Ethylene Synthesis: Man versus Nature Kelly Miller 1 Ethylene Applications Polymers and oligomers Synthetically useful small molecules Ethylene oxide 21 million tons/year Vinyl chloride 13 million tons/year Styrene 5 million tons/year (a) Levdikova, T. PR Web. http://www.prweb.com/releases/2014/02/prweb11543300.htm (accessed 4/3/14). (b) James, S. PR Web. http://www.prweb.com/releases/Acetic-Acid-Market/GrandViewResearch/prweb11623679.htm (accessed 4/3/14). 2 Polymers: LDPE: (low density) n Poly(ethylene) - PE 3,100 tons/year Plastic wrap, laminate coatings, plastic bags, snap-on lids HDPE: (high density) Bottle caps, chemical resistant pipes, milk jugs, garbage cans, toys C12-C18 olefins mostly for detergents 1.9 million tons/year Mol % Oligomers: Waxes 5,700 tons/year 40-50% α-olefins C number C12 C18 Figure 1. Schulz-Flory distribution of olefin products from Shell Higher Olefin Process (a) Chem. Eng. News. 2002, (June 24) p. 42; (b) Keim, W. Angew. Chem. Int. Ed. 2013, 52, 12492-12496; (c) Mol, J.C. J. Molec. Catal. A, 2004, 213, 39-45 3 Man versus Nature chemical catalysis enzymatic metabolism 300-1000 °C 15-35 °C 143 million tons/year 23.3 million tons/year (a) Sawada, S., Totsuka, T. Atmos. Environ. 1986, 20, 821-832 (b) True, W. Oil and Gas J. [Online] 2013, 111, 1-6 . Available from OGJ Archives. http://www.ogj.com/articles/print/volume-111/issue-7.html (accessed March 4, 2014). Mankind’s Syntheses Thermal Cracking of Hydrocarbons 4 Dehydration of Ethanol 300-400 °C ΔH298K = 11 kcal/mol 750-1000 °C ΔH298K = 33 kcal/mol Oxidative Dehydrogenation of Ethane Oxidative Coupling of Methane 650-900 °C ΔH298K = - 30 kcal/mol 400-600 °C ΔH298K = - 25 kcal/mol Methanol to Olefins 300-500 °C ΔH298K = 15 kcal/mol (a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen, A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947 5 Nature’s Synthesis: Plants 1-aminocyclopropanecarboxylic acid ACC S-adenosylmethionine SAM L-methionine 6 Nature’s Synthesis: Microbes 2-ketoglutarate pathway: Plant pathogens 2-ketoglutarate oxygenase EC: 1.13.12.19 Successive fermentation and elimination: Man and nature Readily Available Hydrocarbons Table 1. Average composition of North American fossil fuel gases Component Range (wt %) Methane 87-97 Ethane 1.5-7 Propane 0.1-1.5 Butane 0.01-0.03 C5-C10 0.02 Table 2. Fractions of crude oil Component Range (wt %) Paraffins 15-60 Naphthenes 30-60 Aromatics 3-30 Figure 2. Common fossil fuel sources and wells required to extract gas or oil U.S. Energy Information Administration, www.eia.gov (accessed Mar. 24) 7 8 Sweetening Natural Gas CO2 C1-C4 2-3 bar H2O H2S sweetened gas 70-100 bar (a) Huttenhuis P.J.G.; Agrawal, N.J.; Hogendoorn, J.A.; Versteeg, G.F. J. Pet. Sci. Tech. 2007, 55, 122-134. (b) Banat, F.; Younas, O.; Didarul, I. J. Nat. Gas Sci. Eng. 2014, 16, 1-7. 