Ethylene Synthesis: Man versus Nature

Ethylene Synthesis:
Man versus Nature
Kelly Miller
1
Ethylene Applications
Polymers and oligomers
Synthetically useful small molecules
Ethylene oxide
21 million tons/year
Vinyl chloride
13 million tons/year
Styrene
5 million tons/year
(a) Levdikova, T. PR Web. http://www.prweb.com/releases/2014/02/prweb11543300.htm (accessed 4/3/14). (b) James, S. PR Web.
http://www.prweb.com/releases/Acetic-Acid-Market/GrandViewResearch/prweb11623679.htm (accessed 4/3/14).
2
Polymers:
LDPE:
(low density)
n
Poly(ethylene) - PE
3,100 tons/year
Plastic wrap, laminate coatings,
plastic bags, snap-on lids
HDPE:
(high density)
Bottle caps, chemical resistant pipes,
milk jugs, garbage cans, toys
C12-C18 olefins mostly for detergents
1.9 million tons/year
Mol %
Oligomers:
Waxes
5,700 tons/year
40-50%
α-olefins
C number
C12
C18
Figure 1. Schulz-Flory distribution of olefin products
from Shell Higher Olefin Process
(a) Chem. Eng. News. 2002, (June 24) p. 42; (b) Keim, W. Angew. Chem. Int. Ed. 2013, 52, 12492-12496; (c) Mol, J.C. J. Molec. Catal. A, 2004, 213, 39-45
3
Man versus Nature
chemical catalysis
enzymatic metabolism
300-1000 °C
15-35 °C
143 million tons/year
23.3 million tons/year
(a) Sawada, S., Totsuka, T. Atmos. Environ. 1986, 20, 821-832 (b) True, W. Oil and Gas J. [Online] 2013, 111, 1-6 . Available from OGJ Archives.
http://www.ogj.com/articles/print/volume-111/issue-7.html (accessed March 4, 2014).
Mankind’s Syntheses
Thermal Cracking of Hydrocarbons
4
Dehydration of Ethanol
300-400 °C
ΔH298K = 11 kcal/mol
750-1000 °C
ΔH298K = 33 kcal/mol
Oxidative Dehydrogenation of Ethane
Oxidative Coupling of Methane
650-900 °C
ΔH298K = - 30 kcal/mol
400-600 °C
ΔH298K = - 25 kcal/mol
Methanol to Olefins
300-500 °C
ΔH298K = 15 kcal/mol
(a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen,
A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947
5
Nature’s Synthesis: Plants
1-aminocyclopropanecarboxylic acid
ACC
S-adenosylmethionine
SAM
L-methionine
6
Nature’s Synthesis: Microbes
2-ketoglutarate pathway: Plant pathogens
2-ketoglutarate oxygenase
EC: 1.13.12.19
Successive fermentation and elimination: Man and nature
Readily Available Hydrocarbons
Table 1. Average composition of
North American fossil fuel gases
Component Range (wt %)
Methane
87-97
Ethane
1.5-7
Propane
0.1-1.5
Butane
0.01-0.03
C5-C10
0.02
Table 2. Fractions of crude oil
Component
Range (wt %)
Paraffins
15-60
Naphthenes
30-60
Aromatics
3-30
Figure 2. Common fossil fuel sources and wells required to extract gas or oil
U.S. Energy Information Administration, www.eia.gov (accessed Mar. 24)
7
8
Sweetening Natural Gas
CO2
C1-C4
2-3 bar
H2O
H2S
sweetened
gas
70-100 bar
(a) Huttenhuis P.J.G.; Agrawal, N.J.; Hogendoorn, J.A.; Versteeg, G.F. J. Pet. Sci. Tech. 2007, 55, 122-134. (b) Banat, F.; Younas, O.; Didarul, I. J. Nat. Gas Sci.
Eng. 2014, 16, 1-7.
