Solving Systems Algebraically
MFM 2P1
We don’t have to graph to solve a system. We can solve algebraically.
A) SUBSTITUTION
0
03x—4y=6
=—5x—13
‘=3x+II
‘y=—3x—9
S-I3:3LI
;c3t
1ç
SA,
-
c-t
xt&
-R
or
Solve the following systems of linear’equations by substitution.
a)
e)
y=—2x+6
3x+y=7
9x—3y=6
y=—3x—9
5x—y=1
2x+3y=6
y=x+2
Answers:
b)
y=—x+3
Ia) (1,4)
e) (2,4)
b) (-1,-6)
0 (3,0)
c)
g)
y=2x—13
x+2y=—6
3x+y=I1
y=x—1
c) (4,-5)
g) (3,2)
d)
h)
d) (3,-I)
h) (-4,—8)
y=—2x+5
3x=2y+11
3x=y—4
y=2x
-u
-e
7
:3
-Q
1-
-I-
rt
I
>4
Co
0
9
4Th
II
-1-
20
1
fi
Os”
I’
a3
tfr
‘(0-
S
‘
—
1
-o
3
V)
-4
)
a
-Q
3
Ii
ci
II
/
5
Al
ii
(1
1
1)
In’
o-D
U
It
-F
0-
+
=
QoJc
(ThOm 6Th
cNo
0
4
cc
I
Cc
T’’t
0
1
3;
oO
I
Cs
/ ({frSJ
t
U
ji
Cc
o-P
r
L
fTh
0
Ca
9-,
0
(I
J
‘1
C
vJ
ii
Cc
+
‘I
“U3
ci
Cc
C
5,
C
‘I
6-
+
e
5.
II
‘>1
h
>R
t\pHi
U
Cl
L-’
-
CU
II
-ouJ
l(yJ ç0t
C
r
9,
0Th
‘-I
U
Øo
I
© Copyright 2026 Paperzz