9 Crude Oil Distillation Table 3. Distillation fractions of crude oil and average boiling point ranges Fraction Boiling Point Range °C Gases < 32 Light naphtha 32-88 Heavy naphtha 88-193 Kerosene 193-271 Atmospheric gas oil 271-343 Atmospheric residuum 343+ Vacuum gas oil 343-538 Vacuum residuum 538+ (a) Petzny, W.J. WO2013150467, 2013. (b) Industrial Organic Chemicals, 3rd ed., Wittcoff, Reuben, Plotkin (Wiley, Hoboken, 2013). (c) Petrochemical Processes, 1. Synthesis-Gas Derivatives and Major Hydrocarbons, Chauvel, Lefebvre (Editions Technip, Paris, 1989) 10 Process Conditions ΔH298K = 33 kcal/mol Fig. 4 Δ ΔH298K = 18 kcal/mol 750-1000 °C 0.01-0.5 s Figure 3. Equilibrium conversion for dehydrogenation of ethane, propane, and butane at 1 bar (a) The Properties of Gases and Liquids, 4th ed., Ried, Prausnitz, Poling (McGraw-Hill, New York, 1988). (b) Noureddine, H.; Nahla, F.; Zouhour, K.; Marie-Noelle, P. Energy Convers. Manag. 2013, 70, 174-186 11 Hydrocarbon Cracking Pilot Plant Table 4. Influence of steam dilution (δ) on product distribution from pure ethane feed. Product yield (wt%) δ = 30% δ = 45% δ = 70% Methane 16.58 16.28 16.38 Ethylene 29.86 30.85 32.54 Ethane 4.68 4.16 3.69 Propene 17.73 17.59 17.57 Propane 4.68 4.16 3.69 Benzene 5.66 5.68 5.64 Toluene 2.32 2.23 2.34 Styrene 0.70 0.59 0.62 Figure 4. Schematic overview of pilot plant setup (a) Pyl, S.P.; Scietekat, C.M.; Reyniers, M-.F.; Abhari, R.; Marin, G.B.; Van Geem, K.M. Chem. Eng. J. 2011, 176-177, 178-187. (b) Sohn, S.W.; Rice, L.H.; Kulprathipanja, S. (UOP LLC, USA). Ethylene production by steam cracking of normal paraffins. US Patent 20110245556, October 6, 2011. (c) Schrod, H.M. (Saudi Basic Industries Co., SA). Process for production of hydrocarbon chemicals from crude oil. WIPO Patent 2013150467, October 10, 2013 Thermal Cracking Ethane 12 Initiation: ΔH298K = 90 kcal/mol Propagation: ΔH298K = 101 kcal/mol ΔH298K = 36 kcal/mol ΔH298K = - 3 kcal/mol ΔH298K = - 24 kcal/mol Termination: ΔH298K = - 69 kcal/mol ΔH298K = - 104 kcal/mol (a) van Goethem, M.W.M.; Barendregt, S.; Grievink, J.; Verheijen, P.J.T.; Dente, M.; Ranzi, E. Chem. Eng.Res. Des. 2013, 91, 1106-1110. (b) Ranjan, P.; Kannan, P.; Al-Shoaibi, A.; Srinivasakannan, C. Chem. Eng. Tech. 2011, 6, 1093-1097. 13 Thermal Cracking Higher Hydrocarbons Dehydrogenation Primary Cracking Secondary Cracking (a) Dijkmans, T.; Pyl, S.P.; Reyniers, M-.F.; Abhari, R.; Van Geem, K.M.; Marin, G.B. Green Chem. 2013, 15, 3064-3076. (b) Pyl, S.P.; Dijkmans, T.; Antonykutty, J.M.; Reyniers, M-.F.; Harlin, A.; Van Geem, K.M.; Marin, G.B. Bioresour. Technol. 2012, 126, 48-55. 14 Oxidative Dehydrogenation of Ethane ΔH298K = 33 kcal/mol 400-600 °C ΔH298K = - 25 kcal/mol Ethylene Yield [%] 750-1000 °C Δ C 2 H 6 : O2 ΔH298K = - 247 kcal/mol Figure 5. Dependence of ethylene yield on C2H6:O2 ratio over Al2O3 supported VO4. Temperature of reaction is 590 °C. (a) Kustov, L.M.; Kucherov, A.V.; Finashina, E.D.; Simanzhenkov, V.; Krzywicki, A. (Nova Chemicals, Intl.) Membrane-supported catalysts and the process of oxidative dehydrogenation of ethane using the same. US Patent 20130072737, March 21, 2013. (b) Achieva, D.; Brzic, D.; Peglow, M.; Heinrich, S.; Morl, L. Chemie. Ingenieur. Technik. 