Lecture 20Section 10.7 Improper Integrals Jiwen He 1 Improper Integrals What are Improper Integrals? Z ∞ 1 dx =?, x2 1 Z 0 1 1 dx =? x2 b 1 1 1 1 dx = − Known: f (x) dx = = − , 0 < a < b, 2 x x a b a a a • the interval of integration [a, b], 0 < a < b, is bounded, Z b Z b • the function being integrated f (x) = 1 x2 is bounded over [a, b]. By a limit process, we can extend the integration process to Z b Z ∞ 1 1 1 1 dx = lim dx = lim − = • unbounded intervals (e.g., [1, ∞)): b→∞ 1 x2 b→∞ 1 x2 b 1 1 Z 1 1 1 + dx = • unbounded functions (e.g., as x → 0 , f (x) = x2 → ∞): 2 x 0 Z 1 1 1 1 lim dx = lim+ − =∞ 2 + a 1 a→0 a→0 a x 1.1 Integrals Over Unbounded Intervals Integrals Over Unbounded Intervals 1 Z Let f be continuous on [a, ∞). We define[0.5ex] ∞ Z f (x) dx = lim a b→∞ b f (x) dx a The improper integral converges if the limit exists. The improper integral diverges if the limit doesn’t exist. Z ∞ If lim f (x) 6= 0, then f (x) dx diverges. b→∞ a Z b Z b If f is continuous on (−∞, b], f (x) dx = lim f (x) dx. If f is cont. a→−∞ a −∞ Z ∞ Z 0 Z ∞ f (x) dx = f (x) dx + f (x) dx on (−∞, ∞), −∞ −∞ 0 Fundamental Theorem of Integral Calculus Let f (x) = F 0 (x) for ∀x ≥ a. Then Z ∞ Z b ∞ f (x) dx = lim f (x) dx = lim F (x)|ba = lim F (b)−F (a) = F (x)a = lim F (x)−F (a) b→∞ a b→∞ a b→∞ x→∞ 0 Let f (x) = F (x) for ∀x ≤ b. Then Z b b f (x) dx = F (x)−∞ = F (b) − lim F (x) x→−∞ −∞ Let f (x) = F 0 (x) for ∀x. Then Z 0 Z ∞ Z ∞ ∞ f (x) dx = F (x)−∞ = lim F (x) − lim F (x) f (x) dx = f (x) dx + x→∞ x→−∞ −∞ −∞ 0 = F (0) − lim F (x) + lim F (x) − F (0) x→−∞ x→∞ 2 Examples Z ∞ 1 ∞ Z 1 −2x e 0 ∞ −∞ 1 ∞ dx = ln x|1 = lim (ln x) − ln 1 = ∞ x→∞ x ∞ Z Z ∞ 1 2 2 dx = − 2 = lim − 2 − (−2) = 2 x→∞ x3 x 1 x ∞ −2x e−2x 1 1 e dx = − = lim − − = − x→∞ 2 0 2 2 2 ∞ c −1 x dx = tan c2 + x2 c −∞ x x − lim tan−1 = lim tan−1 x→−∞ x→∞ c c π π = − − =π 2 2 What is Wrong with This? What is wrong with the following argument? Z b Z b Z ∞ 2x 2x 2x 2 b ∞= dx = lim dx = lim ln(1 + x ) = 6 lim dx = 0 2 2 −b b→∞ b→∞ b→∞ 1 + x 1 + x 1 + x2 −∞ −b −b Z ∞ ∞ 2x dx = lim ln(1 + b2 ) − ln(1 + (−b)2 ) = lim (0) = 0 = ln(1 + x2 )0 = lim ln(1 + x2 ) − ln 1 2 x→∞ b→∞ b→∞ 1+x 0 Z ∞ Z b f (x) dx as lim f (x) dx. • Note that we did not define Z ∞ Z b −b b→∞ −∞ f (x) dx = L ⇒ lim f (x) dx = L b→∞ −∞ Z b lim b→∞ −b ∞ Z f (x) dx = L f (x) dx = L ; −b Z • For every odd function f , we have lim b→∞ Z ∞ f (x) dx. certainly not the case for −∞ R∞ 1 1 xα dx, α > 0 3 −∞ b f (x) dx = 0; −b but this is Z 1 If α 6= 1, then Z ∞ 1 ∞ 1 , 1 α−1 dx = xα ∞, if α > 1, if α ≤ 1. ∞ 1 1 1 1 1−α dx = x lim x1−α − = 1 − α x→∞ α x 1−α 1 − α 1 1 if α > 1, α−1 , = ∞, if α < 1. If α = 1, then Z 1 ∞ 1 ∞ dx = ln x|1 = lim (ln x) − ln 1 = ∞ x→∞ x Quiz Quiz x2 x→∞ ex (a) 0, (b) 1, (c) ∞. 1. Find lim x ln x (b) 1, (c) ∞. 