9
Crude Oil Distillation
Table 3. Distillation fractions of crude oil and
average boiling point ranges
Fraction
Boiling Point Range °C
Gases
< 32
Light naphtha
32-88
Heavy naphtha
88-193
Kerosene
193-271
Atmospheric gas oil
271-343
Atmospheric residuum
343+
Vacuum gas oil
343-538
Vacuum residuum
538+
(a) Petzny, W.J. WO2013150467, 2013. (b) Industrial Organic Chemicals, 3rd ed., Wittcoff, Reuben, Plotkin (Wiley, Hoboken, 2013). (c) Petrochemical
Processes, 1. Synthesis-Gas Derivatives and Major Hydrocarbons, Chauvel, Lefebvre (Editions Technip, Paris, 1989)
10
Process Conditions
ΔH298K = 33 kcal/mol
Fig. 4
Δ
ΔH298K = 18 kcal/mol
750-1000 °C
0.01-0.5 s
Figure 3. Equilibrium conversion for dehydrogenation of
ethane, propane, and butane at 1 bar
(a) The Properties of Gases and Liquids, 4th ed., Ried, Prausnitz, Poling (McGraw-Hill, New York, 1988). (b) Noureddine, H.; Nahla, F.; Zouhour, K.; Marie-Noelle, P.
Energy Convers. Manag. 2013, 70, 174-186
11
Hydrocarbon Cracking Pilot Plant
Table 4. Influence of steam dilution (δ) on product
distribution from pure ethane feed.
Product
yield (wt%)
δ = 30%
δ = 45%
δ = 70%
Methane
16.58
16.28
16.38
Ethylene
29.86
30.85
32.54
Ethane
4.68
4.16
3.69
Propene
17.73
17.59
17.57
Propane
4.68
4.16
3.69
Benzene
5.66
5.68
5.64
Toluene
2.32
2.23
2.34
Styrene
0.70
0.59
0.62
Figure 4. Schematic overview of pilot plant setup
(a) Pyl, S.P.; Scietekat, C.M.; Reyniers, M-.F.; Abhari, R.; Marin, G.B.; Van Geem, K.M. Chem. Eng. J. 2011, 176-177, 178-187. (b) Sohn, S.W.; Rice, L.H.;
Kulprathipanja, S. (UOP LLC, USA). Ethylene production by steam cracking of normal paraffins. US Patent 20110245556, October 6, 2011. (c) Schrod, H.M.
(Saudi Basic Industries Co., SA). Process for production of hydrocarbon chemicals from crude oil. WIPO Patent 2013150467, October 10, 2013
Thermal Cracking Ethane
12
Initiation:
ΔH298K = 90 kcal/mol
Propagation:
ΔH298K = 101 kcal/mol
ΔH298K = 36 kcal/mol
ΔH298K = - 3 kcal/mol
ΔH298K = - 24 kcal/mol
Termination:
ΔH298K = - 69 kcal/mol
ΔH298K = - 104 kcal/mol
(a) van Goethem, M.W.M.; Barendregt, S.; Grievink, J.; Verheijen, P.J.T.; Dente, M.; Ranzi, E. Chem. Eng.Res. Des. 2013, 91, 1106-1110. (b) Ranjan, P.; Kannan,
P.; Al-Shoaibi, A.; Srinivasakannan, C. Chem. Eng. Tech. 2011, 6, 1093-1097.
13
Thermal Cracking Higher Hydrocarbons
Dehydrogenation
Primary Cracking
Secondary Cracking
(a) Dijkmans, T.; Pyl, S.P.; Reyniers, M-.F.; Abhari, R.; Van Geem, K.M.; Marin, G.B. Green Chem. 2013, 15, 3064-3076. (b) Pyl, S.P.; Dijkmans, T.; Antonykutty,
J.M.; Reyniers, M-.F.; Harlin, A.; Van Geem, K.M.; Marin, G.B. Bioresour. Technol. 2012, 126, 48-55.
14
Oxidative Dehydrogenation of Ethane
ΔH298K = 33 kcal/mol
400-600 °C
ΔH298K = - 25 kcal/mol
Ethylene Yield [%]
750-1000 °C
Δ
C 2 H 6 : O2
ΔH298K = - 247 kcal/mol
Figure 5. Dependence of ethylene yield on C2H6:O2 ratio over
Al2O3 supported VO4. Temperature of reaction is 590 °C.
(a) Kustov, L.M.; Kucherov, A.V.; Finashina, E.D.; Simanzhenkov, V.; Krzywicki, A. (Nova Chemicals, Intl.) Membrane-supported catalysts and the process of
oxidative dehydrogenation of ethane using the same. US Patent 20130072737, March 21, 2013. (b) Achieva, D.; Brzic, D.; Peglow, M.; Heinrich, S.; Morl, L.