2004, 76, 1295-1296. Mars and Van Krevelen Mechanism: VOx example 15 O2 (a) Zhu, H.; Ould-Chikh, S.; Anjum, D.H.; Sun, M.; Biausque, G.; Basset, J-.M.; Caps, V. J. Catal. 2012, 285, 292-303. (b) Agouram, S.; Dejoz, A.; Ivars, F.; Vazquez, I.; Lopez Nieto, J.M.; Solsona, B. Fuel Process. Technol. 2014, 119, 105-113. (c) Chen, K.; Bell, A.T.; Iglesia, E. J. Catal. 2002, 209, 35-42. 16 Ethylene from Bioethanol Braskem’s Triunfo plant – San Paulo, Brazil Figure 6. Microbial fermentation of glucose to produce ethanol Braskem Ethanol to Ethylene Plant, Brazil. http://www.chemicals-technology.com/projects/braskem-ethanol/ (accessed 4/12/14). Dehydration of Ethanol Easily Occurs Over Heterogeneous Catalysts Al2O3 400-450 °C Conversion: 80% • Water deactivates active sites HZSM-5 300 °C Conversion: 98% • Dry ethanol not needed • Coking deactivates catalyst Si/AlPO4 320 °C Conversion: 90% • No coking on milder acid sites (a) Chen, Y.; Wu, Y.; Tao, L.; Dai, B.; Yang, M.; Chen, Z.; Zhu, X. J. Ind. Eng. Chem. 2010, 16, 717-722. (b) Solvay, Bruxelles, Process for the manufacture of ethylene by dehydration of ethanol. European Patent 2594546, November 17, 2011. 17 18 Ethylene from Bioethanol is Commercially Utilized Ag0 H3O+ O2 Terephthalic acid Polyethylene terephthalate PlantBottleTM Technology. http://www.coca-colacompany.com/plantbottle-technology/ (Accessed 4/15/14) 19 Partial Pressure (Torr) Temperature Dependence of Dehydration Pathway Pathway A Alcohol Water Olefin Ether Temperature (° C) Figure 7. Dependence of ethanol decomposition on catalyst temperature. Pathway A Pathway B T > 300 °C favors path B T < 300 °C favors path A (a) Christiansen, M.A.; Mpourmpakis, G., Vlachos, D.G. ACS Catal. 2013, 3, 1965-1975. (b) Solvay, Bruxelles, Process for the manufacture of ethylene by dehydration of ethanol. European Patent 2594546, November 17, 2011. (c) Knoezinger, H., Koehne, R. J. Catal. 1966, 5, 264-270. Alumina-catalyzed E2 Elimination EaE2 = 37 kcal/mol 20 EaE1 = 57 kcal/mol Table 5. Kinetic isotope effects for ethylene and diethyl ether formation over γ-Al2O3 at 215 °C Product C2H5OD C2D5OD Ethylene 0.89 + 0.14 2.42 + 0.19 Diethyl Ether 0.97 + 0.12 1.01 + 0.14 (a) DeWilde, J.F.; Chiang, H.; Hickman, D.A.; Ho, C.R.; Bhan, A. ACS Catal. 2013, 3, 798-807. (b) Christiansen, M.A.; Mpourmpakis, G.; Vlachos, G.D. ACS Catal. 2013, 3, 1965-1975. (c) Zhang, M.; Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514 21 Alumina-catalyzed E2 Elimination Ea = 35 kcal/mol EaE2 = 38 kcal/mol EaE1 = 52 kcal/mol (a) Bhan, A. et al. ACS Catal. 2013, 3, 798-807; (b) Christiansen, M.A., Mpourmpakis, G., Vlachos, G.D. ACS Catal. 