksadjacentto ores(RoteFiiulefacies)is a usefulexplorationguide.The Kupfersehiefer
in
Poland,in twocontrasting
regionsin Germany(theLowerRhinebasinandtheHessiandepression)andin England(whereit is termedthe Marl Slate)are comparedandprovideevidence
for four typesof mineralization.
The first (and oldest)is a weakly mineralizedtype exemplifiedby the EnglishMarl Slate.
Averagebasemetal contentof this type is • 100 ppm. Detailed mineralogieal,geochemical,
and isotopicstudiesindicate that the mineralizationis synsedimentary;
these studieshave
enableda modelto be developedin whichprecipitationof the variousmineralphasescanbe
related to stratificationof the early Zeehsteinsea and oscillationsin water and oxie-anoxie
boundarylevels.
The secondis an averagemineralizationinvolvingbasemetalcontentat the 2,000-ppm
level. In thisease,the studyof Germanexamplesindicatesthe importantinfluenceof strata
underlyingthe Kupfersehiefer,
asstressed
by subdivision
into a basintype that overliesthick
Rotliegendesediments,and a schwellentype that overliesPaleozoiebasement.The two subtypesdifferin mineralogyandoverallbasemetalratios,indicatingthe importance
of underlying
0361-0128/89/951/1003-25
$a.00
100 3
1004
VAUGHAN ET AL.
strataasa sourceof metals.The relationshipbetweenbariumconcentrations
in the Kupferschieferandbaritemineralization
in underlying
rocksisalsoclearfromgeochemical
(including
Sr isotope)studiesof Germanexamples.The evidencepointsto anearly diageneticoriginfor
the averagemineralization,with sulfurderivedbacteriogenically
interactingwith low-temperaturesolutionsderivingmetalslargelyfrom immediatelyunderlyingrocks.
The third is an ore mineralizationwhere the averagebasemetal concentrationreaches• 3
percent. Zonationis clearly developed,as is the associationof the Rote F[iule facieswith
mineralization,althoughthe detailedzoningpatternsare more complexthan commonlybelieved. The ore mineralizationtype is generallyrestrictedto the regionsrepresentingthe
marginsof Rotliegendebasins,andmodelsof originassociated
with late diageneticprocesses
and the introductionof metal-richbrines(possiblyassociated
with basincompaction)are in
line with the geologicand geochemicalevidence.Preliminaryfluid inclusiondata on strata
associated
with the mineralizationpointto temperaturesof • 120øC,andorganicmaturation
studiescan alsobe used to supportmodelsinvolvingintroductionof oxidativemetal-rich
brinesduring late diagenesis.
Again, sulfurisotopedata point to fixationof the metalsby
sulfur derived from bacterial reduction
of sulfate.
The fourthmineralization
associated
withtheKupferschiefer
isa muchlater(postdiagenetic)
structure-controlledmineralization(Riicken)involvingCo, Ni, Ba, As, and Ag phases,genet-
icallydistinctfrom the typesmentionedaboveandof probablehydrothermalorigin.Other
possibleepisodesof mineralizationcanbe identifiedon a localscale;in manycasesinsufficient
data are availableto assess
their geneticsignificance.
The Kupferschieferis a depositthat appearsto be the productof a varietyof mineralizing
processes
influencedby the environmentof depositionof the hostrock and the underlying
geology,but there are manyunifyingfeatures;notably,that the bulk of the evidencestill
pointsto fixationof metalsassulfidesby bacteriogenicprocesses.
Introduction
From Polandin the east,throughthe northernregions
of the GermanDemocraticRepublic(GDR) and GerTHE "Kupferschiefer"
(copperslate)isa stratigraphic man Federal Republic (FRG), the Kupferschiefer
term for a thin bed (approx0.3-4.0 m) of marinebi- stretchesacrossthe North Sea to northeastEngland
tuminousmarl,UpperPermian(Zechstein)
in age,and where it is knownasthe Marl Slate(seeFig. 1). This
occurringover a very large area of centralEurope. is a distance of over 1,500 km east to west and an
Probable
boundary
of
Zechstein deposits
Oslo J
Stockholm
' North
Sea
Durham
0
Paris
km
FIC. 1. Geographiclocationof the Kupferschiefer(and Marl Slate).
KUPFERSCHIEFEROVERVIEW
estimatedareaexceeding600,000 km2 (Wedepohl,
1005
i
i
1971).
It wasone of the first stratigraphicsequencesever
described(Lehmann,1756) and its economicexploi-
tation, chieflyfor copperand silver, datesfrom medievaltimes.Sincethe verybeginningof the scientific
study of ores, the Kupferschieferhas exerted great
influencein regard to theoriesof ore genesis.Nevertheless,althoughsomespecificaspectsof Kupferschiefergeologyhave been discussed
in the recent
literature (e.g., Harwood and Smith, 1986a; Jowett
et al., 1987b), detailedaccountscombininggeologic
setting,modernstudiesof the petrology,mineralogy,
and geochemistry,and currenttheoriesregardingthe
origin of the Kupferschieferare generallynot available in Englishlanguagejournals.Here, we set out
to providea reviewincorporatingnew dataandassess
theoriesof origin of Kupferschieferores.
Overall GeologicSetting
•.
•
55 ø
NorthGermanB•as•
c,• ' • __
•
ßow•r.•• •
•
• //•
• •
•••
•••_
•
•///•pre•sion•
•e•s
•Ri•••l
o •'
_
• • •
•
o•
ß ø•
.•
ß Berlin J
, _ • ....
z __•premberg-
•"r•?•eis•wa•
Mansfe• ••••
•
aa•
d•r -"••
•pessart
I•
•
_ 50
o
Tectonicsand stratigraphy
The Variscanorogenyat the end of the Westphalian
C stageof the Carboniferouswasan importantevent
on a regionalscalein centralEurope.The center of
10 ø
15 ø
this orogenyis now representedby the metamorphic
FIG. 2. Location of German Kupferschieferoccurrencesin
rocksof the BohemianMassif,surroundedby the Saxothuringianand Rhenohercynianzones (Fig. 2). At relationto major geologicfeatures.
the endof thisorogenicphase,largedepressions
(e.g.,
the Schneverdinger
grabenin northernGermany,the
stratathat represent,in differentreHessiandepressionandthe Thuringianbasin,andthe Weissliegende,
southwestern and southeastern Harz Foreland, see gions,reworkedunderlyingrocks,fiuviatile,or eolian
Fig. 2) were filled with •1,000 m of clastic(Rotlie- sediments.Overlying these clasticrocksis the Kupgende) sedimentseroded from the VariscanMoun- ferschiefer,a bituminouscalcareousor dolomiticshale
tains. Autunian (Lower Permian)-age(bimodal)vol- that representsthe firstcompletelydevelopedmarine
canics are intercalated with the clastic sediments of
sedimentafter a longperiod of arid to semi-aridconthe lower Rotliegende.The Rotliegende(Autunian) ditions.The Kupferschieferis thus underlainin difsediments,asfirst-cyclesedimentsformedduringthe ferent regionsby Rotliegende,Zechsteinconglomevolution of an intracratonic basin, are immature and erate, Grauliegende, or Weissliegenderocks. In
contain debris of granites,schists,limestones,and northernEngland,the Marl Slaterestsvariouslyon a
volcanicsfrom the adjacentmountains.Certain au- thin basalconglomerate,on eolian dune sands(the
thors (e.g., Jowett and Jarvis,1984) have noted sim- Yellow Sands),or on red sandstone(Penrith sandilaritiesbetweentheseRotliegendetroughsand the stone).Everywhere,the Kupferschiefergradesupupper Cenozoic Basin and Range province in the ward into overlyingdolomiticlimestones,the ZechwesternUnited States,proposingplate tectonicmod- stein first-cyclecarbonate--Zechsteinlimestoneor
els for their formation in environments ofintracratonic
Zechsteinkalk(Smithet al., 1986).
Rifting and lithosphericthinning, associatedwith
rifting in the forelandarea of major cordilleran-type
orogenies.
the openingof the Tethysoceanto the south,occurred
At the end of the Rotliegende,the Zechsteinsea throughoutthe regionduringthe Triassicand early
invadedfrom the north. Glennie and Buller (1983) Jurassic
(Ziegler, 1982). Thermalanomaliesassociated
have proposeda period of only 10 years from the with this event may have played a role in the minonsetof the Zechsteintransgression
until its greatest eralizingprocess(Jowett, 1986).
extensionwas reached. The exposedrockswere reworked, sometimesbleachedby the influenceof the Zechsteindepositionalenvironments
The surface over which the Zechstein sea transeuxinicenvironmentof the seafloorresultingin the
grauliegendsediments.
Alongwith the Grauliegende gressedwasone of strongrelief, althoughthe depths
are developedthe Zechsteinconglomerateand the of water probablydid not exceed1,000 m. The con-
1006
VAUGHAN ET AL.
ditionsthen prevailing at the floor of the Zechstein
seawere probablycomparable,in part, to thosenow
existingin partsof the Ostseeandthe BlackSea,with
stronglyreducingconditions.It hasbeen proposed
by manyauthors(e.g., Pompeckj,1914, 19'20;Brongersma-Sanders,
1971) that a chemicalstratification
or "chemocline"developedwhich divided oxidizing
conditionsin the upperpart of the Zechsteinseafrom
reducing conditionsin the lower part, where the
Kupferschieferwasdeposited.
Lithologicalvariationswithin the Kupferschiefer
can be related to detailed paleogeography,with paleohighs,paleorises,and subbasinscontrollingthe
observedsediments.Overall,a euxinic,sapropelicfacies predominates.The Kupferschieferof the basin
floor (e.g.,Lubin, Richelsdorf,Mansfeld,North German basin;see Figs. 1 and '2) is a thin (0.3-0.5 m)
clay-richbituminousshale,in effect,a basinalfacies.
Changesin faciesoccurin the regionof paleohighs,
reefs, and sandbarsand are related to pre-Zechstein
relief controllingthe former shorelineand position
of the chemocline.This marginalfacies(found, for
example,in the Lower Rhine basin, Spessart,and
Mineralization and Mining Activity
The metalenrichmentassociated
with the Kupferschiefer is not, in fact, restricted to one lithostrati-
graphicunit.Dependingonthe thickness
of the Kupferschieferand its lithology,the mineralizationcan
be containedwithin the ZechsteinConglomerate,
Weissliegende,Kupferschiefer,and Zechsteinkalk.
Metals, minerals, and their zonal distribution
The Kupferschiefer,despiteits name,containsaverage lead and zinc concentrationsmore than ten
timesgreaterthanthat of copper(Wedepohl,1971).
It is also true that, whereas in certain areas concen-
trationsof copperand other metalsreachore grade,
largeareasof the Kupferschiefer
containonlyaverage
(or even lessthan average)Zn, Pb, and Cu concentrationsrelative to normal shalesand marls.The cop-
per occursasthe sulfidemineralsbornite,chalcopyrite, chalcocite,covellite, and idaite (in roughly decreasingorderof abundance).
Leadandzincoccuras
galenaand sphalerite,althoughthe mostabundant
sulfideoverall,asin everyothertype of organicmatRh6n)is characterizedby a higherconcentration
of ter-richsediment,ispyrite. The averagegrainsizeof
carbonatesand of fine-grainedclasticmaterial,indi- the sulfidesis very small (20-200 #m).
In addition to Cu, Pb, and Zn, a number of other
catingincreasingly
oxidizingconditions
andthe influenceof the adjacentlandmasses.
The thickness
of the elementsoccurin remarkablyhigh concentrationsin
Kupferschiefer deposited in the marginal facies certain areaswithin the Kupferschiefer,notably V,
reachesas much as 4 m. The suggestedpaleogeo- Mo, U, Ag, As, Sb, Bi, and Se, with Cd, T1, Au, Re,
graphicalenvironmentsof someKupferschieferoc- and the platinum-groupmetalsalsohavingbeen recurrencesin central Europe are shown in Figure 3 ported(Wedepohl,1971; Kucha,1981, 1982). These
occur both within the more common sulfides and as
(after Specziket al., 1986).
Rheinisches Schiefergebirge
Niederrheinische
C2
Upper Carboniferous
C1
Lower Carboniferous
PI
Bucht
Palaeozoic older than Carboniferous
,,'• Base of Weissliegende
-'"•' sediments
FIG. 3. Paleogeographic
reconstruction
of someKupferschiefer
environments
in Germany(after
Specziket al., 1986).
KUPFERSCHIEFER OVERVIEW
discretephases(severalof which are shownin the
parageneticdiagram,Fig. 4).
1007
The RoteF•iulefacies
It hasbeenknownfor sometime fromthe mining
of the Kupferschieferthat high-gradecoppermintical (bottomto top of sedimentcolumn)zoningof eralizationisalwaysassociated
withthe so-called
Rote
Cu, Pb, andZn in the Kupferschiefer(Richter,1941; F•iule facies. The term "Rote F•iule" was first used
Kautzsch,1942; Rentzsch,1964; Wedepohl, 1964; by minersin the Mansfeldarea to describebarren,
Freese and Jung, 1965) that includesconcentration red-coloredrocksfoundin the vicinityof the ore. It
of copperin areasnearto the palcoshore
and (along is now appliedto rocksof the Weissliegende,Kupwith silver)in the lowerlayersof the sedimentcolumn ferschiefer,and Zechsteinkalk
layerswhich exhibit
with leadandzincin the upperlayers.Rentzschand varioustypesof red colorationcausedby disseminated
Knitzschke(1968) developeda parageneticscheme hematiteand goethite.A lot of subtypesof this red
related to mineral zonationas shownin Figure 4. colorationhavebeen describedby Erzberger(1965)
Here, the ore minerals are divided into 10 assemand Freese and Jung (1965). Dependingon the liblages, each reflecting different redox conditions thology,it occursaslenses,schlieren,spots,andlayprevailingduringmineralformation.Thus,paragen- ers, and sometimescoversareasas great as several
esis(1), hematitetype, occursunderoxidizingcon- hundredsquarekilometers(e.g.,Brandenburg,
GDR;
ditions,(2) and(3) underweaklyoxidizingconditions, Rentzsch,1974); in other cases,it is restrictedjust
types(4), (5), and(6) underweaklyreducing,and(7) to locally developed sandbars,against which the
to (10) under stronglyreducingconditions.It is im- Kupferschieferpinchesout (Schmidt,1985). The Rote
portantto notethat onlythe assemblages
(2), (3), (4), F•iulefacies,clearlyan oxidizedfacies,hasbeenin(5), and (6) form copperore concentrations
of eco- terpretedby someauthorsasrepresentingthe shalnomicallyexploitablegrade.
low-water equivalentof the black copper-bearing
shales,with a distributionreflectingthatof redoxpotential during sedimentation and diagenesis
Much has been written about the lateral and ver-
Redox state
str.
ox.
