CENTRAL VALLEY SALINITY ALTERNATIVES FOR LONG‐TERM SUSTAINABILITY (CV–SALTS) AquaticLifeStudy FinalReport January 6, 2014 Prepared for SAN JOAQUIN VALLEY DRAINAGE AUTHORITY Submitted by DAVID BUCHWALTER, PH.D, NORTH CAROLINA STATE UNIVERSITY Table of Contents Section1 Introduction...............................................................................................................................................1‐1 1.1 ProjectBackgroundandPurpose.................................................................................................................1‐1 1.2 ScopeofWork.......................................................................................................................................................1‐1 1.3 DefinitionsandAcronyms...............................................................................................................................1‐4 1.3.1 Definitions.............................................................................................................................................1‐4 1.3.2 Acronyms..............................................................................................................................................1‐5 Section2 AnalysisofSalinity‐RelatedConstituents........................................................................................2‐1 2.1 TotalDissolvedSolids.......................................................................................................................................2‐1 2.1.1 Background..........................................................................................................................................2‐1 2.1.2 StateofSciencewithRespecttoUnderstandingtheToxicityof ComplexTDSMatrices.....................................................................................................................2‐1 2.1.3 RegulatoryApproachestoTotalTDS/Salinity/ECforthehProtection ofAquaticLife......................................................................................................................................2‐4 2.2 Chloride...................................................................................................................................................................2‐6 2.2.1 ChlorideWaterQualityCriteria..................................................................................................2‐6 2.2.2 VariousRationaleforAcuteandChronicChlorideCriteria............................................2‐7 2.2.3 ChlorideSummary..........................................................................................................................2‐14 2.3 Boron.....................................................................................................................................................................2‐14 2.3.1 Overview.............................................................................................................................................2‐14 2.3.2 BoronSummary..............................................................................................................................2‐19 2.4 Sulfate....................................................................................................................................................................2‐20 2.4.1 Overview.............................................................................................................................................2‐20 2.4.2 SulfateSummary.............................................................................................................................2‐21 2.5 OtherSalinity‐RelatedConstituents........................................................................................................2‐24 Section3 ApplicabilityofFindingstotheCentralValley 3.1 ApplicabilityofToxicityDatatoCentralValleyFauna.......................................................................3‐1 3.2 ToxicityofChloride,Boron,andSulfateinRelationtoWaterChemistry ConcentrationsintheCentralValley..........................................................................................................3‐1 3.2.1 InterpretationofResidentBiologicalCommunitiesintheCentralValley...............3‐1 3.2.2 WaterChemistryintheCentralValley.....................................................................................3‐5 Section4 ConclusionsandRecommendations..................................................................................................4‐1 4.1 Conclusions............................................................................................................................................................4‐1 4.1.1 Salinity‐relatedToxicity.................................................................................................................4‐1 4.1.2 WaterChemistryintheCentralValley.....................................................................................4‐1 4.1.3 CentralValleyBiotaandBiologicalMonitoring...................................................................4‐1 4.2 