2013, 3, 1965-1975; (c) Zhang, M., Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514 22 Getting the Most Out of Fossil Fuels 650-900 °C Table 6. Average concentration of components in natural gas wells in western Canada, Ontario, and U.S. plays Component Range (mol %) Methane 87-97 Ethane 1.5-7 Propane 0.1 – 1.5 Butane 0.01-0.3 Pentanes plus (C5H12 – C10H22) 0.02 Impurities (N2, CO2, H2S, water) <7 ΔH1073K = - 33 kcal/mol 800 °C ΔH1073K = - 124 kcal/mol 800 °C ΔH1073K = - 191 kcal/mol (a) Zavyalova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras. E-.J. (Siluria Technologies, Inc. USA). Catalysts for petrochemical catalysis. US 20130023709, January 24, 2013 23 Direct Coupling of Methane ΔH298K = - 30 kcal/mol Catalyst Types 1) Reducible metal oxide V2O5, MoO3 2) Non-reducible rare-earth oxides LaO3, CeO2 Figure 8. Various unsupported single oxides tested in OCM reaction. S(C2) = selectivity for C2H6 and C2H4 3) Mixed metal oxides Au/Co3O4, Co/MnO (a) Zavylova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis. US Patent 20130023709, January 24, 2013. (c) Li, Z-.Y.; Yuan, Z.; Zhao, Y-X.; He, S-.G. Chem. Eur. J. 2014, 20, 1-8. Key Steps in Oxidative Coupling of Methane (a) Lunsford, J.H. Angew. Chem. Int. Ed. Engl. 1995, 34, 970-980. (b) ) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis. US Patent 20130023709, January 24, 2013. 24 25 Indirect Use of Methane 300-500 °C ΔH298K = -8 kcal/mol ΔH298K = 15 kcal/mol ΔH298K = -10 kcal/mol ΔH298K = -12 kcal/mol Figure 10. SEM image of SAPO-34 with cartoon of active cages (a) Union Gas http://www.uniongas.com/about-us/about-natural-gas/Chemical-Composition-of-Natural-Gas (b) El-Halwagi, M. et al. ACS Sust. Chem. Eng. 2014, 2, 30-37 26 Hydrocarbon Pool Mechanism Figure 11. Original hydrocarbon pool mechanism as proposed by Dahl and Kolboe Figure 13. 13C incorporation into products and entrained species after 12C-methanol feed is switched to a 13C-methanol feed. Figure 12. Current understanding of HP mechanism (a) Dahl, I.M., Kolboe, S. J. Catal. 1994, 149, 458-464 (b) Lie, Z. et al. Catal. Commun. 2014, 46, 36-40 27 Competing Pathways: Side-Chain v. Paring CH3OH Side-chain Paring H2 O 2 CH3OH H2 O CH3OH (a) Lesthaeghe, D. et al. Chem. Eur. J. 2009, 15, 10803-10808 (b) Ilias, S., Bhan, A. J. Catal. 2014, 311, 6-16. (c) Arstad, B.; Kolboe, S.; Swang, O. J. Phys. Chem. A 2005, 109, 8914-8922. 28 Biosynthetic Pathway 29 S-adenosylmethionine Synthetase: EC 2.5.1.6 Asp16 Lys17 S-adenosylmethionine (a) Van de Poel, B.; Bulens, I.; Oppermann, Y.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Sauter, M.; Geeraerd, A.H. Physiol. Plant. 2013, 148, 176-188. (b) Komoto, J.; Yamada, T.; Takata, Y.; Markham, G.M.; Takusagawa, F. Biochem. 2004, 43, 1821-1831. 30 ACC Synthase: EC 4.4.1.14 Pyridoxal-5’-phosphate PLP S-adenosylmethionine SAM 1-aminocyclopropylcarboxylic acid ACC Capitani, G. et al. J. Mol. Biol. 1999, 294, 745-756 PLP-bound SAM Methylthioadenosine MTA ACC Oxidase: EC 1.14.17.4 31 ACC ascorbate dehydroascorbate 2 H2 O H2O + HCO3- O2 HCO3- CO2 + HCN - OH (a) Yoo, A.; Seo, Y.S.; Jung, J-.W.; Sung, S-.K.; Kim, W.T.; Lee, W.; Yang, D.R. J. Struct. Biol. 2006, 156, 407-420. (b) Rocklin, A. M.; Kato, K.; Liu, H-.W.; Que Jr., L.; Lipscomb, J.D. J. Biol. Inorg. Chem. 2004, 9, 