Para•lenesis
Hematite
I
weak
ox.
2
3
weak
reducing
4
5
strong
reducing
6
7
8
9
10
•
Magnetite
Chalcocite •
•
/•
Neodigenite
Covellite
•
Idaite
•
Bornite
•
Chalcopyrite•--•
Galena
....
l
• •••
•••
•
/
••
Sphalerite --
•
•
•
•
•1 •
•
•
•
•
(Rentzsch,1964; Konstantynowicz,1965; Jungand
Knitzschke,1976). A diageneticorigin is suggested
by, amongotherthings,hematitepseudomorphs
after
(syngenetic)pyrite, andthe casefor a late diagenetic
originby the actionof convectingbrineshasrecently
been arguedby Jowettet al. (1987c).
Besidethe red colorationcausedby theRoteF•iule,
otherred colorations
occurmostlyin the hangingwall
(Zechsteinkalk)
andhavebeenattributedto the action
of oxidizedsurfacewater (Paul, 1982). Unlike the
RoteF•iule,theyarenotofvalueasexploration
guides;
the formercanoftenbe distinguished
by the factthat
its boundarycrosscuts
the differentLower Zechstein
stratigraphicunitsat a low angle(1ø-2ø). The Rote
F•iuledistributionandthe mineralzoningin relation
to the Zechsteinlithologies,as shownschematically
in Figure 5, are usefulasexplorationguidesfor Kup-
Pyrrhotite
Arsenopyrite
ferschiefer-type
mineralization.
Tennantite
Enargite
Mining and mineral exploration
Stromeyerite
Economicinterestin the Kupferschiefer
datesfrom
nat. Silver
Linneite
,,
Medieval times when, in the Mansfeld district at the
southeastmarginof the Harz Mountains(Figs. i and
œ),mining of Cu-Ag mineralizationwas undertaken.
Millerite
Bravoite
Initially, exploitationwasfocusedon locallydevelFIG. 4. Ore mineralsand their paragenesis
in the Kupfer- oped near-surfacezonesrich in nativesilver.Subseschiefer
(afterRentzsch
andKnitzschke,
1968):i -- hematitetype, quently,miningfollowedthe thin (30-60 cm) Kup2 = covelline-idaite
type, 3 = chalcocitetype, 4 = bornite-chal- ferschieferseamto greaterdepthsand miningex-
cocitetype, 5 = bornitctype, 6 = bornite-chalcopyrite
type, 7
tended to the Richelsdorf area at the southwestern
= chalcop•rite-pyrite
type,8 -- galena-sphalerite-chalcopyrite
type, 9 = galena-sphaleritetype, and 10 -- pyrite-type; str. ox
= stronglyoxidizing;I
ponent,
marginof the Harz Mountainsand farther afield to
majorcomponent,
I accessory
com- the Kupferschieferoccurrencesin the North Sudetic
trace component.
syncline,Lower Silesia,Poland(seeFig. 1). At the
1008
VAUGHAN ET AL.
v
v
WERRA
ANHYDRITE
V
v
V
v
DOLOMITE
ZECHSTEIN
LIMESTONE
Pb-Zn
LIMESTONE
Mineralization
KUPFERSCHIEFER
-'
ß
.
'-'
ß
ß
-
' '
- - .
Marginal
Basin
SAN DSTONE
''
-'
' '
.
'
.
ß'."q.•'...•.
.
ß
Upper limit of
.ß. . . ' '
.
Rote Faule facies
- - '
'
ß
2m
ß
• Shor•e ! approx.
2Km approx.
FIG. 5. Schematic
crosssectionto showthe positionof RoteFSulein relationto lithologicaltypes
and mineralization.
presenttime, miningis undertakenin the GDR in the
Spremberg-Weisswasser
region,andin Polandwhere
the Lubin depositwasdiscoveredin 1957 in the ForeSudeticmonocline.The latter carries• 2 percentCu
2. The North Germanbasin,stretchingnearlythe
whole distancefrom west to eastin the FRG, contains
Kupferschieferoverlyingclasticsedimentsof Rotliegendeageaswell asCarboniferousrocks(Osnabriick
and 30/g/ton Ag andis responsible
for Polandbeing rise).The depth of Kupferschiefernow reachesup to
the majorEuropeancopperproducer(• 400,000 tons 5,000 m.
3. The Hessiandepressionrepresentsthe southern
per annum).Althoughminingin the FRG in the Richelsdorfareawasdiscontinuedin 1950, recentexplo- continuationof the easternpart of the North German
ration hasbeen undertakenfor Lubin-typemineral- basin.It is bordered in the west by upthrustedDeization in the Hessiandepression(Figs. i and 2). In vonian and lower Carboniferous rocks of the Rhenish
thisarea,nearly 30 million tonsof potentialore grad- Massifandin the northeastby the elevatedPaleozoic
ing at 1 percent Cu and 15 ppm Ag (over a 2-m thick- strata of the Harz Mountains. The occurrences at
nessof Kupferschiefer)have been proved, but the Richelsdorf,Rh6n,andSpessart,
whichhavebeenthe
quantitiesinvolved and sporadicdistributionof the target areasfor recent explorationactivitiesin the
mineralizationpreventprofitableminingin the FRG FRG, are situatedat the border of the Saxothuringian
at present (Schumacherand Schmidt, 1985; see also (Rh6n,Spessart)
andthe Rhenohercynian
zone(Richearlier work of Richter, 1941).
elsdoff) of the VariscanMountains(seeFig. 3).
4. To the east,the Hessiandepressionis connected
The Kupferschieferin Germany
with the Thuringian basin, which is located in the
The Kupferschieferoccursover wide areasin Ger- southernmostpart of the GDR. At its northwestern
many.From west to east,the followingoccurrences marginin the transitionzoneto the Harz Mountains,
shouldbe mentioned(seeFigs. 1 and 2):
the formerlyexploiteddepositsof MansfeldandSan1. The Lower Rhine basin, situated near the bor- gerhausenare located.
5. In the easternpart of the GDR, nearthe frontier
der of the Westphalian(Subvariscanforeland) and
with Poland, Kupferschiefer ore is mined in the
Rhenohercynian
zoneof the Variscanexternides.Due
Spremberg-Weisswasser
region.
to the absenceof Rotliegendesediments,the KupThe
occurrences
mentioned
above are distinctive
ferschieferdirectlyoverliesfoldedandfaultedshales,
sandstones,and marls of the upper Carboniferous in termsof the precisecharacterof the mineralization
(WestphalianA-C). It occursat depthsbetween 200 (andthe total amountof metalsinvolved)anddetails
and 1,000 m.
cannotbe presentedhere for all of these.Instead,the
KUPFERSCHIEFER
OVERVIEW
Lower Rhine basin and the Hessiandepressionare
discussed
to illustratethe geology,mineralogy,and
geochemistryof the German Kupferschiefer.The
former involvesKupferschieferoverlyingupper Carboniferous strata, and the latter, Kupferschiefer
overlyingred-bedlikeRotliegendesediments.
1009
(Fig. 6). The carbonate
laminaecontainclayey-bituminousandsandy-silty
intercalations,
the occurrence
of the latter dependingon the distanceto the former
shoreline to the south.
The three lowermoststrataof the Zechsteincycle
(Zechstein
conglomerate,
Kupferschiefer,
Zechsteinkalk)
exhibit
more
or
less
intensive
barite
mineralizaLower Rhine basin
tion in the formof nodules,thin layers,andfillingsof
Geology:The geologic structure of the Lower drusycavities(DiedelandFriedrich,1986).
Rhinebasinis characterizedby a foldedand faulted
The sulfidemineralizationevidentwithin the KupCarboniferous
basementanda gentlynorthward-dip- ferschieferis very monotonous.
Pyrite andmartasite
ping (from2o-5 ø) Permian,Mesozoic,andCenozoic predominate,
followedby sphaleriteandgalena.Only
sedimentarycover. The Carboniferousstrata,up to minor amountsof chalcopyrite,covellite,and malaseveral thousand meters in thickness,consistof lime- chite havebeen observed,particularlyin the understones,clay, sandstones,
and shales,with countless lying Zechsteinconglomerate.
mineablecoalseams,mostlyin the upper part of the
The base metal content of the Kupferschieferin
section(WestphalianA andB). After WestphalianC, the LowerRhinebasinhasbeeninvestigated
by Diethe Carboniferousstratawere folded. The intensity del (1986). The mostremarkablefeaturesof metal
of foldingincreasesto the south.The foldingwasac- distributionare the following:
companiedby the developmentof northwest-south1. The copper content is alwaysvery low and
east-strikingvertical faults, along which some eleranges
from a few ppm to 270 ppm. Thesevalues
mentsof the structurewere upliftedby up to 400 m.
correspond
to thoseof noimalblackshales.
Post-Variscan
movementalongthesefaultsresulted
2. The lead contentnormallyvariesbetween 20
in horstandgrabenmorphology.
Hydrothermal vein-type base metal and barite and 350 ppm. Anomalouslyhigh valuesup to 1,900
ppm are observedin 10 drill samples(of a total
mineralization occurs in the Carboniferous strata of
the basement,especiallyin the rock sequencesof of 32).
3. With the exceptionof four drill samples,anomWestphalianA and B. It is of Variscanand probably
alously
high zinc contentsoccurin all samples.
The
alsoof post-Variscan
age. Someoccurrences
of highgradelead-zincore were mined until 1960, notably
at the southwestern
marginof the LowerRhinebasin.
The discordantlyoverlyingZechsteinstrataof the
Lower Rhine basin representthe southernmostextremityof the formerZechsteinseawhich,in thisarea,
floodeda relatively fiat plain coveredby a thin bed
of residual and fiuviatile
sediments. The thin con-
glomeratebedunderlyingthe Kupferschiefer
iscoeval
with the Weissliegendesandstone.The main componentsof the conglomerate
arevery poorlyrounded
and sortedfragmentsof Carboniferouslimestones,
sandstones,
and schists,and rarely, Upper to Middle
Devonianlimestones.The cementsmainly consistof
calcite, dolomite, ankerite, anhydrite, gypsum,and
barite. Barite also occurs in the form of veinlets and
nodulesup to 3 cm in diameter. The upper parts of
the Zechsteinsequenceof Zl to Z4 cyclothemsshow
faciesthicknessdevelopmentanddistributiontypical
of marginalbasins(Wolburg,1957). They are overlain
by about300 m of TriassicBuntsandstein,
succeeded
by Paleocene,Oligocene,andMiocenestrata(about
300 m thickness).
Miheralogyandgeochemistry:
Due to the marginal
facies,the Kupferschiefer(up to 4 m thick) is characterizedby a high contentof carbonates,forming
fine-grainedlaminae of about 0.5-mm thickness, FIG. 6. Typicalintercalations
of clayeybituminous(black)and
sometimesgrowingup to severalcentimeterswhere calcareous(gray)layersof a marginalfacies;Kupferschiefer(after
sedimentation
waslocatedabovebasement
paleohighs Diedel,
1986).
1010
VA UGHAN ET AL.
highestvaluesare 1.25 percent in one sampleand contrast,the Kupferschieferabovethe clasticsedionlyexhibits
0.55 percent in another, over vertical sectionsof 10 mentsof the WestphalianC (sandstones)
barium contentsin the range recordedfor normal
and 75 cm, respectively.
black shales.As with the lead and zinc, it is possible
The distribution
of both lead and zinc is charac-
to interpretthe bariumconcentrations
in termsof a
terized by two populations(Diedel, 1986), repre- bimodaldistribution(population1:0-450 ppm Ba;
sentingthe background(population1) andthe anom- population2:450 ppm-12% Ba).Wedepohl(1964)
alies (population2). Populationi rangesfrom 0 to hassuggested
that suchhigh bariumvaluesare the
350 ppm for lead and from 0 to 750 ppm for zinc. result of hydrothermalsolutionsthat fed into the
These values correspond with those given by Kupferschieferhorizon.
Knitzschke(1966) for normalblackshales.The second
Coprecipitationof barite andgalenaout of onehypopulationcoversa wide field from350 to 1,900 ppm drothermalsolutionis supportedby the occurrence
(lead) and from 750 to 12,500 ppm (zinc), repre- of Pb-bearingbarite (up to 1.7% PbO) intergrown
sentingan anomalousenrichmentof both elements. with galena,within smallvertical fissures.The conWithin a vertical section,the anomalously
high lead ditionsunder which sucha processcouldoccur (at
andzinccontentsoccurwithoutexceptionin the basal low temperature)are illustratedby the stabilitydiapart (1 m) of the Kupferschiefer,althoughwhere the gramsin Fig. 8. The barite mineralizationand the
Kupferschieferis lessthan 50 cm thick, the increased major componentof the sulfidemineralizationare
basemetalconcentrations
are verticallydisplacedand thusinterpretedasbeing of the samegeneticorigin.
occurin the basalpart of the Zechsteinkalk.A vertical
Theseobservations
suggest
thatbarium-andmetalzoning(Zn below, Pb above)is evidentandcontrasts bearinghydrothermalsolutions
couldhaveoriginated
with the more usualCu-Pb-Znzoningcharacteristic in the basementrocksand movedupward until they
of the well-known German deposits (Richelsdorf, reachedthe geochemicaltrap of the overlyingKupMansfeld) and Polish deposits(Lubin, Polkowice, ferschiefer. The observed barium distribution cannot
Lena, Konrad; Specziket al., 1986).
be readilyexplainedby a fluvialinput of barium,or
The distributionof bariumwithin the Kupferschie- by direct, synsedimentary
precipitationout 6f seafer is stronglyrelatedto the underlyingCarboniferous water. The hypothesisof descendingBa-bearing
stratigraphy.The WestphalianA and B strata,com- brines, derived from the overlying Zechsteinevapoprising clay-sandstones
and sandstones,
containhy- rites,is alsoimprobable(asfurther shownbelowby
drothermallead-zinc-bariumvein-typedepositswith Sr isotopestudies).
Maturationof organicmaterial:The Carboniferous
up to 12 percentbarium.Within the overlyingKupferschiefer,anomalously
high bariumcontentsof up rocksof the southernpart of the Lower Rhine basin
high vitrinite rank of up to 4
to 5 percent Ba over 1.8 m are found (Fig. 7). By exhibitan anomalously
FIG. 7. Barium content of the Kupferschieferin the Lower Rhine basinand its relationshipto the
underlyinglithology (after Diedel, 1986).
KUPFERSCHIEFER OVERVIEW
1.4.
1.2.
1,0.
1,2
1,0
0,8
0,6.
0,6
0,4-
0,4
0,2.