RegulatoryOptions.............................................................................................................................................4‐2 4.2.1 WaterQualityObjectivesBasedonToxicity............................................................................4‐2 4.2.2 WaterQualityObjectivesBasedonChemistry.......................................................................4‐4 4.2.3 WaterQualityObjectivesBasedonBiology.............................................................................4‐4 4.2.4 HybridApproachesforSettingWaterQualityObjectives.................................................4‐4 4.3 FinalThoughts......................................................................................................................................................4‐5 Section5 References..................................................................................................................................................5‐1 AppendixA DataTables............................................................................................................................................A‐1 Version 2 Final Aquatic Life Report_Vers2_010614.docx i Table of Contents List of Figures Figure2‐1 Figure2‐2 Figure2‐3 Distributionofgenus‐specificXC95valuesfor163CAMgenera.......................................2‐5 SSDofshort‐termL/EC50toxicitydataforthechlorideioninfreshwater..................2‐9 SSDoflong‐termno‐andlow‐effectendpointtoxicityforthe chlorideioninfreshwater.................................................................................................................2‐9 Figure2‐4 Influenceofwaterhardnessandsulfateontoxicityofchloride.....................................2‐11 Figure2‐5 Influenceofwaterhardnessontheacutetoxicityofchoridetothe fingernailclam,planorbidsnailandtubificidworm............................................................2‐12 Figure2‐6 Distributionoftheacutetoxicitydataofboratetoaquaticorganisms (lethalandnon‐lethalendpoints)basedonECOTOXdata................................................2‐16 Figure2‐7 Distributionofthechronictoxicitydataofboratetoaquaticorganisms (lethalandnon‐lethalendpoints)basedonECOTOXdata...............................................2‐17 Figure2‐8 Compiledacuteandchronictoxicityvaluesforboroninfish..........................................2‐18 Figure2‐9 Availableacuteandchronictoxicityvaluesforboroninaquaticspeciesof diversetaxonomicgroups................................................................................................................2‐19 Figure2‐10 Distributionoftheacutetoxicitydataofsulfatetoaquaticorganisms (lethalandnon‐lethalendpoints)basedonECOTOXdata................................................2‐22 Figure2‐11 Distributionofthechronictoxicitydataofsulfatetoaquaticorganisms (lethalandnon‐lethalendpoints)basedonECOTOXdata...............................................2‐23 Figure3‐1 Samplinglocationsforwaterchemistrymeasurementsreportedfromthe SanJoaquinRiverandtributariesfromLelandandFend(1998)....................................3‐3 Figure3‐2 Cumulativepercentilesforoptimaandvariances(twostandarddeviations) forSanJoaquinValleyinvertebratesreportedfromLelandandFend(1998)..........3‐4 Figure3‐3 SamplelocationsofCentralValleyTDSdatasummarizedinTable3‐2........................3‐7 Figure3‐4 SamplelocationsofCentralValleydissolvedchloridedatasummarized inTable3‐2...............................................................................................................................................3‐8 Figure3‐5 SamplelocationsofCentralValleydissolvedsulfatedatasummarized inTable3‐2...............................................................................................................................................3‐9 Figure3‐6 SamplelocationsofCentralValleydissolvedborondatasummarized inTable3‐2.............................................................................................................................................3‐10 Figure4‐1 Generalapproachesforgeneratingsalinity/TDSrelatedWQOsforthe protectionofaquaticlifeintheCentralValley.........................................................................4‐2 Figure4‐2 OptionsfordevelopingWQOsbasedontoxicity.....................................................................4‐3 Figure4‐3 HybridapproachcombiningatotalTDS/salinity/ECtriggervaluewith WQOsforindividualions...................................................................................................................4‐5 List of Tables Table2‐1 Table2‐2 Table2‐3 ii TDSeffectconcentrationsfromWeber‐ScannellandDuffy(2007)...............................2‐3 ChloridecriteriafortheUS,BritishColumbia,CanadaandIowa....................................2‐7 Exampleofrelationshipbetweenhardnessandsulfateandcalculated acutecriterion.......................................................................................................................................2‐13 Version 2 Final Aquatic Life Report_Vers2_010614.docx Table of Contents Table2‐4 Table2‐5 Table2‐6 Table3‐1 Table3‐2 Table4‐1 Exampleofrelationshipbetweenhardnessandsulfateandcalculated