Chemie. Ingenieur. Technik. 2004, 76, 1295-1296.
Mars and Van Krevelen Mechanism: VOx example
15
O2
(a) Zhu, H.; Ould-Chikh, S.; Anjum, D.H.; Sun, M.; Biausque, G.; Basset, J-.M.; Caps, V. J. Catal. 2012, 285, 292-303. (b) Agouram, S.; Dejoz, A.; Ivars, F.; Vazquez,
I.; Lopez Nieto, J.M.; Solsona, B. Fuel Process. Technol. 2014, 119, 105-113. (c) Chen, K.; Bell, A.T.; Iglesia, E. J. Catal. 2002, 209, 35-42.
16
Ethylene from Bioethanol
Braskem’s Triunfo plant – San Paulo, Brazil
Figure 6. Microbial fermentation of glucose to produce ethanol
Braskem Ethanol to Ethylene Plant, Brazil. http://www.chemicals-technology.com/projects/braskem-ethanol/ (accessed 4/12/14).
Dehydration of Ethanol Easily Occurs Over Heterogeneous Catalysts
Al2O3
400-450 °C
Conversion: 80%
• Water deactivates active sites
HZSM-5
300 °C
Conversion: 98%
• Dry ethanol not needed
• Coking deactivates catalyst
Si/AlPO4
320 °C
Conversion: 90%
• No coking on milder acid sites
(a) Chen, Y.; Wu, Y.; Tao, L.; Dai, B.; Yang, M.; Chen, Z.; Zhu, X. J. Ind. Eng. Chem. 2010, 16, 717-722. (b) Solvay, Bruxelles, Process for the manufacture of
ethylene by dehydration of ethanol. European Patent 2594546, November 17, 2011.
17
18
Ethylene from Bioethanol is Commercially Utilized
Ag0
H3O+
O2
Terephthalic acid
Polyethylene
terephthalate
PlantBottleTM Technology. http://www.coca-colacompany.com/plantbottle-technology/ (Accessed 4/15/14)
19
Partial Pressure (Torr)
Temperature Dependence of Dehydration Pathway
Pathway A
Alcohol
Water
Olefin
Ether
Temperature (° C)
Figure 7. Dependence of ethanol decomposition
on catalyst temperature.
Pathway A
Pathway B
T > 300 °C favors path B
T < 300 °C favors path A
(a) Christiansen, M.A.; Mpourmpakis, G., Vlachos, D.G. ACS Catal. 2013, 3, 1965-1975. (b) Solvay, Bruxelles, Process for the manufacture of ethylene by
dehydration of ethanol. European Patent 2594546, November 17, 2011. (c) Knoezinger, H., Koehne, R. J. Catal. 1966, 5, 264-270.
Alumina-catalyzed E2 Elimination
EaE2 = 37 kcal/mol
20
EaE1 = 57 kcal/mol
Table 5. Kinetic isotope effects for ethylene and diethyl
ether formation over γ-Al2O3 at 215 °C
Product
C2H5OD
C2D5OD
Ethylene
0.89 + 0.14
2.42 + 0.19
Diethyl Ether
0.97 + 0.12
1.01 + 0.14
(a) DeWilde, J.F.; Chiang, H.; Hickman, D.A.; Ho, C.R.; Bhan, A. ACS Catal. 2013, 3, 798-807. (b) Christiansen, M.A.; Mpourmpakis, G.; Vlachos, G.D.