0,2
1011
foundandinterpretedasdueto fixationofH2Sderived
frombacterialproduction.The oxygenisotopevalues
of the carbonates
werefoundto varyfrom•1sO= +1
to -12 per mil (avg = -4.5%0 PDB). Becausethe
isotopiccomposition
of oxygenfromcalciteandfrom
dolomiteis the same,the dolomitewas interpreted
as a conversionproductof calcite.Isotopicallylight
carbon in carbonates was observed in association with
light sulfurin the horizonsenrichedin metals.Such
light carbonhasalsobeen attributedto the activities
-0,2of sulfate-reducing
bacteria,hencetheseisotopicdata
-0,4havebeen usedto supporta synsedimentary
origin
for the Kupferschiefer
basemetalsulfides(Marowsky,
-0,6-0,6
1969). Wedepohl(1971) hasfurther argued,on the
-0,6basis of both isotopiccompositionsand chemical
-1,0compositions
(e.g., association
of bituminouscarbon
-1,2
and sulfide),that theseKupferschiefersulfideshave
-1,2originatedby precipitationin a closedbasin.
-1,4
0 I
2
3
4
5
6
?
8
9
10
11
12
13
14
However,the extentto whichthe dataof Marowsky
(1969) are representativeof Kupferschiefersections
FIG. 8. StabilityrelationsinvolvingBa,Pb, andS speciesin showingsuchphenomena
asCu-Pb-Znzoningandthe
the systemBa-Pb-S-H20at 25øCand1 atmtotalpressure.
Total
development
of
Rote
Fgule
faciesis uncertain.The
activity:Ba = 10-4, Pb = 10-6, S -- 10-2 (afterTischendorf
and
Ungeth6m,1984, slightlymodified).Field I: Pb-bearingbarite; casefor a biogenicoriginof the sulfidesother than
fieldII: fieldof cogenetic
bariteandgalena;
fieldIII: Ba-bearing framboidal
pyritehasalsobeenchallenged
by Jowett
galena.Diagonallinesindicatethe fieldof the Pb-bearingbarite et al. (1987a, b), who point out that coppersulfides
andthe arrowthe changingconditionsof mineralprecipitation. which formedat low temperaturesin isotopicequilibriumwith pyriteshouldexhibitlighter•34Svalues
than the coexistingpyrite, not heavier(•4S = -23
percentRoi•(Teichmiilleret al., 1979).Thisanomaly to -38%0forcoppersulfides,
-28 to -41%oforpyrite)
iscaused
by a basicpluton,theKrefeldhigh,thatrose asdeterminedby Marowsky(1969). Nevertheless,
the
up to about3.5 km belowthe surfaceof the upper fact that the work of Marowsky(1969) wasunderCarboniferous
rocks(Niem611er
et al., 1973; Bunte- taken on combined Cu + Pb + Zn sulfide concentrates
barthet al., 1982).
may mitigate againstthesearguments.
The Kupferschiefer,
whichoccursat depthsof beRecentstrontiumisotopedatafor the Kupferschietween 200 and 1,000 m, has a virtrinite reflectance fer in the LowerRhinebasinhavebeenpresented
by
(Roil)whichreachesa maximumof only0.5 percent. Diedel andBaumann(1988). The S7Sr/•6Sr
ratio of
A more sensitiveparameterindicatingthe low mat- baritein thebasalZechsteinstratasignificantly
differs
uration stage of these bituminoussedimentsis the fromtheS7Sr/S6Sr
ratiooftheWerraanhydrite
above
stereochemistry
of pristane(Patienceet al., 1978). (Fig. 9). Therefore,the precipitationof barite from
The maturationof sediments
is primarilydependent seawateror its formationfrom descendingbrinesis
on depthof burialsothatthe isograms
of maturation very unlikely. The most probable sourcefor the
0,0
-0,2
-0,4
-0.8
-1,0
- 1.4
shouldparalleltheisobaths.
AbovetheKrefeldhigh,
strontium and barium are the rocks of the Carbonif-
anomalous maturation values dominate and the iso-
erous.
gramsof maturation
cutthe isobaths
at a highangle.
Also,the basicplutonbeneaththe Krefeldhighhas TheHessiandepression
causeda coalification
anomalyin the upperCarbonGeology:
The Hessiandepression
(Fig. 2) ispartof
iferousstrata(Westphalian
A). Here,the isograms
of a large-scaledepressionthat developedduringthe
maturation
of theKupferschiefer
areorientedparallel Permianas the result of rifting between the Euroto thoseof the Westphalian
andthe KupferschieferAsiatic and the Greenland-North American conticontains
thelargestmetalcontentsof theLowerRhine
basin(DiedelandP6ttmann,1988).
Isotopicinvestigations:
The onlypublishedisotope
(S,O, C) studieson the Kupferschiefer
in northwest-
nents. It is subdividedby two parallel, southwestnortheast(Variscan)-striking
ridges(Hunsriick-Oberharz-Schwelle,Spessart-Rh/fn-Schwelle)
into three
troughs(Fig. 3). DuringearlyRotliegende
time (Au-
ern Germanyandthe Lower Rhinebasinwere carried tunian)the first northwest-southeast-striking
transout by Marowsky(1969). He examinedconcentrates verseridgesand troughswere formed,subdividing
of combinedCu-Pb-Znsulfides,pyrite, calcite,do- the greatVariscanstructuresinto similaronesof Herlomite,gypsum,andbituminous
matter.Highly32S- cynianage (Kulicket al., 1984).
enrichedmetalsulfides
(•4S avg-30 to -35%0)were
In theRichelsdorf
area,the basementisformedby
1019,
VAUGHAN ET AL.
gendeaswell asin theKupferschiefer
andin the lowermost Zechsteinkalk.In the southern part of the
Richelsdorfarea,red-coloredrocks(RoteFSule)occur
in the basalZechsteinstrata. This Rote F•iule repre-
oSa
L
•5
•4
sentsthe oxidizedpart of a redoxboundarythat is
paralleledby a distinctmetaland mineralzonation.
At the morereducedpartof thisboundary,the copper
faciesis developed,and farther away, the lead and
zinc facies. The metal and mineral associationsof these
0707
708
709
710
711
875r/86Sr
FIC. 9. Sr isotope ratios for barite and rocks of the lower
Zechsteinstrata, lower Rhine basin (after Diedel and Baumann,
1988). 1 = Dinant limestone;2 to 4 = barite (2 = hydrothermal,
Ba-Pb-Zn vein-type deposits of the upper Carboniferous; 3
= Zechsteinconglomerate;4 -- Zechsteinkalk),5 to 6 = rocks(5
= Zechsteinkalk;5a -- limestonewithin Kupferschieferhorizon;
6 = Werra anhydrite).
different facies are describedin detail by Schmidt
(1985) asfollows:
1. The rocksinfluencedby the Rote F•iulefacies
arehighlydepletedof their formerbasemetalcontent
(nowabout100 ppm Cu + Pb + Zn). The dominant
ore mineral is hematite, often pseudomorphicafter
pyrite.Copper-richsulfidessubordinately
occuronly
in the vicinity of the redoxboundary.
2. The copperfaciesischaracterized
by highcopper contents,resultingfromthe presenceof copperrich sulfideslike chalcocite, covellite, idaite, and bor-
nite. The copper mineralizationis mostlyconcenthe Hunsriick-Oberharzridge and the Baumbacher
trated in the region of the transitionzonebetween
Transverse
ridge andbelongsto the Rhenohercynian
the clasticWeissliegendeand the overlyingclayey
zone of the centralEuropeanVariscides.The rocks
bituminuousKupferschiefer.Where the Kupferare phyllites, stronglyfolded mica-bearingsandsiltschieferis thin (about50 cm), maximumcopperconstones,and graywackes.The Rotliegendesediments
tents
are verticallydisplacedand may occurin the
are more than 1,000 m in thickness,composedof aloverlyingZechsteinkalk.
luvial fansin the north and sequencesof red-colored
3. Within the lead-zinc facies;the contentsof lead
sandstones
and conglomeraticintercalationsin the
and
zincare greaterthan50 percentCu + Pb + Zn;
south.
copper
valuesdecreaseat leastto 50 ppm. Galena
The basement rocks of the Spessart-Rh6narea
andsphaleritedominateandchalcopyriteisthe most
(Spessart-Rhi3n
ridge) belong to the Saxothuringian
commoncoppersulfide.
zone of the central European Variscides.They are
Veins with Co-Ni-As-Ba mineralization, so-called
principallyof early Paleozoicage (Cambro-Ordovician)andhavebeen metamorphosed
by the Variscan "Riicken," occurin the northernpart of the Richelsorogeny. Several types of ortho- and paragneisses, dorf as well as in the Mansfeld area (Gunzert, 1953;
micaschists,
amphibolites,and marblesoccur;rarely, Messer, 1955) and are probably of Mesozoic age.
intrusiverocksalsooccur. During the Rotliegende, Crosscuttingthe Kupferschieferwith its reducing
the Werra-Fuldabasinwasgraduallyfilled by fluvia- character,they are enrichedwith Co-Ni arsenides
tile and sabkha-typedeposits.The sedimentsconsist suchasskutterudite,safilorite,and rammelsbergite.
The basemetal mineralizationwithin the Kupferof conglomerates
andsandstones;
they are cyclicred
beds, representingfining-upwardsequences.The schieferof the Spessart-Rh/3n
is againpreferentially
sabkha sedimentsare dominantly red colored and concentratedin the basalpart of the Kupferschiefer
consistmainly of claysand siltstoneswith sandyin- (Schmidt,1985; Schumacher,1985). Dominantore
tercalations. Characteristic
features are nodules of
mineralsare Cu-Assulfides(tennantite,enargite)and
carbonatesand anhydrite.Two faciestypesof Weis- arsenides(loellingite,arsenopyrite)that replaceearsliegende,sandbarsandconglomeraticsandstone
lay- lier coppersulfides(chalcocite,
bornite,chalcopyrite;
ers,both of fiuviatileorigin,canbe recognized.The Fig. 10). Whether this generationof earlier formed
sandbarscan form huge mega-crosslaminated
struc- andnow replacedcopper-richsulfidesis relatedto a
tures more than 50 m in thickness(Schumacher, RoteFSuleprocessis uncertainat present.Thistype
1985).
of Cu-Asmineralizationappearssimilarto the Co-NiMineralogyand geochemistry:
The Kupferschiefer Ba-As(Riicken)mineralizationpreviouslydescribed
in the Richelsdorfareaconsists
of a black,thinly lam- from the Richelsdorfarea (Schmidt and Friedrich,
inated,bituminousshale,which containsa high pro- 1988), but in contrastto the latter (vein-type)minore
portion of quartz, particularly in its basalpart. Its eralization,it is characterizedby a disseminated
thicknessrangesbetween0.15 and 2 m. The miner- mineraldistributionandby the occurrenceof Ag-Sbalizationis hostedin the upper part of the Weisslie- bearingtennantite,whereCu is alsoreplacedby Fe
KUPFERSCHIEFER
OVERVIEW
1013
hasprovided
some
evidence
supporting
inputofoxidizedsolutions
intotheKupferschiefer
by usinggeochemicaldata. He establishedhigh correlationsbetweenelementsstableunderdifferingredoxpotentials
(Fig. 12), correlations
thatcannotbe explained
by a
synsedimentary
fixation
ofthemetals.
Schmidt
(1985)
alsoshoweda bimodaldistributionof copperandsil-
ver within the Kupferschiefer,
with a background
population
anda population
of anomalously
increased
values.These data agreewith the petrographicobservationsof Friedrich et al. (1984), who proposed
severalstages
of Kupferschiefer
mineralization.
Thus,
the disseminated Cu-As sulfide mineralization found
at Spessart-Rh/Sn
isthoughtto be dueto precipitation
from introduced(relativelylow-temperature)
fluids
FIG. 10. Polishedsectionof a sampleoftennantite(light gray)
replacing bornitc (medium gray), from Richelsdorf,Hessian
depression(FRG); oil immersion;width of field = 0.1 mm (after
Friedrich et al., 1984).
andnotto be synsedimentary
in origin.
Maturationof organicmaterial:Recently,bitumens
extractedfrom the Kupferschieferof the Sangerhausenareahavebeeninvestigated
by neutronactivation
analysis,chromatography,and IR spectroscopy
and Zn. Additionally,an increaseof silverand anti- (Hammeret al., 1988). The observedhigh concen-
monyfrombottomto topoftheKupferschiefer
isob-
trations and lateral distribution of certain elements
served(Diedel, 1984).
(e.g.,SeandAu), aswell asthe variations
discovered
in the composition
of hydrocarbon
groupsandtheir
aqueoussolutionat 25øC (Fig. 11), it is possibleto structures,were usedas argumentsto supportthe
suggest
thetypeof solution
conditions
(shown
shaded idea of a supplyof oxidativemetal-richbrines(proin Fig. 11) underwhichtennantitemayhaveformed, ducingthe RoteF/iule),andasevidenceagainstsynnamely,fromthe introductionof relativelyacidand genetic-earlydiageneticmetal fixation within the
oxidizingmetal-bearing
solutions.
Schmidt(1985)also Kupferschiefer.
Similarresultshavebeen reported
for the Kupferschiefer
fromLower Silesia,Poland(S.
Specziket al., pers.commun.).
Results
of vitriniteand
Eh (Vol t)
liptinitereflectance
measurements
andgaschromatographyof saturatedand aromatichydrocarbons
1,4
.1,4
point to an increaseof organicmattermaturationap1,2
.1,2
proaching
theredoxboundary,alsoshownby elevated
phenanthrene/methylphenanthrene
ratiosandtheloss
of saturatedhydrocarbons.
Thesephenomenaare accompanied
by significant
copperand silverenricho,q
--_
ment,interpretedasbeinga resultof redoxreactions
between late diageneticascendingmetal-bearing
t
.....
brinesand the reducingKupferschiefersediment.
From data on the stabilities of Cu I and AsTMin
1,6]
'1,6
-o,l
Correlatio•
coefficient
r
1X)-
As '0'8
-0,8.
• Weil•liegend
• Kupferschief
• Zechsteinkal
0806-
t-',0
OA-
-1
2
-12
pH
FIG. 11.' Eh-pH diagramshowingthe boundariesof stability
(at 25øC) for variouscopper and arsenicspeciesin aqueoussolution. Hatched area indicatesthe field in which tennantite may
be stable.
Copperfacies
Lead - Zincfacies
FIG. 12. Geochemicaldata for the Kupferschieferand associatedstrataof Spessart-Rh6n
showinghighcorrelations(asevidencedby the correlationcoefficient,
r) betweenelementsstable
underdifferingredoxconditions(after Schmidt,1985).
