METHODS FOR DE NOVO DISCOVERY OF RNA EDITING EVENTS IRINA SHCHUKINA ALEXANDER KANAPIN, ANASTASIA SAMSONOVA DEPARTMENT OF ONCOLOGY UNIVERSITY OF OXFORD TYPES OF RNA EDITING A C I (ADAR) U (APOBEC) G A A G G G A A G A A A G A A G G G G G G G A G G A A G AAGGACTCGTATCACGGATACCGTAGC Global goal: framework development This semester: benchmarking of existing methods TOOLS AND DATA ▸ REDITools ▸ RED ▸ GIREMI K-562 cell lines RNA-seq and DNA-seq (ENCODE project) MCF-7 cell lines RNA-seq (hypoxia and normoxia) VARSCAN DNA 4,140,928 RED 29,927 K-562: genome + transcriptome REDITOOLS 31,896 FRACTION DISTRIBUTION (K-562) All sites. K−562 3 density 2 1 0 0.25 0.50 Fraction 0.75 1.00 FRACTION DISTRIBUTION (K-562) All significant sites. K−562 Significant sites. No genome SNPs. K−562 4 2.0 3 density density 1.5 2 1 1.0 0.5 0 0.0 0.25 0.50 Fraction 0.75 1.00 0.25 0.50 Fraction 0.75 1.00 MCF-7 Normoxia Hypoxia (2 biological replicates) Nuclear RNA Cytoplasmic RNA Nuclear RNA Cytoplasmic RNA REPLICATES COMPARISON REDITools (nucleus normoxia) RED (nucleus normoxia) REDITOOLS AND RED RESULTS Nucleus (normoxia) Cytoplasm (normoxia) DATA ANALYSIS Hypoxia vs normoxia Cytoplasm vs nucleus 9000 8000 8000 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 REDITools Normoxia RED Hypoxia REDITools Cytoplasm RED Nucleus RESULTS ▸ ▸ ▸ ▸ Bias towards sites with high fraction (SNPs) Poor noise removal Intersection between two methods: 30% Still some biologically relevant results Future plans: framework development and analysis of total RNA-seq of 10 cancer cell lines (2 conditions) Thank you!
© Copyright 2026 Paperzz