ACS Catal. 2013, 3, 1965-1975. (c) Zhang, M.; Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514
21
Alumina-catalyzed E2 Elimination
Ea = 35 kcal/mol
EaE2 = 38 kcal/mol
EaE1 = 52 kcal/mol
(a) Bhan, A. et al. ACS Catal. 2013, 3, 798-807; (b) Christiansen, M.A., Mpourmpakis, G., Vlachos, G.D. ACS Catal. 2013, 3, 1965-1975;
(c) Zhang, M., Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514
22
Getting the Most Out of Fossil Fuels
650-900 °C
Table 6. Average concentration of components in natural
gas wells in western Canada, Ontario, and U.S. plays
Component
Range (mol %)
Methane
87-97
Ethane
1.5-7
Propane
0.1 – 1.5
Butane
0.01-0.3
Pentanes plus (C5H12 – C10H22)
0.02
Impurities (N2, CO2, H2S, water)
<7
ΔH1073K = - 33 kcal/mol
800 °C
ΔH1073K = - 124 kcal/mol
800 °C
ΔH1073K = - 191 kcal/mol
(a) Zavyalova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.;
Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras. E-.J. (Siluria Technologies, Inc. USA). Catalysts for petrochemical
catalysis. US 20130023709, January 24, 2013
23
Direct Coupling of Methane
ΔH298K = - 30 kcal/mol
Catalyst Types
1) Reducible metal oxide
V2O5, MoO3
2) Non-reducible rare-earth oxides
LaO3, CeO2
Figure 8. Various unsupported single oxides tested
in OCM reaction. S(C2) = selectivity for C2H6 and C2H4
3) Mixed metal oxides
Au/Co3O4, Co/MnO
(a) Zavylova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.;
Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis.
US Patent 20130023709, January 24, 2013. (c) Li, Z-.Y.; Yuan, Z.; Zhao, Y-X.; He, S-.G. Chem. Eur. J. 2014, 20, 1-8.
Key Steps in Oxidative Coupling of Methane
(a) Lunsford, J.H. Angew. Chem. Int. Ed. Engl. 1995, 34, 970-980. (b) ) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.;
Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis.
US Patent 20130023709, January 24, 2013.
24
25
Indirect Use of Methane
300-500 °C
ΔH298K = -8 kcal/mol
ΔH298K = 15 kcal/mol
ΔH298K = -10 kcal/mol
ΔH298K = -12 kcal/mol
Figure 10. SEM image of SAPO-34 with cartoon of active cages
(a) Union Gas http://www.uniongas.com/about-us/about-natural-gas/Chemical-Composition-of-Natural-Gas (b) El-Halwagi, M. et al. ACS Sust. Chem. Eng.
2014, 2, 30-37
26
Hydrocarbon Pool Mechanism
Figure 11. Original hydrocarbon pool mechanism as
proposed by Dahl and Kolboe
Figure 13. 13C incorporation into products
and entrained species after 12C-methanol
feed is switched to a 13C-methanol feed.
Figure 12. Current understanding of HP mechanism
(a) Dahl, I.M., Kolboe, S. J. Catal. 1994, 149, 458-464 (b) Lie, Z. et al. Catal. Commun. 2014, 46, 36-40
27
Competing Pathways: Side-Chain v. Paring
CH3OH
Side-chain
Paring
H2 O
2 CH3OH
H2 O
CH3OH
(a) Lesthaeghe, D. et al. Chem. Eur. J. 2009, 15, 10803-10808 (b) Ilias, S., Bhan, A. J. Catal. 2014, 311, 6-16. (c) Arstad, B.; Kolboe, S.; Swang, O.
J. Phys. Chem. A 2005, 109, 8914-8922.
28
Biosynthetic Pathway
29
S-adenosylmethionine Synthetase: EC 2.5.1.6
Asp16
Lys17
S-adenosylmethionine
(a) Van de Poel, B.; Bulens, I.; Oppermann, Y.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Sauter, M.; Geeraerd, A.H. Physiol. Plant. 2013, 148, 176-188. (b) Komoto, J.;
Yamada, T.; Takata, Y.; Markham, G.M.; Takusagawa, F. Biochem. 2004, 43, 1821-1831.
30
ACC Synthase: EC 4.4.1.14
Pyridoxal-5’-phosphate
PLP
S-adenosylmethionine
SAM
1-aminocyclopropylcarboxylic acid
ACC
Capitani, G. et al. J. Mol. Biol. 1999, 294, 745-756
PLP-bound SAM
Methylthioadenosine
MTA
ACC Oxidase: EC 1.14.17.4
31
ACC
ascorbate dehydroascorbate
2 H2 O
H2O + HCO3-
O2
HCO3-
CO2 + HCN
- OH
(a) Yoo, A.; Seo, Y.S.; Jung, J-.W.; Sung, S-.K.; Kim, W.T.; Lee, W.; Yang, D.R. J. Struct. Biol. 2006, 156, 407-420. (b) Rocklin, A. M.; Kato, K.; Liu, H-.W.; Que Jr.,
L.; Lipscomb, J.D. J. Biol. Inorg. Chem. 2004, 9, 171-182. (c) Meng, D.; Shen, L.; Yang, R.; Zhang, X.; Sheng, J. Biochem. Biophys. Acta 2014, 1840, 120-128.