1014
VAUGHANETAL.
Isotopicinvestigations:
Leadisotopemeasurements confirmation and extension to other horizons, includto determinethe ageof the Kupferschiefermineral- ing the Kupferschiefer
itself.
izationandthe sourceof metalswere firstperformed
The Kupfersehieferin Poland
by Kautzsch(1942) for the Kupferschieferin MansThe Kupferschiefer and overlying Zechstein
feld and Spremberg.The calculatedageswere 300
Ma for Sprembergand320 Ma for Mansfeld;different (evaporite)sedimentsare found over two-thirdsof
sourceswere suggested
by the authorsfor the two the land area of Poland.However, economicallysigdistricts.
nificantmineralization
isknownfromonlythreemuch
Later investigations
were carriedout by Wedepohl smallerareas,in the first two of which explorationis
et al. (1978) basedon a modifiedthree-stagemodel, currentlytakingplace.
The Fore-Sudetic monocline ore district is situated
following Stacey and Kramers (1975). They constructeda secondaryisochronintersectingthe lead near the border (formedby the Odra fault) of the
zoneof the Variscanwith the Saxoevolutionline at 250 and 1,700 Ma and interpreted Rheno-Hercynian
thesedataasthe ageof denudationof Paleozoicsed- Thuringianzone (seeFigs. 13 and 14). Here, a thin
imentsand the age of erosionof Precambrianrocks. layer of dolomiteand copper-bearingshaleoverlies
A similaritybetween the lead of vein-type deposits a 600-m-thicksequenceof Lower Permiansandstones
in the Harz Mountainsandthat of the Kupferschiefer andpyroclastics,
that are in turn underlainby folded
wasestablished,
sothat the weatheringof Paleozoic Devonian and Carboniferousstrata (Oberc and Torocks, the dissolution of their metal contents, and maszewski,1963; Oszczepalski,1980; Klapcinskiet
metal transportby surfacewaters into the euxinic al., 1984). Kupferschiefer
oresareexploitedat depths
Zechsteinseawere the processes
invoked.However, of between 600 and 1,200 m.
Jowett et al. (1987b) draw attention to the uncerThe North Sudeticsynclineor depression("Old
taintiesin the fits to the eight Germandata points Ore") districtis situatedin the Saxo-Thuringian
zone
presentedby Wedepohlet al. (1978), notingthatthe of the Variscanorogen.Here, lead-bearingmarlsand
intersectioncouldgivean ageanywherebetween260 below them, copper-bearingmarls and red-stained
and 330 Ma.
marls, overlie Lower Permian beds that range in
The most recent lead isotopedata are given by thickness from 10 m in the east where the Zechstein
Hammer et al. (1987) for the Kupferschieferof San- rockscrop out, to 500 m in the west (seeFig. 13).
gerhausen(SE Harz Mountains),indicatingan age The underlyingfoldedrocksof the basement
include
greenstones,
pillow lafromtheleadseparation
of 240 to 270 Ma. Comparing early Paleozoicgreenschists,
the leadisotoperatioswith the plumbotectonic
model vas,spilites,and keratophyres.The mineralizedhoof Doe and Zartmann(1979), Hammer et al. (1987) rizon extendsfrom outcropto depthsof 2,000 m.
interpret the Kupferschieferlead as a mixture of Further details are provided by Konstantynowiez
mantle and crustal lead.
(1965), Lisiakiewiez(1969), Oszezepalski
(1986), and
Fluid inclusion studies: Results of the first microSpeeziket al. (1986).
The Northern Copper zone of the Fore-Sudetie
thermometricinvestigations
havebeen publishedby
Tonn et al. (1987). Fluid inclusions,incorporatedin monDeline, situated from 50 km north of Lubin to
the carbonatecementof the clasticWeissliegende 120 km northeastof this locality,lies in the deepest
strata,showa homogenization
temperatureof about part of the Fore-SudetiemonDeline,abovethe central
120øC and a salinityof about 23 equiv wt percent part of the Rheno-Hereynian
zone of the Varisean
NaC1.Thesefirsttentativeresultsrequirebothfurther orogen.The Kupfersehieferand mineralizedsand-
0
10
20
i
km
SW
HE
• ,14
•
X/
......
'• ,
, •t
I I I
I
,
II
................................
,
•-t
II
North Sudetic Depression
.... .....,'.:.'.:
....
II
Foresudetlc Block
I I
-• ' •JJJ•
Foresudetic Idonocline
•........ Buntsandstein •
Crystalline
rocks
•'•
Keuper
•,::• Zechstein
•--•
Tertiary
and
Quaternary
•
Muschelkalk
[]•TT• Rotliegende
•
Cretaceous
i
i
Faults
FIG. 13. Geologiccrosssectionthrough North Sudeticdepression,Fore-Sudeticblock, and ForeSudetic monocline.
KUPFERSCHIEFEROVERVIEW
1015
action.Someof the copperremovedin thiswayseems
eventuallyto haveinfiltratedunderlyingsandstones.
Specifically,
a numberof environments
canbe identified from analysisof the sediments:
•
Copper
mlneralisatlon •
O.F.
_:.:• Oxidised
facies
X--Y
•
Zechstein
outcrops
Tectonic
lineaments
Odra Fault zone
Line of section
FIG. 14. Sketch map of distributionof the copper-lead-zinc
faciesand of oxidationzonesin the Fore-Sudeticregion, Poland
(modifiedafter Rydzewski, 1978).
stonesfoundhere occurat depthsbetween 1,500 and
2,000 m (Klapcinskiet al., 1984) and are underlain
by a thousandmetersof Lower Permianred bedsand
pyroclastics,beneathwhich are folded Devonianto
Carboniferous
strata.
1. Sandstone
barswith no coverof copper-bearing
shalesand no reef-cappingbut with marginalzones
of redepositedshale (Blaszczyk,1981; Haranczyk,
1986).
2. Sandstonebarswith no copper-bearingshales
but cappedwith a reef dolomitewhichformedduring
regression
of the sea(e.g.,theWestLubinbar).These
barsare surrounded
by areasof copper-bearing
shale
(BlaszczykandPrymka,1973; Haranczyk,1986).
3. Sandstone
barrierslike thatmarkingthe margins
of the Rudna lagoon(see Fig. 15). This barrier is
cappedby a 2-m-thickdolomitewhichformedduring
regression;the steepslopesshowsignsof abrasion,
and on shallowslopes,the occurrenceof tidal flats.
Here, lenses(<1.5 m thick) of redepositedshales
(knownasFeineLette) occur.On the lagoonsideof
the barrier, abovethe zoneof preservedlead-bearing
shales,sandstones
have been filled in and replaced
by chalcocite-anhydrite
or galena-anhydrite
(Haranczyk, 1970, 1986).
4. The lagoon,asexamplified
by theRudnalagoon,
whichformspart of a largebasinthatwasepisodically
separatedfromthe restof the depositional
area.Here,
lead- and zinc-bearingshalesare overlainby dolomiteswith claylaminaeandrareleadandzincsulfides
and, in the upper parts,only framboidalpyrite. The
deepestpartsof the lagoonare coveredby dolomite
with scarceclay laminae,someanhydrite,and just
tracesof ore minerals,overlainby dolomiteinterlayered with anhydrite.
Geologicsetting
As noted in the generaldiscussion
of the geologic
settingof the Kupferschiefer,the molassetroughsof
the Variscanorogenywere filledwith LowerPermian
pyroclasticsediments,lava flows, and clastic sedimentsbefore the transgression
of the Zechsteinsea.
There are, of course,typicalPermianred beds(Rotliegende),whoseupper part has generallybeen reworkedby the Zechsteintransgression;
the first deMore generally,it canbe saidthat onlywithinthe
positsof these red beds are generally dolomitesor lagoonalenvironmentis the carbonateinterlayered
limestones(Peryt, 1976). In Poland(Lower Silesia), with anhydriteand the dolomitelead-zinc-bearing
the Zechstein sea would have extended southeastward
shalefound. In the open areasof the Zechsteinsea,
as far as Wroclaw (Fig. 14) where a thin bed of do- calcareous
copper-bearing
shaleisoverlainby copperlomite or limestonewas laid down under oxidizing bearinglimestonesand dolomiteswhich, although
conditions(Peryt, 1976; Rydzewski, 1978; Haran- containinglead and zinc, usuallydo not have ecoczyk, 1986). In the areaof the North Sudeticsyncline, nomicamountsof these metals.The sequencethen
the first sediments formed were red-stained
marls
(Konstantynowicz,1965). Following the major
transgression
in the area, probablyonly Zary Island
(Fig. 14) wasnot submerged.
The Zechsteintransgression
appearsto have been
followedby a periodof evaporationandloweringof
sealevelby '•70 m thathasgreatlyinfluencedfacies
distributionand the formationand preservationof
euxinic sediments(Haranczyk, 1970, 1984, 1986).
In the Lubin-Polkowicearea (Fig. 14), for example,
a lagoonalenvironmentdevelopedandit appearsthat
copper-bearingshaleswhich formed initially were
removedfrom one-thirdof the areaby subaerialoxidationandweatheringor were redepositedby wave
passes
upintotheZechstein
evaporitesediments,
with
cyclesincludingshale,dolomite,anhydrite,androck
salttotaling'•600 m. In turn, theseare overlainby
the Lower Triassic red beds and the marine sediments
of the Muschelkalk.
Lithologies
The lithologiesof importancein relation to mineralization
in the Polish areas include two that were
formed in euxinicenvironments:a calcareous(illiterich) shale containing copper (to which the term
Kupferschiefercan be applied) grading, with the
gradualdisappearance
of the clay mineralsand laminations,to a limestonedepositedon the bottom of
1016
VAUGHAN ET AL.
$udetes
North-$udetlc
Szprotawa alevation
Fore-$udetlc
$yncllnorlum
•
•
,';,•
Monocllne
__
C2
Upper
Carboniferoua
C•
Lower Carbonlferoue
Pc
Precambrian
Autunlan
voltanice
,.,•., eedlmente
BaseofWelsallegende
PI
Palaeozoic
olderthanCarboniferous
FIG. 15. Palcogeographicreconstructionof some Kupferschieferenvironmentsin Poland (after
Speczik et al., 1986).
an openshallowsea,anda dolomiteshalecontaining for the oxidizingeventassociated
with theRoteFSule
lead and zinc (to which the term Bleischieferis some- (Jowettet al., 1987c).
timesapplied)with clay (montmorillonite-illite)laminaegradingto a dolomitedepositedin basinsof high Mineralogy
salinity.
Disseminatedwithin the shaleof the Kupferschie-
As a resultof weatheringandredistributionof the fer in theselocalitiesare very small(a few microns)orescontainedin thesetwo lithologicalenvironments, sizedsulfidesincludingframboidalpyrite, chalcopytwo further lithologiesof importanceas ores have rite, bornitc, and chalcocite.In the lead-zinc-bearing
been formed in the Fore-Sudetic monocline where
shales,the sulfidespresentin additionto framboidal
they are intensivelyexploited:
pyrite are galenaandsphalerite,whereascoppersul1. A laminatedsandstoneore that occursmainly fides occur in separatelaminae. These sulfidesare
near the top of the sandstone
barsandareasof emer- regardedasprimary ore minerals.Secondaryminergence. The greater the event of emergence,the alization is characterizedby larger grains,veinlets,
deeper the laminated sandstoneore is now located and zonesof ore mineralsthat, unlike the primary
(Haranczyk,1970). This sandstone
ore consists
of nu- sulfides,cut acrossthe laminae (Haranczyk, 1972;
merouslaminae with sulfidesreplacing the matrix Salamon,1979; Niskiewicz,1980; Banaset al., 1985).
(mostcommonlychalcopyrite,bornitc,or chalcocite); More than50 ore mineralsof Cu, Ag, Pb, Zn, Co, Ni,
the laminaehave sharpbottom contactsand diffuse andAs havebeen reportedin the zonesof secondary
tops.This type of copper-bearingsandstone
ispartic- mineralization,andrare phasescontainingcobaltand
ularlyimportantat the Lubin minein the Fore-Sudetic germanium (Haranczyk, 1975) have also been reported. More recently, Kucha (1981, 1982) hasremonocline ore district.
2. A massivesulfide-anhydritesandstoneore that portedPt-, Pd-, Ag-, Hg-, andPb-containingminerals.
occurson the lagoonsideof sandstone
barriers,spe- However, they occuronly in weatheredcopper-bearcificallyin association
with the Rudnalagoonwhere ing shalespreservedin fragmentson the West Lubin
it forms the richest ores of the Rudna mine. Here, bar and appearto be productsof concentrationand
chalcocitein someareas,galenain others,formsthe enrichment.They are not present in quantitiesof
importance.
matrix of the sandstones
to produceirregular ore- economic
The horizontal mineral
bodies sometimes several meters thick and tens of
meterswide, associatedwith larger barren zonesin
the sandstone
where the matrixmay be replacedby
anhydriteor gypsum(Zalewskaet al., 1978).
The Rote F•iule facies is known from the Polish
mineralizedareas;for example,borderingthe Northern Copper zone of the Fore-Sudeticmonocline.
Jowettet al. (1987b) haverecentlyrelated the Rote
F[iuleto mineral(sulfide)zonationandhaveusedpalcomagnetism
to date the associated
iron oxides.The
palcomagneticdating suggestsa Middle Triassicage
zonation found in the Ger-
man depositsis also present in Poland;vertical zonation of Cu-Pb-Zn is less obvious and shows different
vertical relationshipsthroughoutthe deposits.Zinc
mineralizationismorewidelydispersed,
whereaslead
mineralizationis morelocalizedandusuallyfoundin
the overlyingcarbonaterocks(Tomaszewski,1986),
although it does occur in the shales(Haranaczyk,
1970).
Within the areasof Kupferschiefer
mineralization,
there are also numeroussulfide-bearingveins.The
originof the veinsiscontentious
andhasbeenascribed
KUPFERSCHIEFER OVERVIEW
1017
to diagenetic remobilization (Rentzsch and Englandandis knownasthe Marl Slate(seeFig. 1).