2. Find lim x→∞ (a) 0, 4 1.2 Integrals of Unbounded Functions Integrals of Unbounded Functions − Let f be continuous on [a, but f (x) → ±∞ Z b), Z c as x → b . We define b f (x) dx = lim− f (x) dx The improper integral converges if thec→b limit aexists. The improper integral dia verges if the limit doesn’t exist. If f is continuous on (a, Zb], but f (x) → ±∞Zas x → a+ ., b b f (x) dx = lim+ f (x) dx. If f is cont. on [a, b], except at somec→a point cc in (a, b) where f (x) → ±∞ as a x → c− or x → c+ , Z b Z c Z b f (x) dx = f (x) dx + f (x) dx a a c Fundamental Theorem of Integral Calculus Let f (x) = F 0 (x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b− . Then Z b Z c b f (x) dx = lim− f (x) dx = lim− (F (x)|ca ) = lim F (c)−F (a) = F (x)a = lim F (x)−F (a) − − a c→b c→b a Z If lim− F (x) = ±∞, then x→b c→b b f (x) dx diverges. a Let f (x) = F 0 (x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+ . Then Z b b f (x) dx = F (x)a = F (b) − lim+ F (x) x→a a 5 x→b Examples 1 Z 1 x1/3 0 1 Z 0 1 3 3 3 3 2/3 lim x2/3 = dx = x = − + 2 2 2 x→0 2 0 1 1 dx = ln x|0 = ln 1 − lim (ln x) = ∞ x x→0+ π 2 Z π (ln sec x) − ln 1 = ∞ tan x dx = ln sec x|02 = lim π− x→ 2 0 Examples ∞ Z √ 0 e−x dx = 1 − e−2x 0 −du = 1 − u2 1 1 π = sin−1 u0 = 2 Z √ Z 1 √ 0 1 du 1 − u2 Set u = e−x , then du = −e−x dx and u2 = e−2x . Z 0 π 3 sin x √ dx = 2 cos x − 1 Z 0 1 − 12 du 1 √ = 2 u Z 0 1 1 √ du u 1 √ 1 1 = u0 = 4 4 Set u = 2 cos x − 1, then du = −2 sin x dx. What is Wrong with This? What is wrong with the following argument? 4 Z 4 3 1 1 ∞= dx = = 6 − =− 2 x − 2 1 2 1 (x − 2) 2 Z 2 1 1 1 = lim − dx = − −1=∞ 2 x − 2 1 x−2 x→2− 1 (x − 2) 6 4 1 or x → 2 . To evaluate dx we (x − 2)2 Z 2 Z1 4 1 1 need to calculate the improper integrals dx and dx. 2 (x − 2) (x − 2)2 1 2 Note that R1 1 0 xα 1 (x−2)2 − + → ∞ as x → 2 dx, α > 0 7 Z Z 0 1 1 , 1 1−α dx = xα ∞, if α < 1, if α ≥ 1. If α 6= 1, then Z 0 1 1 1 1 1 1 1−α dx = x lim+ x1−α = 1 − α − 1 − α x→0 xα 1−α 0 1 if α < 1, 1−α , = ∞, if α > 1. If α = 1, then Z 0 1 1 1 dx = ln x|0 = ln 1 − lim (ln x) = ∞ x x→0+ Quiz Quiz 1 x→∞ x (a) 0, (b) 1, (c) ∞. 3. Find lim x sin x ex (b) 1, (c) ∞. 4. Find lim x→0+ (a) 0, 8 2 Comparison Test for Convergence 2.1 Comparison Test for Convergence Comparison Test for Convergence Z Let be improper integration over an interval I, and suppose that f and g are I continuous on I such that Z • If 0 ≤ f (x) ≤ g(x), ∀x ∈ I Z g(x) dx converges, then so does f (x) dx. I I Z • If Z f (x) dx diverges, then so does I g(x) dx. I Z ∞ Z ∞ 1 dx converges since 1 + x3 1 Z ∞ 1 1 1 √ √ √ dx converges. 0≤ < , ∀x ≥ 1 and 3 3 1+x x x3 1 √ The improper integral 1 dx diverges since 1 + x2 1 Z ∞ 1 1 1 0≤ <√ , ∀x ≥ 1 and dx diverges. 2 1+x 1+x 1+x 1 The improper integral √ Outline 9 Contents 1 Improper Integrals 1.1 Unbounded Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Unbounded Functions . . . . . . . . . . . . . . . . . . . . . . . . 1 1 5 2 Comparison Test 2.1 Comparison Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 10
© Copyright 2026 Paperzz