Heterologous Expression of Ethylene Forming Enzymes
Escherichia coli
Figure 16. Expression of bifunctional fusion protein in E. coli.
(A) Hybrid enzyme inserted into pET-14b. (B) Purification of
protein samples.
Li, N.; Jiang, X.N.; Cai, G.P.; Yang, S.F. J. Biol. Chem. 1996, 271, 25738-25741
Figure 17. Production of ethylene by bifunctional
hybrid enzyme in which (1mM) S-AdoMet was used
as the ethylene precursor
32
S. cerevisiae: Ethanol Factories
pyruvate
glycolysis
coenzyme
A
acetyl CoA
NADH
Figure 18. Budding Saccharomyces cerevisiae,
commonly refered to as “bakers’ yeast.”
NADH
Scheme 1. Glycolysis and fermentation of glucose to ethanol
in S. cerevisiae
(a) Quevedo-Hidalgo, B.; Monsalve-Marin, F.; Narvaez-Rincon, P.C.; Pedroza-Rodriquez, A.M.; Velasquez-Lozano, M.E. World J. Microbiol. Biotechnol. 2013,
49, 459-466. (b) MetaCyc Pathway: Pyruvate Fermentation to Ethanol I. http://www.biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY5480&detail-level=4&detail-level=3 (accessed 4/4/14).
33
34
Microbial Ethanol to Ethylene
Phaseollidin hydratase
EC 4.2.1.97
Phaseollidin
Phaseollidin hydrate
S. cerevisiae
Phaseollidin hydratase
EC 4.2.1.97
(a) Marliere, P. EP 2336340, June 22, 2011. (b) Singh, A.; Bajar, S.; Bishnoi, N.R. Fuel, 2014, 116, 699-702
35
Ketoglutarate to Ethylene
Microbial 2-ketoglutarate pathway:
2-ketoglutarate oxygenase
EC 1.13.12.19
Oxidation of Glutamate
L-glutamate
oxidase
EC 1.4.3.2
(a) Guerro, F.; Carbonell, V.; Cossu, M.; Correddu, D.; Jones, P.R. PLoS ONE, 2012, 7, 1-11. (b) Johansson, N.; Quehl, P.; Norbeck, J.; Larsson, C. Microb. Cell
Fact. 2013, 12, 89-95.
36
Figure 19. Electron micrograph
of Methanomonas methylovora
2% CH3OH
buffer solution
28 °C
L-glutamic acid
Component Growth in Buffer Medium
Microbial Production of Glutamate
Figure 20. Time course of L-glutamic acid
accumulation by M. methylovora.
,
L-glutamic acid;
, bacterial growth.
(a) Oki, T.; Sayama, Y.; Nishimura, Y.; Ozaki, A. Agr. Biol. Chem. 1968, 32, 119-120. (b) Oki. T.; Kitai, A.; Kouno, K.; Ozaki, A. J. Gen. Appl. Microbiol. 1973, 19, 79-83.
37
Microbial Methanol to Ethylene
CH3OH
M. methylovora
Mankind’s Syntheses
Thermal Cracking of Hydrocarbons
38
Dehydration of Ethanol
300-400 °C
ΔH298K = 11 kcal/mol
750-1000 °C
ΔH298K = 33 kcal/mol
Oxidative Dehydrogenation of Ethane
400-600 °C
ΔH298K = - 25 kcal/mol
Oxidative Coupling of Methane
650-900 °C
ΔH298K = - 30 kcal/mol
Methanol to Olefins
300-500 °C
ΔH298K = 15 kcal/mol
(a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen,
A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947
39
Chemical v. Biological Catalysis
300-400 °C
S. cerevisea
30 °C
300-500 °C
M. methylovoras
30 °C
Thank You!
Dr. John Frost
Dr. Xuefei Huang
Frost group: Karen Frost, Yukari Nishizawa-Brennen, Peng Zhang
Olivia Chesniak, Tanner McDaniel, Travis Bethel, Corey Jones, Matt Giletto
All of you.