Knitzschke, 1968; Rentzsch, 1974) or a much later The Marl Slatecontainsrelativelyhighconcentrations
mineralizingevent (Jowettet al., 1987b).
of metalsulfidesbut nothingapproachingconcentrationsof economicinterest.However,the mineralogy,
Isotopic investigations
petrology,andgeochemistry
(includingisotopicgeo-
Stableisotopestudies(S, O, C) have been under- chemistry)
of theMarl Slatehavebeenstudiedin some
takenby Haranczyk(1980, 1984, 1986). According detailbecauseof their relevanceto the historyof the
to this work, all of the euxinic sedimentsof the Zech- Zechsteinbasin and developmentof economically
steinin the Fore-Sudeticmonocline,andthe Kupfer- importantdepositselsewherein that basin.Earlier
schieferin particular,containsulfides
with verylight work on the Marl Slatehasbeen summarizedby Smith
sulfur(•34S= -28%0) providingsomeevidenceof and Francis(1967) and in the introductionto the debiogenicorigin. The laminatedsandstoneore from tailed geochemicalstudy by Hirst and Dunham
the district showsthe lightestsulfur so far encoun- (1963); later work has been summarizedby Smith
teredwith 834S-- -40 per mil (Haranczyk,1980), (1980), VaughanandTurner (1980), andSweeneyet
suggesting
the possibilityof two stagesof biogenic al. (1987). Surfaceexposureof the Marl Slateispoor,
enrichment:the first during the initial formationof and consequently,most of the analyticalwork has
sulfide mineralization in the shale, the secondwhen been undertaken on core material.
solutions(enriched in light sulfur) derived from
weatheringof the shaledescended
into underlying Geologicsetting,stratigraphy,and sedimentology
sandstones
duringanepisodeof subaerial
emergence. The Permian sequencein northeasternEngland
The dolomitesoccurringin the topmostsedimentsof beginswith the Lower PermianYellow Sands,varthe Rudnalagooncontainframboidalpyritethatyields iously interpreted as eolian dunesand shallowde•4S valuesof-35 permil (Haranczyk,
1980).Onthe posits,thatrestunconformably
on a reddenedsurface
other hand,the massivesulfideand anhydriteore in of the Carboniferous(Coal Measures).For the most
sandstones contains chalcocite with 8a4S = -9.31 to part, the Marl Slaterestsdisconformably
on the Yel-23.1 per mil, with the chalcocitereplacingreef do- low Sands,being the first depositsof the Zechstein
lomitehaving8a4S
= -13.6 permilandtheassociatedsea, a sea that apparently originated by the catasulfates
having8a4Svaluesbetween5.3 and9.4 per strophic flooding of the southernPermian basin
mil (Haranczyk,1980), suggestingthat the sulfide (Smith, 1980). The Marl Slatecanbe observedin sursulfurcouldhavebeen obtainedby the reductionof faceexposures
in Durham,andin North Seaboreholes
sulfates
fromthesamesource.Differentsulfurisotope it isreadilyrecognizedby its stronggammasignatures
signaturesare obtained for sulfidesdisseminatedin on wire-line logs.In somemarginalareas,it reaches
the shale and for those in vein ores, a result used to
a maximum thickness of 5 to 6 m, but in the central
invoketwo sulfursourcesby Jowettet al. (1987a).
Basaldolomite underlyingthe Kupferschieferin
part of the southernPermianbasin,it is rarely more
than 0.5 m thick. Studiesof the relationshipbetween
the Rudna mine exhibits values of 81SO = 4.0 to 4.6
the Marl Slateandthe underlyingtopography
(Turner
permil and813C= 0.8 and1.6permil.Theseresults et al., 1978) show that the Marl Slate is thickest in
of Haranczyk(1980, 1984, 1986) generallysupport the depressionsbetween the ridges in the Yellow
the conclusions
of Marowsky(1969) that the carbon- Sandsand thins considerablyover their crests.The
ates which formed in the euxinic environment of the
depthofwaterin theearlyZechstein
seawasprobably
Zechsteinbasinsare enrichedin the light oxygeniso- less than 250 m but was more than 60 m in the North
tope.MagaritzandSchulze(1980) suggested
that the Durham area (Smith, 1970); basedon the thickness
carbonates,
Smith(1980) suggested
that
carbonatesshowenrichmentin the heavycarboniso- of succeeding
betope movingup througha cyclicsequence;this is ev- the basinaldepth exceeded200 m. As discussed
ident on comparingthe above-mentioned
valuesfor low, it hasbeenrecognizedthat the watercolumnof
basaldolomite(•C = 1.6%0)andhanging-wall
sty- the Zechsteinsea was stratified(see, for example,
1971).
loliticdolomite(SlaC= 4.0%0).In contrast
to thecar- Pompeckj,1914, 1920; Brongersma-Sanders,
The Marl Slateis grayto black,well-laminated,and'
bonatecarbonisotopevalues,organiccarbonfrom
carbonate-richshale.The lower
theKupferschiefer
isveryenrichedin thelightisotope highly carbonaceous
(SlaC= -26.0 to -28.0%0;Marowsky,1969; Saw- part, immediatelyoverlyingthe Yellow Sands(Rotlowicz, 1986).
liegende),isoftensandy,whereasthe upperpartusuThe data providedby lead isotopesare complex ally becomesmorecarbonaterich andgradesinto the
(Wedepholet al., 1978) andproblemsof their inter- overlyingLower MagnesianLimestone.A vertical sequenceof sapropel,laminite,massivedolostonecan
pretation have already been discussedabove.
be repeateda numberof timeswithin the Marl Slate
The Kupferschieferin England:the Marl Slate
and in thin sections the laminations can be seen to
The lateral equivalentof the Kupferschieferof result from alternationsof organic-richlayersand
North Central Europe is found in northeastern carbonateor clay-richlaminae.The proportionsof
1018
VAUGHAN ET AL.
calciteand dolomitevary widely; calciteand dolomite
laminaeare commonlyintimatelyinterlayered.The
laminaehavebeen interpretedasannualvarvesand
from their averagethicknessof about0.1 mm, a depositionalperiod of about 17,000 yr hasbeen estimated for the Kupferschiefer(Oelsner, 1959) and
Marl Slate (Hirst and Dunham, 1963). An important
featureof the Marl Slate,particularlyin basinmargin
areas,is the occurrenceof smallmicronodules(<0.3
mm) of dolomitesand length-slowchalcedonyafter
anhydrite(Turner et al., 1978; Turner and Magaritz,
1986). Other features, suchas the fine lamination,
absenceof anybenthosor bioturbation,andthe presenceof well-preserved
fishandplants,havelongbeen
recognizedasindicationsthat the Marl Slatewasdepositedunder anoxicconditions.
and sphalerite.The secondform is intimatelylinked
with the dolomitepseudomorphs
afteranhydriteand
appearsparagenetically
later than the pyrite framboids.
3. The carbonatecomponentof the coreis chiefly
a calcium-rich
dolomite.
4. Throughoutthe core, the coppe?contentcorrelatescloselywith that of quartzand suggests
a detrital sourcefor that element (seeFig. 16).
Very detailed geochemicalstudieswere alsoundertaken of another Marl Slate core by Sweeney et
al (1987). Lithologically,
thiscorecanbe dividedinto
a lower, predominantlysapropelicMarl Slate (2 m)
and an upper transitionzone (0.65 m) of alternating
sapropeland calcite-richand dolomite-richcarbonates.They notedthat, comparedwith the carbonate
units,the sapropelichorizonsare enrichedin all eleMineralogyand geochemistry
Considerablequantitiesof pyrite occurdistributed mentsexceptMn, Sr, and Ba (reflectingthe substithroughoutthe Marl Slate in the form of extremely tution of those elementsin carbonateminerals).In
smallframboidalaggregatesorientedalongbedding the sapropelicpart, copper,lead,andzincdisplaythe
vertical zonation in concentration noted above, and
planes.A secondmode of occurrenceof sulfideminthe core,quartzisstronglycorrelated
with
eralsin the Marl Slate is as lenses,often intimately throughout
all elementsexceptmanganese
and strontium(these
associated with the micronodules of dolomite and
length-slowchalcedony(Turner et al., 1978; Turner two elementsbehaveantipatheticallywith all other
and Magaritz, 1986). This association
led Turner et trace elements).
Onshoreexposureof the Marl Slateis poor,but an
al. (1978) to suggestthat the micronodulesare eviinvestigation
of the first cycle carbonatewhich imdence of replaced evaporitesand that the sulfides
withinthemformed,at leastin part,by the diagenetic mediatelyoverliesit andisrelativelywell represented
reductionof sulfate.Pyrite is abundantin the lenses, hasrevealeda numberof pertinentmineralogicalfea-
which also containchalcopyrite,galena,sphalerite, turesthat, where exposurepermits,canbe seento
be relatedto the underlyingMarl Slate.Harwoodand
and a number of rare sulfides which have formed later
Smith(1986b) haveidentifiedan unevenlydistributed
than the framboidalpyrite.
andepigeneticmineralization,
The minor and trace element compositionof the penecontemporaneous
the
first-cycle
carbonate,
throughouta strikelength
Marl Slatewas studiedinitially by Deans (1950) and
in
excess
of
160
km.
The
penecontemporaneous
minHirst and Dunham (1963). The latter drew attention
of galena,barite, sphalerite,and
to the verticalvariationin the traceand majorelement eralizationconsists
concentrations,to the fact that suchvariationscan be marcasite;its time of formationwasbasedon petro-
(Harwo6d,1980) andstableisocorrelated between boreholes, and to an inverse cor- graphicobservation
tope
analysis
(Harwood
and Coleman,1983). Stratirelation between Mo, Ni, Co (and to a lesserextent,
althoughnotof economic
Cu) and the sedimentationrate. This led the authors formgalenamineralization,
to suggestthat Mo, Ni, Co, andpossiblyCu were adsorbedon detrital claysandorganicmatter,chieflyat
the site of deposition.The sourcesof Pb, Zn, and to
a lesserextent,Cu were consideredto be moreproblematic by these authors,who concludedthat they
may havebeen introducedinto the basinvia submarine springs.Subsequently,
Turner et al. (1978) made
a detailed study of a Marl Slate core from offshore
Northumberland
and observed as follows:
1. A vertical Cu-Pb-Zn
zonation exists in the Marl
Slateand is the sameasthat describedby Wedepohl
importance,is widespreadand wasthoughtto have
originatedvia bacterialreductionof seawatersulfate
(Harwoodand Coleman,1983). The epigeneticmineralization comprisesbarite, fluorite, galena, and
sphalerite;
sulfurisotopedataarenotcompatible
with
a Permian seawater sulfate source (Harwood and
Coleman, 1983). The mineralizationshowsdistinct
geographicgroupings
whichcanbe spatiallyrelated
to structuresin the pre-Permianstrataand to basement blocks.
Organiccarbonand theformationof pyrite
Assuggested
in the workof Leventhal(1983), Ber(1964) and Jungand Knitzschke(1976) from the
ner and Raiswell (1983, 1984), and Berner (1984),
Kupferschiefer(seeFig. 16).
2. Sulfidesoccur in two distinct forms; as pyrite ratiosof organiccarbonto sulfide(pyrite)sulfurcan
framboidsandaslensesof pyrite,chalcopyrite,galena, be used as indicators of fresh water versus marine
KUPFERSCHIEFER
OVERVIEW
(a)
o__o
Fe%o--o
(b)
Mn%
I
Fe 0
Mn
I
---,
I
4
0.2
Ca
(c)
Ca% •%t•
I
2
0.1
1019
0
I
I
8
4
Mg 0
I
i
16
8
Cu(ppm)
i
I
24
12
.•Sr(pprn)
0
I
I
100
I
200
(f)
Quartz
(d)
• Pb(ppm)
---*
(e)
Zn(ppm)
I
Pb 0
Zn 0
I
400
200
I
I
800
400
i
I
0
I
200
i
i
I
i
400
0
I
40
i
i
i
80
FIG. 16. Geochemicaldata for a Marl Slate core section(NCB/D4) as a function of depth: (a) Fe
and Mn content (wt %); (b) Ca and Mg content (wt %); (c) Sr content (ppm); (d) Pb and Zn content
(ppm);(e) Cu content(ppm);(f) pecentagequartz.The coreis 1.18 m thick (afterVaughanandTurner,
1980).
sedimentaryenvironmentsand of the processes
leading to the formationof sulfidesin sedimentaryrocks.
Organiccarbonand pyrite sulfurcontentswere determinedfor Marl Slatecore materialby Sweeneyet
al. (1987). The Marl Slatecoresectionhasa C/S ratio
of 2:2 and a positiveintercept of 0.9 percent on the
S-axis(Fig. 17). If only sapropelicsamplesare considered,then the intercept on the S-axisincreasesto
2.3 percentandthe percentageof pyrite sulfuris uncorrelated with the percentageof organic matter.
Sucha resultindicatesthat pyrite wasformingin an
anoxicwater column.Even in the nonsapropelicsamples from the Marl Slate,a positiveintercept of 0.8
percentSwasfound,soit wouldseemthatthroughout
depositionof the Marl Slate,pyrite wasformingin an
overlyinganoxicwater columnandparticularlyduring
sapropelicdeposition.The transitionzone hasa C/S
ratio of 1.7 and a positiveintercept on the organic
carbonaxisof 0.4 percent,implyingthat sulfatesupply may havebeen a limitingfactorin pyrite formation. The degreeof pyritizationis a term introduced
by Berner(1970) andis definedas(thepercentof Fe
aspyrite)/(the percentof Fe aspyrite + the percent
ofFe HCI) wherethe percentofFe HCI isthe amount
of iron liberatedon treatmentwith hot hydrochloric
acid.Thus,if pyrite formationislimitedby the availabilityofiron,thedegreeofpyritization
will approach
1. Valuesfor the Marl Slate(Sweeneyet al., 1987) of
0.83 on average,and0.93 if the nonsapropelic
samplesareexcluded,areveryhighandsuggest
thatiron
availabilitymayhavebeen a limitingfactorin pyrite
formation.
Isotopic investigations
Stableisotopeinvestigations
of materialfrom the
Marl Slate have been conductedby Magaritz and
Turner (1981, 1982), Turner and Magaritz (1986),
and Sweeneyet al. (1987). Stableisotopevariations
andtheir relationshipto lithologyandto the calcite/
dolomiteratio for a seriesof core samplesare shown
in Figure18 (afterSweeney
et al., 1987).The &34S
valuesin pyrite rangefrom -36.7 to -29.1 per mil,
with anaverageof-32.7 per mil. There is anupward
verticaltrend to more34S-enriched
values,although
it isnotwell developed.The onlyparameterthat cor-
relatessignificantly
with •4S is the amountof carbonatein the sample,highcarbonatebeingassociated
with 34S-enriched
pyrite.In thetransition
zone,much
greatervariationisobserved
with&34S
= - 15 permil
in calcite-richunitsto -29.1 per mil in the sapropelic
1020
VAUGHAN ET AL.
Marl
3.0-
Slate
section
fide) and that barite sulfurisotopesare not directly
+
+
03
.i.
+
1.5-
0
0
Corr.
Coeff.=0.58
related to Permian seawater sulfate.
