QUIZ 7 - SOLUTIONS 1. Find ! x ln(x) dx 2 Answer: Let u = ln(x) and dv = xdx, and then du = dx and v = x2 . x ! ! 2 x2 x 1 x ln(x) dx = ln(x) − · dx 2 2 x ! x2 ln(x) x = − dx 2 2 x2 ln(x) x2 = − +C 2 4 2. Find ! 3x sin( πx ) dx 7 Answer: Let u = 3x and dv = sin( πx ) dx, and then du = 3 dx and v = − π7 cos( πx ). 7 7 " # ! ! πx 7 πx 7 πx 3x sin( ) dx = 3x − cos( ) − − cos( ) 3 dx 7 π 7 π 7 ! 21x πx 21 πx =− cos( ) + cos( ) dx π 7 π 7 21x πx 21 7 πx =− cos( ) + · sin( ) + C π 7 π π 7 21x πx 147 πx =− cos( ) + 2 sin( ) + C π 7 π 7 QUIZ 8 - SOLUTIONS 1. Find ! 9 (4x + 1) ln(2x + 1) dx 1 2 Answer: Let u = ln(2x + 1) and dv = (4x + 1)dx, and then du = 2x+1 dx and v = 2x2 + x. ! 9 ! 9 "9 2 2 " (4x + 1) ln(2x + 1) dx = (2x + x) ln(2x + 1) 1 − (2x2 + x) dx 2x + 1 1 1 ! 9 "9 2 2 dx = (2x + x) ln(2x + 1)"1 − x(2x + 1) 2x + 1 1 ! 9 "9 2 " = (2x + x) ln(2x + 1) 1 − 2x dx 1 "9 = (2x2 + x) ln(2x + 1) − x2 "1 # $ # $ = (2 · 92 + 9) ln(2 · 9 + 1) − 92 − (2 · 12 + 1) ln(2 · 1 + 1) − 12 = 171 ln(19) − 3 ln(3) − 80 2. Find ! 4 √ e x dx 1 Answer: First a substition. Let w = ! √ 1 x and dw = 2√1 x dx, and then 2w dw = dx. ! 2 4 √ x e dx = 2wew dw 1 Then we do integration by parts. Let u = 2w and dv = ew dw, and then du = 2 dw and v = ew . ! 4 √ ! 2 x 2wew dw e dx = 1 1 ! 2 w 2 = 2we |1 − 2ew dw w = 2we − 1 w 2 2e |1 2 = (2 · 2e2 − 2e ) − (2 · 1e1 − 2e1 ) = 2e2
© Copyright 2026 Paperzz