171-182. (c) Meng, D.; Shen, L.; Yang, R.; Zhang, X.; Sheng, J. Biochem. Biophys. Acta 2014, 1840, 120-128. Heterologous Expression of Ethylene Forming Enzymes Escherichia coli Figure 16. Expression of bifunctional fusion protein in E. coli. (A) Hybrid enzyme inserted into pET-14b. (B) Purification of protein samples. Li, N.; Jiang, X.N.; Cai, G.P.; Yang, S.F. J. Biol. Chem. 1996, 271, 25738-25741 Figure 17. Production of ethylene by bifunctional hybrid enzyme in which (1mM) S-AdoMet was used as the ethylene precursor 32 S. cerevisiae: Ethanol Factories pyruvate glycolysis coenzyme A acetyl CoA NADH Figure 18. Budding Saccharomyces cerevisiae, commonly refered to as “bakers’ yeast.” NADH Scheme 1. Glycolysis and fermentation of glucose to ethanol in S. cerevisiae (a) Quevedo-Hidalgo, B.; Monsalve-Marin, F.; Narvaez-Rincon, P.C.; Pedroza-Rodriquez, A.M.; Velasquez-Lozano, M.E. World J. Microbiol. Biotechnol. 2013, 49, 459-466. (b) MetaCyc Pathway: Pyruvate Fermentation to Ethanol I. http://www.biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY5480&detail-level=4&detail-level=3 (accessed 4/4/14). 33 34 Microbial Ethanol to Ethylene Phaseollidin hydratase EC 4.2.1.97 Phaseollidin Phaseollidin hydrate S. cerevisiae Phaseollidin hydratase EC 4.2.1.97 (a) Marliere, P. EP 2336340, June 22, 2011. (b) Singh, A.; Bajar, S.; Bishnoi, N.R. Fuel, 2014, 116, 699-702 35 Ketoglutarate to Ethylene Microbial 2-ketoglutarate pathway: 2-ketoglutarate oxygenase EC 1.13.12.19 Oxidation of Glutamate L-glutamate oxidase EC 1.4.3.2 (a) Guerro, F.; Carbonell, V.; Cossu, M.; Correddu, D.; Jones, P.R. PLoS ONE, 2012, 7, 1-11. (b) Johansson, N.; Quehl, P.; Norbeck, J.; Larsson, C. Microb. Cell Fact. 2013, 12, 89-95. 36 Figure 19. Electron micrograph of Methanomonas methylovora 2% CH3OH buffer solution 28 °C L-glutamic acid Component Growth in Buffer Medium Microbial Production of Glutamate Figure 20. Time course of L-glutamic acid accumulation by M. methylovora. , L-glutamic acid; , bacterial growth. (a) Oki, T.; Sayama, Y.; Nishimura, Y.; Ozaki, A. Agr. Biol. Chem. 1968, 32, 119-120. (b) Oki. T.; Kitai, A.; Kouno, K.; Ozaki, A. J. Gen. Appl. Microbiol. 1973, 19, 79-83. 37 Microbial Methanol to Ethylene CH3OH M. methylovora Mankind’s Syntheses Thermal Cracking of Hydrocarbons 38 Dehydration of Ethanol 300-400 °C ΔH298K = 11 kcal/mol 750-1000 °C ΔH298K = 33 kcal/mol Oxidative Dehydrogenation of Ethane 400-600 °C ΔH298K = - 25 kcal/mol Oxidative Coupling of Methane 650-900 °C ΔH298K = - 30 kcal/mol Methanol to Olefins 300-500 °C ΔH298K = 15 kcal/mol (a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen, A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947 39 Chemical v. Biological Catalysis 300-400 °C S. cerevisea 30 °C 300-500 °C M. methylovoras 30 °C Thank You! Dr. John Frost Dr. Xuefei Huang Frost group: Karen Frost, Yukari Nishizawa-Brennen, Peng Zhang Olivia Chesniak, Tanner McDaniel, Travis Bethel, Corey Jones, Matt Giletto All of you.
© Copyright 2026 Paperzz