The carbonisotoperesultsof Magaritz andTurner
++• %
Spy=0'93+0'187
(%
Corg)
(1981, 1982) showan enrichment
in •3Cvertically
•
:•%++
n=24
+
-I-
R Square=O.34
upward through the Marl Slate cores studied of between 2 and 4 per mil. This enrichmentis accompaniedby a decreasein organiccarboncontent(Turner
andMagaritz, 1986). Sweeneyet al. (1987) observed
C/S=2.22
I
i
3
6
%Corg
relativelyuniformb13Cvaluesovermuchof the Marl
n=14 Corr. Coeff.=-0.24
Slate of between 2.6 and 3.2 per mil (see Fig. 18)
andwith spikesshowingdepletionto 3.5 per mil correspondingto calcite-richhorizons.However, there
was againobservedto be an overallupward enrich-
%Spy=2.33-0.08
(%Corg)
mentin •3C of 1.3 to 2.0 per mil. As with the Marl
-I-
3.0-
+
Sapropelic samples from
-I-
•••••.•+++
+
•
the
Marl
Slate
section
+
03 1.5-
-i-
R Square = 0.06
0 '
0
I
i
3
6
Slateitself,all of the b•3Cvaluesin the transitionzone
are enrichedin 13Cwith respectto normalmarine
C/S=1.80
carbonates and show a vertical trend to b•3C enrich-
ment. Oxygenisotopes(seeFig. 18) alsoshowneg-
%Corg
ativespikesin b•80valuesthatcorrespond
to calcite-
3.0
zone section
rich units(Sweeneyet al., 1987); Turner andMagaritz
Corr. Coeff.=O.63
(1986) notedlow bl80 valuescoincident
with an in-
Transition
-I-
n=29
%Spy=O.43+O.87(%Corg) creasein samplequartz and iron contents,suggested
by them to reflect periodsof freshwater influx. The
R Square=0.40
=1=.•,•+
++ +
b•80 valuesshownin Figure 18 exhibita negative
C/S=1.72
correlationwith organiccarboncontentandwith high
Sr values.Alsoshownis a remarkablyclosecorrelation
0 -I--I-,•+•1.
I.
i
0
1.5
3
betweenb•80valuesandthepercentage
of dolomite:
highdolomitebeingassociated
with •O enrichment.
In thetransition
zone,depletionin 1•Oincreases
from
% Corg
FIG. 17. Weightpercentorganiccarbonversusweightpercent
pyrite sulfurfor samples
from a Marl Slatecore (afterSweeney sapropelto dolomite-richto calcite-richhorizonsand
et al., 1987). Abbreviations:
Corr. Coeff. = correlationcoefficient,
Corg= organiccarbon,Svy-- pyriticsulfur.
thereisa generalupwardtrendtoward•80-enriched
values.
units.One sulfatesample(barite), found asa vug in-
Generalsimilaritiesbetweenthe Kupferschiefer
in the three countries
filling,yieldeda b34S
= 11.6 per mil, in keepingwith
values reported for Permian marine-watersulfate
The Kupferschieferin the three countriesdisplays
(Claypoolet al., 1980). More extensiveanalysis'of a number of similarities that must be taken into acbarite from the overlyingfirst-cyclecarbonate(Har- count in any genetictheories.
wood and Coleman, 1983) suggeststhat this value
1. Althoughthe depositsoccurin, andtransgress,
maybe fortuitous(possibly
the resultof oxidizedsul50
100
I
1.7-
I
Organic
Laminite
•
(Dolomite
rich).•
0.9
_'•
(•
34S
carbonate
0,5
0.1
Yellow
sands
0
I
2
3
4
-6
-5
-4
-3
-2
-14-18
-22-26-30-34
FIG. 18. Detailedstableisotopevariations
andtheir relationships
to calcite/dolomite
ratiofroma
Marl Slate core (after Sweeneyet al., 1987).
KUPFERSCHIEFER
OVERVIEW
1021
The originof the mainmineralizingeventhasbeen
upto sevendifferentlithologies,
theyarefoundwithin
Asdiscussed
in greater
a narrowstratigraphic
interval.In Polandthe ratios the causeof muchcontroversy.
of length to width to thicknessfor the depositare detail below, this can be divided into two distinct
phases.
10,000:4,000:1 (Tomaszewski,1986).
2. There exists both a horizontal and a vertical zoThe crosscutting
mineralizingeventis clearlylate
nationof sulfideminerals,with copperconcentration and epigenetic in origin and gives rise to veins
in the lower layersof the sedimentcolumnand lead
followed by zinc occurringin progressivelyhigher
horizons.Althoughbroadlytrue, the vertical zonation, in particular, showsdifferent vertical relationshipsthroughoutthe deposit.Stratiformlead occurs
in the first-cyclecarbonatein Poland and England,
whereasin the Lower Rhine basinof Germany,it is
confinedto the basalsectionof the Kupferschiefer.
3. There exists a relationshipbetween barium
(Riicken)further discussed
below.
Genetic Theories
Sincethe firstinvestigations
of mineralization
and
metal distributionin the Kupferschieferthere has
been continuingdiscussion
regardingthe sourceof
metalsand the mechanismsof metal transportand
Rentzschet al. (1976) provided
concentration and the distribution and structure of sulfideprecipitation.
a detailedsummary
of the differenttheoriesadvanced
the underlying upper Carboniferousstrata. In Gerprior to 1975 andreadersare referredto thiswork
many,a highbariumcontentisfoundwherethe Kup- for the names of the numerous authors who have conferschieferoverliesWestphalianA and B strata.In tributed to these discussions.
England,the barium concentrationcanbe related to
The timingof the mineralization
is of criticalimpre-Permianfaultsystems.
It hasbeenestablished
that
andplacingconstraints
on
some Carboniferous formation waters are enriched in portancein understanding
the formationof theseores.Lead isotopestudieshave
bariumwhereasothersare sulfateenriched(Downing
been ambiguous,
yieldingdatesbetween240 to 320
and Howitt, 1969; Edmunds, 1975). Harwood and
Ma comparedwith a Kupferschieferage of 250 Ma
Smith (1986b) speculatethat barium mineralization
(Wedepohlet al., 1978), althoughthe Pb modelages
is a resultof fault-controlleddischargeof theseCarfor the Sangerhausen
depositof Hammeret al. (1987)
boniferousformationwaters, possiblyaided by the
give
240
to
270
Ma
and
bothWedepohlet al. (1978)
highheatflow foundby Brownet al. (1980) to occur
andHammeret al. (1987) report a late Permianavin the Yorkshireregion.
eragefor their modelages.Palcomagnetism
(Jowett
4. In all localities,severalphasesof sulfideminet
al.,
1987c)
has
given
a
mid-Triassic
age
to
Rote
eralization can be identified as discussed further beF•iule alteration.Thus, it seemslikely that the minlow. The firstis a synsedimentary,
dominantlypyriteeralizationwasemplacedat sometimeduringa period
formingevent (althoughframboidalcoppersulfides of between 250 to 230 Ma.
alsooccurat thisstage).This is followedby the main
When all of the dataavailablefor the Kupferschiebasemetal mineralizingevent. Then, there is alsoa
fer mineralizationare considered,modelsinvolving
crosscutting
mineralizingeventthat maybe enriched
a varietyof mechanisms
andprocesses
of metalconin more exotic elements.
centrationneed to be invoked.Four major typesof
Evidencefor the synsedimentary
eventisbestseen Kupferschiefermineralizationcanbe identifiedwith
in marginallymineralizedareas.Most stableisotope a numberof subtypes(Table 1). Each type of mindata are from suchsamplesandyield dataconsistent eralizationcanbe characterizedby its metalcontent,
and the
with formationby bacterialsulfatereduction.Pyrite zonationpattern,ore mineralparagenesis,
formationmaytake placein the water column(Swee- presenceof any alterationeffectsas well as the
of geologicand tectonicsetney et al., 1987) or alongwith minorbasemetal sul- broadercharacteristics
fides, within the upper horizonsof the unlithified ting.
sediment.The relationships
betweenbasemetalconIt is possibleto identifya "weaklymineralized"
centrationand detrital quartz (Turner et al., 1978) categoryto which the Englishexample(the Marl
and clay and organicmatter (Hirst and Dunham, Slate)may be assigned.
From their detailedgeo1963) provide evidencefor at leasta minor detrital chemicaland isotopicdata, Sweeneyet al. (1987)
input; however,as pointedout by Richter (1941) it were ableto proposea modelfor Marl Slateformation
of theearlyZechstein
sea(Fig.
is unlikelythat the erosionof the hinterlandoverthe relatedto stratification
short sedimentationperiod could explain the large 19). Here, in an upperoxiclayer, carbonatewaspreaccumulations of metals. The occurrence of reworked
cipitatedin the form of calcite,whereasin a lower
mineralizedfragmentsin the Rotliegendeimmedi- anoxiclayer,framboidalpyrite wasprecipitatedby a
ately underlyingthe Kupferschieferprovidesunam- processof bacterialsulfatereductionandinteraction
biguousproofof at leastsomesynsedimentary
min- with dissolvediron. The anoxiclayer wasalsoa zone
eralization.
of formationof dolomitewhichexperimentalstudies
1022
VAUGHAN ET AL.
TABLE
1.
Geological,Mineralogical,andGeochemical
Features
Average
base metal
Timing
Typesof mineralization
Weaklymineralized
Synsedimentary
Averagemineralization
Schwellentype
Early diagenetic
Metallogeny
Fe(Cu,Zn)
content
Zonation
pattern
1
Paragenesis
2
Py, cp, sph
• 100 ppm
2,000 ppm
Cu[S1]--• Pb
+ Zn[T1]
Py, mc, sph
Cp, gn, tn
3%
Fe+a--• Cu --•
Pb --• Zn
through S1,
Hm, Fe-hyd, cc, bn,
dg, cv, cp, gn, sph
Zn + Pb > Cu
Basintype
Ore mineralization
Zn > Pb + Cu
Late diagenetic
Cu >>Pb + Zn
T1, Ca1
Structure-controlled
Postdiagenetic
Cu> Pb+ Zn
mineralization
7,000ppm
Cu[S1]
--• Zn--•
Tn,en,11,ap,py,sk,
Pb[T1]
mi, ra, ba
(Riicken)
Co-Ni-As-Ba subtype
Cu-Ag-Assubtype
I S1= Zechstein
Sandstone
(belowKupferschiefer),
T1 = Kupferschiefer,
Cal = Zechstein
firstcyclecarbonate
(Zechsteinkalk)
zAbbreviations:
ap= arsenopyrite,
ba= barite,bn= bornRe,
cc= chalcocite,
cp= chalcopyrite,
cv= covellite,
dg= digenite,
en= enargite,
Fe-
hyd= ironhydroxide,
gn= galena,
hm= hematite,
II = loellingite,
me= marcasite,
mi= millerite,
py= pyrite,
ra= rammelsbergite,
sk= skutterudite,
sph= sphalerite,tn = tennantite
the Richelsdorfarea, for example,the depositionof
the Kupferschieferwas controlledby the palcotoThe areasof ore deJannasch
et al. (1974) have shownthat two maxima pographyof the Weissliegende.
have shownwas favoredby an environmentwith a
low sulfate concentration as would be the case here.
of sulfate reduction occur, one near the oxic-anoxic positformation
correspond
to the flanksof sandbars
boundaryandthe othernearthe top of the sediment and showa zonationwith Rote Fiiule facies-copper
layer.The latterwouldbe thelocusof concentrationfacies-lead/zincfacies(Schmidtet al., 1986). The to-
of other metalsas sulfides,someof which may have
been introduceddetritally or adsorbedon clay mineralsand othersfrom solutionscirculatingwithin the
sedimentsduring early diagenesis.
The distinctive
layeringobserved
in theMarl Slate(andthetransition
zone)sedimentswouldsimplyreflectoscillations
in
the oxic-anoxicboundaryand the water level.
The "average mineralization" as defined by
Schmidtand Friedrich (1988) occurseither in Kupferschieferover thick Rotliegendesediments(basin
type) or over Paleozoicbasement(schwellentype).
The mineralizationis characterizedby a high (Zn
+ Pb)/Curatiowith anaveragebasemetalcontentof
0.2 percent.Typicalore mineralsare pyrite, marcasite, sphalerite,galena,and chalcopyrite.Sulfurisotope compositions
(Marowsky,1969) point to a reduction of seawatersulfatewithin the sediment(or
within the anoxicwater column).
tal amount of base metals is low within the Rote Fiiule
facies;Fe hydroxides,hematite,and gypsum-anhydrite are abundant.The succeeding
copperfaciesdisplaysa high Cu/(Pb + Zn) ratio. The best Cu/Ag
gradesrecordedhavebeen 10.5 percentCu plus160
ppmAg. Chalcocite,digenite,covellite,andbornitc
are characteristicore minerals and they appear to
havereplacedprior-formedsulfides.
Adjacentto the
Rote Fiiule facies,the mineralizationis principally
concentratedwithin the Zechsteinkalkand the Kupferschiefer;with increasingdistanceaway from the
RoteFiiule,theKupferschiefer
andtheWeissliegende
are mineralized. The influence of oxidized solutions,
enriched in Cu and Ag, on the primary composition
of the basalZechsteinunit is suggested
by the positive
correlation
of S-2/Se
-2, Fe+3/S
-2, SO•2/Corganic,
and
SO•=/Cu+ and by pseudomorphs
of hematiteafter
pyrite. The weaklyalkalinecharacterof thesesolu-
precipitation
The formationof Kupferschieferore mineraliza- tionsis markedby the contemporaneous
andchalcocite-gypsum
(Schmidt,
tion, the third major type of mineralization,is re- ofhematite-digenite
strictedto the marginsof the Rotliegendebasins.In 1985).
KUPFERSCHIEFEROVERVIEW
1023
of the Four Major Typesof KupferschieferMineralization
Alteration
pattern
Absent
Possible
formationconditions
Geologicsetting
Palcogeographic
feature
Transgressionof Zechstein
Reducing,framboidalpyrite formed
palcoseadue to breakdownof
Ringkebing-Fynhigh
in water column
Absent
Reducing,slightlyalkaline(T •
720øC)syngeneticmetalinflux
due to reworkingof
preconcentrated
metalsplus
someendogenicinput
(T possibly•20øC)
Oxidation
(RoteFSule)
Interplay betweenoxidizing,
strongeralkalinesolutionsand
reducingconditionsin hostrock
(T = 7120øC),diageneticmetal
influxby (basinal?)brinesfrom
Kaolinization,
bleaching
Acidichydrothermalsolutions,T
> 100øC, epigenetic
Geotectonicevent
S1, T1, Cal over
Paleozoicbasement
S1, T1, Cal over thick
(>100 m)
Rotliegende
Moderaterelief of
underlyingS1
Marginsof Rotliegende
basins
Major subsidence
of sedimentary
Undulatingrelief of
basin within Lower Zechstein
Weissliegendedue to
sandbar-conglomerate
channel
Adjacentto palcohighs
and uplifts
Slumpingin T1 indicating
syntectonicmovement
Rotliegende
Basinwide tectonism MesoCenozoic
The underlyingbasementrocks--red bedsor mo- Triassicrifting. He suggested
that brinesmigrating
lasse-typesedimentsof the upper Carboniferous-- throughthe Rotliegendesediments
leachedmetals
are consideredto be the likely sourceof metals.Dur- from the volcanicdetritusand movedup the flanks
ingthetransgression
oftheZechstein
sea,theupper of basementhighsinto the Kupferschiefer.Above
partsof the basementrockswouldhavebeen pene- there, the thick evaporitesof the lower Zechstein
sothat the brines
trated by circulatingseawaterand preconcentrated precludeda verticalflow-through
metalscouldhavebeen leachedand reprecipitated movedbacklaterallyalongthe baseof the Zechstein
penecontemporaneously
with the blackKupferschie- to the basin center and sank back down into the Rofer in a euxinicenvironment.Abovebasementpalco- tliegende,completing
a convectional
cell.Kuchaand
a modelinvolvingthe
highs,the metalstrapped in the basalZechsteinse- Pawlikowski(1986) suggested
quencecould have been derived directly from the mixingof two brines--a lower, low-salinity,
highreworkedbasementrocks.The inputof metalsduring temperature,
metal-bearing
brineandanupper,highdiagenesis
into the lowermostZechsteinstratamay salinity,
low-temperature,
Na-,CI-,Ca-,SOj2-bearing
have resulted from the continuous subsidence of the
brine.(A similarmodelis proposed
by Harwoodand
rich metal
sedimentary
intracratonic
basin.Movementof initially Smith,1986b, to explainthe anomalously
deep-seated formation waters would have been concentrations
in the Englishfirst-cyclecarbonate.)
startedby compactionof the sedimentsin the basin
An epigeneticstructure-controlled
mineralization
center,forcingthe brinesoutwardandupwardfrom (Riicken)is a fourthtype that canbe identified.It is
the basin.Thus,currentmetallogenic
theoriesfavor very importantto emphasizethat the Riicken-type
with
the main basemetal ore mineralizationbeing em- mineralization,althoughintimately associated
placedduringearly to late diagenesis.
Theseminer- the other typesof Kupferschiefermineralization,is
alizing eventscan be seenas a continuum,with the geneticallydistinct.It canbe dividedinto a Co-Nisubtype.
Bothsubtypes
latestepisodebeing the type describedby Jowett As-Basubtypeanda Cu-Ag-As
are associated with fault structures of Mesozoic to
(1986) from partsof the PolishKupferschiefer.
Jowett (1986) explainedthe genesisof Kupfer- Tertiary age. A low Cu/(Pb + Zn) ratio is typical.
schieferCu-Agore deposits
in Polandby convective Characteristic minerals are skutterudite, safilorite,
late diageneticflow of Rotliegendebrines during and millerite (Co-Ni-As-Basubtype)and tennantite
1024
VAUGHAN ET AL.
Oxic
Calciteformation
No Pyriteformed
Low availibilityof Fe
(•2 tI Dolomite
Thermo-halocline
fFMI
formation
Formation
of
n
Anoxic
•
I
250'm
I
Degree of
I)
carbonate
etching
havebeen activefor a period aslong as20 Ma, commencingwith the depositionof the Kupferschiefer
horizon.The environmentof depositionandthe geologyof the underlyingrocksappearto havebeen the
major influencescontrollingthe degree of metallization.
Acknowledgments
I ) depends
on
• • residence
time
•
dolom,te•
Sulphides
ofCuPbZn• nor
Not to scale
!
The financialsupportof the NaturalEnvironment
ResearchCouncil (for the work of D.J.V. and M.S.)
andthe Minsterfiir Wissenschaft
undForschung
des
LandesNordrhein-Westfalen,Dtisseldorf(AZ: IV B
4-Fa 9828) andof the DeutscheForschungsgemeinschaft,Bonn(AZ: Fr 240/46-1) (for the work of G.F.
andR.D.) isgratefullyacknowledged.
The manuscript
hasbenefitedgreatlyfromthe criticisms
of Economic
Geologyrefereesfromthe comments
of ananonymous
referee, and from the editorial advice of D. Rickard.
BEFEBENCES
Anoxic
(b)
Banal,M., Kucha,H., Mayer,W., Piestrzynski,
A., andSalamon,
W., 1985, Lead andzinc mineralizationin copperore deposits
of the Fore-Sudetie monocline: Soc. Geol. Poloniae Annales v.
53, p. 1-4, 13-42.
(c)
Berner,.B.A., 1970, Sedimentarypyrite formation:Am. Jour.
Sci., v. 268, p. 1-23.
--
1984, Sedimentarypyrite formation:An update:Geochim.
et Cosmochim.Acta, v. 48, p. 605-615.
Berner, B. A., and Baiswell,B., 1983, Burial of organiccarbon
and pyrite sulphurin sedimentsover Phanerozoictime: A new
theory:Geochim.et Cosmochim.Acta, v. 47, p. 855-862.
-1984, C/S methodfor distinguishing
freshwaterfrom marine
rocks:Geology, v. 12, p. 365-368.
Blaszczyk,J. K., 1981, Influenceof relief of underlyingsandstones
-'r?.•.......•
:•
'""<•Sapropel
'"""?'•
•
Dolomite
rich
E•
Calcite
rich
FIG. 19. A modelfor the precipitationof carbonateandsulfldes
in the earlyZechsteinsea,basedon datafromthe Marl Slate(after
Sweeney et al., 1987).
on facies variation of metalliferous
beds in the Lubin district:
Geologia Sudetiea,v. 16, p. 196-214.
Blaszczyk,J. K., and Prymka, W., 1973, Organogeniclimestone
in the lowestZechsteinsequenceof the Lubin mine:Budy Metale Niezelazne, v. 18. p. 484-486 (in Polish).
Brongersma-Sanders,
M., 1971, Origin of major cyclieityof evap-
(Ag bearing),enargite,loellingite,and arsenopyrite orites and bituminous rocks: An actualistic model: Marine
Geology, v. 11, p. 123-144.
(Cu-Ag-Assubtype),respectively.The generationof
the Co-Ni-As-Basubtypeby hydrothermalfluidshas Brown,G. C., Cassidy,J., Oxburgh,E. B., Plant,J., Sabine,P. A.,
andWatson,J. V., 1980, Basementheat flow andmineralization
alreadybeenestablished
by Gunzert(1953) andthere
in England and Wales: Nature, v. 288, p. 657-659.
is evidencefor a hydrothermaloriginof the Cu-Ag- Buntebarth,G., Michel, W., and Teichm/iller, B., 1982, Das perAssubtype(Diedel, 1984). In additionto the Rticken
mokarbonischeIntrusiv von Krefeld und seineEinwirkung auf
Karbon-Kohlen am linken Niederrhein: Geologic Bheinland
whichthey considerto be of probableCretaceousor
WestfalenFortsehr.,v. 30, p. 31-45.
Cenozoicage,Jowettet al. (1987b) distinguisha secClaypool,G. E., Holser, W. T., Kaplan,I. B., Sakai,H., and Zak,
ondstyleof veiningwhichthey considerto be coeval
I., 1980, The age curves of sulphur and oxygen isotopesin
with the mainsulfidemineralizingevent andto be of
marine sulphateand their mutual interpretation:Chem. Geolmid-Triassicto late Jurassicage.The Cu-Assulfides ogy, v. 28, p. 199-260.
and arsenidesin the Kupferschieferof the Spessart- Deans,T., 1950, The Kupferschieferand the associatedlead-zinc
mineralizationin the Permianof Silesia,GermanyandEngland:
Rh6nareaare anomalous
andhavereplacedmostof
Internat. Geol. Cong., 18th, London, 1948, Proe., v. 7, p. 340the sulfides
whichformedearlierduringthe synsedi- 350.
mentaryor diageneticstageof mineralization.
Diedel, R., 1984, Mikrosondenuntersuchungen
an den Sulfiden
desKupferschiefers
der GebieteSpessart,
Rh6nundRichelsdorf:
When consideredon a European scale,the Kupferschieferdepositis seen to be the consequence Unpub. Dipl-Arb thesis,Aachen, West Germany, Inst. MineralogieLagerstSttenlehre,Tech. Hochschule,159 p.
of a variety of mineralizingprocesses.Apart from -1986, Die Metallogenesedes Kupferschiefersin der Niethe later, geneticallydistinct, structure-controlled derrheinischenBucht:Unpub. dissert.,Aachen,West Germany,
Tech. Hochschule,170 p.
(Riicken-type)mineralization,these processesmay
KUPFERSCHIEFEROVERVIEW
Diedel, R., and Baumann, A., 1988, Sr- and Pb-Isotopenmuster
alsIndikatorenfiir intraformationaleStoffumlagerungen
labs.l:
Fortschr.Mineralogie, v. 66, p. 24.
Diedel, R., and Friedrich, G., 1986, Buntmetall--und Schwer-
1025
environmentsand the sapropelmodel of genesis:Soc.Geology
Appl. Mineral Deposits Spec. Pub. 4, p. 461-476.
Harwood, G. M., 1980, Calcitisedanhydrite and associatedsulphidesin the EnglishZechsteinfirst cyclecarbonate(EZ1 Ca):
Contr. Sedimentology,v. 9, p. 61-72.
Harwood, G. M., and Coleman, M. L., 1983, Isotopic evidence
spatmineralisation
in der NiederrheinischenBucht:Geologie
RhenlandWestfalen Fortschr., v. 34, p. 221-242.
Diedel, R., and Piittmann, W., 1988, Base metal mineralization
for U. K. Upper Permianmineralizationby bacterialreduction
and maturationof organiccarbonin the Kupferschieferof the
of evaporites:Nature, v. 301, p. 597-599.
Lower Rhinebasin:Soc.GeologyAppl. Mineral DepositsSpec. Harwood, G. M., and Smith,D. B., 1986a, The EnglishZechstein
Pub. 5, p. 60-73.
and related topics:Geol. Soc.LondonSpec.Pub. 22, 244 p.
Doe, B. R., and Zartman, R. E., 1979, Plumbotectonics,the Pha- Harwood,G. M., andSmith,F. W., 1986b, Mineralizationin Upper
nerozoic,in Barnes,H. L., ed., Geochemistryof hydrothermal
Permiancarbonatesat outcropin easternEngland:Geol. Soc.
London Spec.Pub. 22, p. 103-111.
ore deposits:New York, Wiley Intersci., p. 22-70.
Downing,R. A., andHowitt, F., 1969, Salinegroundwaterin the Hirst, D. M., and Dunham, K. C., 1963, Chemistry and petrogCarboniferousrocksof the EnglishEast Midlandsin relation to
raphyof the Marl Slateof S. E. Durham, England:ECON.GEOL.,
v. 58, p. 912-940.
the geology:Quart. Jour. EngineeringGeology,v. 1, p. 2469.
Jannasch,
H. W., Truper, H. G., andTutle, J. H., 1974, Microbial
Edmunds,W. M., 1975, Geochemistryof brines in the Coal Measulfur cycle in Black Sea: Am. Assoc.Petroleum Geologists
suresof north eastEngland:Inst. Mining MetallurgyTrans., v.
Mem., v. 20, p. 419-425.
84, p. B39-52.
Jowett, E. C., 1986, Genesisof KupferschieferCu-Ag deposits
Erzberger, R., 1965, Zur Pa15ogeographie
und Verbreitung der
by convectiveflowof Rotliegendes
brinesduringTriassicrifting:
RotœSrbung
in der Werra-Serie(Z1) S•idbrandenburgs:
Freiberg.
ECON. GEOL., v. 81, p. 1823-1837.
Forschungsh.,v. C193, p. 25-39.
Jowett,E. C., andJarvis,G. T., 1984, Formationof forelandrifts:
Freese,G., andJung,W., 1965,'0herdieRotf•Srbung
derBasal- Sed.Geology,v. 40, p. 51-72.
schichtendes Zechsteins(Rote FSule) und ihre Beziehungen Jowett, E. C., Rye, R. O., Rydzewski, A., and Oszczepalski,S.,
zum Nebengestein im s•id6stlichenHarzvorland: Freiberg.
1987a, Isotopicevidencefor the additionof sulfur during minForschungsh.,v. C193, p. 9-23.
eralization of the Kupferschieferdepositsin Poland Iabs.]:InFriedrich, G., Diedel, R., Schmidt, F. P., and Schumacher, C.,
ternat. Zechstein Symposium,Bochum, 1987, p. 44-45.
1984, Untersuchungenan Cu-As-Sulfidenund Arsenidendes Jowett, E. C., Rydzewski,A., and Jowett, R. J., 1987b, The KupbasalenZechsteinsder Gebiete Spessart/Rh6n
und Richelsdorf:
ferschieferCu-Ag ore depositsin Poland:A re-appraisalof the
Fortschr.Mineralogie, v. 62, p. 63-65.
evidenceof their originandpresentationof a new geneticmodel:
Glennie,K. W., andBuller,A. T., 1983, The PermianWeissliegend
CanadianJour. Earth Sci., v. 24, p. 2016-2037.
of NW Europe: The partial deformationof eolian dune sands Jowett,E. C., Pearce,G. W., and Rydzewski,A., 1987c, A midcausedby the Zechsteintransgression:
Sed.Geology,v. 35, p.
Triassicpalaeomagneticage of the Kupferschiefermineraliza43-81.
tion in Poland,basedon a revisedapparentpolar wanderpath
Gunzert, G., 1953, Uber die BedeutungnachtrSglicherErzverfor Europe and Russia:Jour. Geophys.Research,v. 92, p. 581598.
schiebungen
in der KupferschieferlagerstSttedesRichelsdorfer
Gebirges:Hess.Landesamt.Bodenforsch.
WiesbadenNotizbl., Jung,W., and Knitzschke,G., 1976, Kupferschieferin German
v. 81, p. 258-283.
DemocraticRepublic(GDR) with specialreferenceto the Kupferschieferdepositsof the southeastHarz Foreland, in Wolf,
Hammer, J., Hengst, M., Pilot, J., and R6sler, H.-J., 1987, PbK. H., ed., Handbookof strata-boundandstratiformore deposits:
Isotopenverh51tnisse
des Kupferschiefersder SangerhSuser
Amsterdam,Elsevier, v. 6, p. 353-406.
Mulde: Neue Untersuchungsergebnisse:
Chemie der Erde, v.
46, p. 193-211.
Kautzsch,E., 1942, Untersuchungsergebnisse
6ber die MetallHammer, J., R6sler, H.-J., and Gleisberg,B., 1988, Neutronenverteilungim Kupferschiefer:
Arch.LagerstSttenforschung
der
Geologischen
Bundesanstalt,
v. 74, 42 p.
aktivierungsanalytische,
sSulenchromatographische
und IRspektroskopischeUntersuchungender Bitumensubstanzde Klapcifiski,J., Konstantynowicz,
E., Salski,W., Kienig,E., Preidl,
M., Dubinski,K., andDrozdowski,S., 1984, Atlasof the copperKupferschiefersder SangerhSuser
Mulde (DDR): Chemie der
Erde, v. 48, p. 61-78.
bearingarea,Fore-Sudeticmonocline:Katowice,Slask(textand
Haraficzyk,C., 1970, Zechsteinlead-bearingshalesfromthe Fore1:50,000 maps).
Sudetian monocline in Poland: ECON. GEOL., v. 65, p. 481Knitzschke, G., 1966, Zur Erzmineralisation, Petrographie,
495.
Hauptmetall-undSpurenelementfiihrungdes Kupferschiefers
-1972, Ore mineralization in Lower Zechstein euxinic sedim SE-Harzvorland:Freiberg. Forschungsh.,v. C207, 163 p.
iments in the Fore-Sudetic monocline: Archiwum. MineraloKonstantynowicz,E., 1965, Mineralization of the Zechstein sedgiczne., v. 30, p. 13-171. (25 page summaryin English).
imentsin the North Sudeticsyncline:Krak6w, Geol. Papers
-1975, Morozevichiteandpolkovicite,typochemicalminerals
PolishAcademySci., no. 28, p. 7-99 (in Polish).
for Mesozoic mineralization in the ore depositsof the Fore- Kucha,H., 1981, Preciousmetal alloysand organicmatter in the
Zechsteincopperdeposits,Poland:TschermaksMineralog.PeSudetic monocline:Rudy Metale Niezelazne, v. 20, p. 288293.
trog. Mitt., v. 28, p. 1-16.
-1980, Influence of the lagoonrelief on distributionand iso- -1982, Platinum-groupmetalsin the Zechsteincopper detope compositionof rocksand ores in the Fore-Sudetic monoposits,Poland:ECON.GEOL.,v. 77, p. 1578-1591.
cline: Warsaw, Arch. Geol. Inst. (in Polish), unpub. rept., 87
Kucha, H., and Pawlikowski,M., 1986, Two-brine model of the
p.
--
1984, Ore fiats in the Zechsteincopper-bearingshalesof
the Fore-Sudetic monocline in Lower Silesia, Poland, in
Wauschkuhn,A., Kluth, C., andZimmerman,R. A., eds.,Syngenesisand epigenesisin the formation of mineral deposits:
Berlin, Springer~Verlag,
p. 153-159.
-1986, Zechsteincopper-bearingshalesin Poland.Lagoonal
genesisof strata-boundZechsteindeposits(Kupferschiefertype), Poland:MineraliumDeposita,v. 21, p. 70-80.
Kulick, J., Leifeld, D., Meisl, S., P6schl, W., Stellmacher, R.,
Theuerjahr, A. K., and Wolf, M., 1984, Petrofazielle und
chemische Erkundung des Kupferschiefers der Hessischen
Senkeund des Harz-Westrandes:Geol. Jahrb.D, v. 68, p. 1223.
1026
VAUGHAN ET AL.
Lehmann, J. G., 1756, Versuch einer Geschichtevon F1/Stz-Ge-
biirgen:Berlin, Lange.
Leventhal, J. S., 1983, An interpretationof carbonand sulphur
relationshipsin Black Sea sedimentsas indicatorsof environ•
mentsof deposition:Geochim.et Cosmochim.
Acta,v. 47, p.
133-137.
Lisiakiewicz, S., 1969, Geologicalsettingand analysisof miner-
alizationof a copperdepositin the Grodziecsyncline:Geol.
Inst. PolandBull., v. 217, p. 1-105 (in Polish).
Magaritz, M., and Schulze,K. H., 1980, Carbonisotopeanomaly
of the Permian period: Contr. Sedimentology,v. 9, p. 269277.
Magaritz, M., and Turner, P., 1981, Carbon isotopechangeat
the baseof the Upper PermianZechsteinSequence:Geol.Jour.,
v. 16, p. 243-254.
--
1982, Carboncyclechangesof the Zechsteinsea:Isotopic
transitionzone in the Marl Slate:Nature, v. 297, p. 389-390.
Marowsky,G., 1969, Schwefel-Kohlenstoff-und
Sauerstoff-•Isotopen-untersuchungen
am Kupferschieferals Beitragzur genetischenDeutung:Contr. MineralogyPetrology,v. 22, p. 290334.
Messer,E., 1955, Kupferschiefer,Sanderzund Kobaltriickenim
RichelsdorferGebirge (Hessen):Hess.Lagerst/ittenarchiv,
v.
Zechsteinbasement(Kupferschiefer
type),in Fedak,J., ed.,
The currentmetallogenic
problemsof centralEurope:Warsaw,
Geol. Inst., p. 171-188.
Richter, G., 1941, GeologischeGesetzm/issigkeiten
in der Metallfiihrung des Kupferschiefers:Archives Lagerst/ittenforschung,v. 73, p. 1-61.
Rydzewski,A., 1978, Aerobicfaciesof the copper-bearing
Zechsteinshalein the Fore-Sudeticmonocline:PrzegladGeol., v.
26, p. 102-108 (in Polish).
Salamon,W., 1979, Silverandmolybdenumin the Zechsteinsediment
of the Fore-Sudetic
monocline:
Acad. Petonaise Sci.
Mineral Trans. no. 62, 59 p (in Polish).
Sawlowicz,Z., 1986, Influenceof organicmatteron mineralization
of the smearingcopper-bearingshale in the Fore-Sudetic
monocline:Unpub.doctoralthesis,Krakow,Jagellonian
Univ.,
167 p.
Schmidt, F.-P., 1985, "Rote FSule" Kontrollierte Buntmetallver-
erzungen im Kupferschiefer Osthessens,Bundesrepublik
Deutschland:Unpub. Dissert., Aachen,West Germany, Tech.
Hochschule, 158 p.
Schmidt,F. P., and Friedrich, G., 1988, Geologic setting and
genesis
of Kupferschiefer
mineralization
in WestGermany:Soc.
GeologyAppl. Mineral DepositsSpec.Pub. 5, p. 25-29.
Schmidt,F. P., Schumacher,C., Spieth, V., and Friedrich, G.,
3, p. 1-125.
Niem/511er,
B., Stadler,G., andTeichmiiller, R., 1973, Die Erup1986, Resultsof recentexplorationfor copper-silver
deposits
tivgangeund Naturkokseim KarbondesSteinkohlenbergwerks
in the Kupferschieferof West Germany:Soc.GeologyAppl.
Friedrich Heinrich in Kamp-Lintfort (Linker Niederrhein) aus
Mineral DepositsSpec.Pub. 4, p. 572-582.
geologischerScit: Geol. Mitteilungen, v. 12, p. 197-218.
Schumacher,C., 1985, Die KupfervererzungdesbasalenZechNiskiewicz, J., 1980, Metasomaticphenomenain the Zechstein
steinsim Rahmender sediment/irenEntwicklungdes Werracopperdepositsin Lower Silesia:GeologiaSudetica,v. 15, p.
Fulda-Beckens:Unpub. Ph.D. thesis,Berlin, Freie Univ., 142
1-80.
Oberc,J., andTomaszewski,
J., 1963, Someproblemsof stratigraphy and divisionof Zechsteinin the Wroclaw Monocline:
PrzegladGeologiczny,v. II, no. 12, p. 505-509 (in Polish).
Oelsner,O., 1959, Bemerkungenzur Herkunft der Metelie im
Kupferschiefer:Freiberg.Forschungsh.,
v. 58, p. 106-113.
Oszczepalski,S., 1980, Palaeogeography,sedimentationand
mineralization of the Z1 carbonate series (Zechstein) in the
westernpart of the Fore-Sudeticmonocline(westernPoland):
Contr. Sedimentology,v. 9, p. 307-323.
-1986, Copper shalelithofaciesin SW Poland:Geol. Soc.
LondonSpec.Pub. 22, p. 171-182.
Patience, R. L., Rowland, S. J., and Maxwell, J. R., 1978, The
effectof maturationonthe configuration
ofpristanein sediments
andpetroleum:Geochim.et Cosmochim.
Acta,v. 42, p. 1871-
p.
Schumacher,
C., andSchmidt,F. P., 1985, Kupferschiefer
explorationin OsthessenandNordbayern:Erzmetall., v. 38, p. 428432.
Smith,D. B., 1970, PermianandTrias:Natl. History Soc.NorthumberlandTrans., v. 41, p. 66-91.
-1980, The evolutionof the EnglishZechsteinbasin:Contr.
Sedimentology,v. 9, p. 7-34.
Smith, D. B., and Francis, E. A., 1967, Permian and Trias: Great
BritainGeol. SurveyMere., p. 90-186.
Smith, D. B., Harwood, G. M., Pattison,J., and Pettigrew, T. H.,
1986, A revisednomenclaturefor Upper Permianstratain
easternEngland:Geol. Soc.LondonSpec.Pub. 22, p. 9-17.
Speczik,S., Skowronek,C., Friedrich,G., Diedel, R., Schumacher,
C., and Schmidt,F. P., 1986, The environmentof generation
1875.
of somebasemetal Zechsteinoccurrencesin central Europe:
Paul,J., 1982, Environmental
analysis
of basinandschwellenfacies
Acta Geol. Polonica,v. 36, p. 1-34.
in the lower Zechsteinof Germany:Geol. Soc.London Spec. Stacey,J.S.,andKramers,J.D., 1975,Approximation
of terrestrial
Pub. 22, p. 143-147.
leadisotopeevolutionby a two stagemodel:Earth Planet.Sci.
Peryt,T., 1976, Ingression
of the Thuryngiansea,UpperPermian,
Letters, v. 26, p. 207-221.
in the area of Fore-Sudeticmonocline:Soc. GeologorumPoSweeney, M., Turner, P., and Vaughan, D. J., 1987, The Marl
loniaeAnnales,v. 45, p. 455-465 (in Polish).
Slate:A model for the precipitationof calcite,dolomiteand
Pompeckj,J. F., 1914, Das Meer desKupferschiefers:
Leipzig,
sulphides
in a newly-formedanoxicsea:Sedimentology,
v. 34,
Branca-Festschr,p. 444-494.
--
p. 31-48.
1920, KupferschieferundKupferschiefermeer:Deutschen
Teichm/iller, M., Teichm/iller, R., andWeber, K., 1979, Inkohlung
Geol. Gesell. Monatsber.Zeitschr., v. 72, p. 329-339.
undIllit-Kristallinitat:
GeologieRheinlandWestfalenFortschr.,
Rentzsch,J., 1964, Der Kenntnisstand
iiber die Metall- und Erzv. 27, p. 201-276.
mineralverteilungim Kupferschiefer:Zeitschr.Angew. GeoTischendorf,G., and Ungethiim,H., 1984, Uber die Bildungs1ogie,v. 10, p. 281-288.
bedingungenvon Claushalit-Galenitund Bemerkungzur Se-1974, The Kupferschieferin comparisonwith depositsof
lenverteilungim Galenitin Abh/ingigkeitvomRedoxpotential
the Zambian copperbelt, in 13artholom•,P., ed., Gisements
und vom pH-Wert: Chemieder Erde, v. 23, p. 280-311.
stratiformeset provincecuprif•res:Liege, Soc.G•ol. Belgique,
Tomaszewski,
J. B., 1986, Commentson the genesisandstructure
p. 403-426.
of the copper polymetallicore deposit of the Foresudetic
Rentzsch,J., and Knitzschke,G., 1968, Die Erzmineralparagemonocline,S. W. Poland:Geol. Soc.LondonSpec.Pub. 22, p.
nesendes Kupferschiefers
und ihre regionaleVerbreitung:
183-194.
Freiberg.Forschungsh.,
v. C231, p. 189-211.
Tonn, H., Schmidt, F. P., Porada, H., and Horn, E. E., 1987,
Rentzsch,J., Schirmer,B., R/511ig,
G., andTischendorf,G., 1976,
On the metal source of non-ferrous mineralizations in the
Untersuchungen
vonFliissigkeitseinschl/issen
im Zechsteinals
KUPFERSCHIEFER OVERVIEW
1027
mentaryoredeposits:
Soc.MiningGeologists
JapanSpec.Issue
Beitrag zur Genesedes Kupferschiefers[abs.]:Fortschr.Mineralogie,v. 65, p. 84.
3, p. 268-273.
Turner, P., andMagaritz,M., 1986, Chemicalandisotopicstudies Wedepohl, K. H., Delevaux, M. H., and Doe, B. R., 1978, The
of a Marl Slatecore (VT8); influenceof freshwaterinflux into
potentialsourceof lead in the PermianKupferschieferbed of
Europe and someselectedPaleozoicmineral depositsin the
the ZechsteinSea:Geol. Soc.LondonSpec.Pub. 22, p. 19-29.
Turner, P., Vaughan,D. J., and Whitehouse,K. I., 1978, DoloFederalRepublicof Germany:Contr. MineralogyPetrology,v.
mitization and the mineralization of the Marl Slate (N.E.
65, p. 273-281.
England):Mineralium Deposita,v. 13, p. 245-258.
Wolburg,J., 1957, Ein Querschnittdurchden Nordteil desNieVaughan,D. J., andTurner, P., 1980, Diagenesis,magnetization
derrheinischen
Zechsteinbeckens:
Geol. Jahrb.73, p. 7-38.
and mineralizationof the Marl Slate:Contr. Sedimentology,v. Zalewska,M., Kuczmierczyk,M., Jarosz,J., and Tomaszewska,
9, p. 73-90.
A., 1978, Problemsof depletionof economiccoppermineralWedepohl,K. H., 1964, Untersuchungen
am Kupferschieferin
izationin the zoneoccurrenceof anhydriticsandstones:
Papers
Nordwestdeutschland;
ein Beitragzur Deutung der Genesebiof Cuprun, Wroclaw, (in Polish).
tumin/Sser
Sedimente:Geochim.et Cosmochim.Acta, v. 28, p. Ziegler, P. A., 1982, Geologicalatlasof westernand centralEu305-364.
rope: The Hague, Shell Internat. Petroleum Maatschappij
-1971, 'Kupferschiefer' as a prototype of syngeneticsediB.V., 130p.
© Copyright 2026 Paperzz