chroniccriterion..................................................................................................................................2‐13 Predictedboroneffectlevels.........................................................................................................2‐15 ProposedIowasulfatecriteriabasedonbinnedchlorideandhardness categories................................................................................................................................................2‐20 MajorionconcentrationsintheSanJoaquinRiverandtributariesfrom LelandandFend(1998)......................................................................................................................3‐3 Waterqualitycharacteristicsofsalinity‐relatedconstituentsintheCentral Valleyintermsofpercentiles...........................................................................................................3‐6 HC05estimatesfortheacuteandchronictoxicityofmajorions.......................................4‐3 TableA‐1 TableA‐2 TableA‐3 TableA‐4 TableA‐5 TableA‐6 TableA‐7 TableA‐8 TableA‐9 Final Aquatic Life Report_Vers2_010614.docx Four‐dayLC50valuesofvarioustaxaexposedtosodiumchloride..................................A‐2 Resultsofchronictoxicitytests(>7dayduration)conductedonfreshwater organismsexposedtosodiumchloride.......................................................................................A‐3 Predictedcumulativepercentageofspeciesaffectedbychronicexposures tochloride.................................................................................................................................................A‐4 ChloridetoxicityendpointdatafromCanadianWaterQualityGuidelinesfor theprotectionofaquaticlife.............................................................................................................A‐5 ChloridetoxicityvaluesfromTables2and3,IDNR(2009)...............................................A‐8 Acutetoxicitydataforborate(ECOTOX).....................................................................................A‐9 Chronictoxicitydataforborate(ECOTOX).............................................................................A‐10 Acutetoxicitydataforsulfate(ECOTOX).................................................................................A‐11 Chronictoxicitydataforsulfate(ECOTOX).............................................................................A‐12 Version 2 iii Section 1 Introduction CentralValleySalinityAlternativesforLongTermSustainability(CV‐SALTS)isdevelopinga comprehensiveregulatoryandprogrammaticapproachtothemanagementofsaltandnitrateinthe CentralValleythatisconsistentwiththeStateRecycledWaterPolicy(SRWP).Thisworkisbeing carriedoutcollaborativelywiththeCentralValleyRegionalWaterQualityControlBoard(Central ValleyWaterBoard),theStateWaterResourcesControlBoard(StateWaterBoard),theCentralValley SalinityCoalitionandStakeholders.AsstatedintheCV‐SALTSStrategyandFrameworkdocument,the strategytofulfilltherequirementsoftheSRWPistoadoptaCentralValleySaltandNitrate ManagementPlan(SNMP)andrevisetheBasinPlansapplicabletotheCentralValleytofacilitate implementationoftheSNMP.Thiseffortincludesatechnicalreviewofthestateofsciencewith regardstotheestablishmentofappropriatewaterqualityobjectives(WQO)toprotectsurfacewater beneficialuses.ThisAquaticLifeStudywasundertakentoevaluatethetechnicalbasisforthe establishmentofsalinity‐relatedWQOstoprotectaquaticlifeintheCentralValley.Thefindingsofthis analysiswillbeconsideredbyCV‐SALTSduringdevelopmentandadoptionoftheSNMP. 1.1 Project Background and Purpose ThisreportisintendedtomeetthefollowingobjectivesoftheAquaticLifeStudy: Identifysalinity‐relatedwaterqualitycriteriathatcouldbeusedasthebasisforestablishing WQOsinCentralValleysurfacewatersforprotectionofaquaticlifebeneficialuses; Identifysalinity‐relatedWQOs,standards,goals,proceduresand/orpoliciesthathavebeen establishedelsewhere(state,federalorinternational)andcanbeusedtoinformeffortsto establishWQOstoprotectaquaticlifebeneficialuses,consistentwiththeCentralValleyWater Boardbiological‐relatedbeneficialuses(i.e.,WarmFreshwaterHabitat[WARM],Cold FreshwaterHabitat[COLD],andPreservationofBiologicalHabitatsofSpecialSignificance [BIOL]–collectivelyreferredtoas“aquaticlifebeneficialuses”);and Preparetechnicalrecommendationsforadoptionofsalinity‐relatedWQOstoprotectaquatic lifebeneficialusesforconsiderationbytheCentralValleyWaterBoard. 1.2 Scope of Work Toaccomplishthegoalslistedabove,fivekeytaskswereidentifiedasfollows: Task1–ReviewSelectedLiteratureRegardingSalinityandProtectionofAquaticLife BeneficialUses.ThefollowingdocumentswereidentifiedbyCV‐SALTSaspertinentforreview andsummarizedinatechnicalmemorandum.Keyfindingsofthisreviewarepresentedin Section2ofthisreport. Version 2 Final Aquatic Life Report_Vers2_010614.docx 1‐1 Section 1 Introduction CentralValleyRegionalWaterQualityControlBoard.1999.Boron:ALiteratureSummary forDevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQuality ControlBoard,January1999. http://www.swrcb.ca.gov/centralvalley/water_issues/swamp/historic_reports_and_faq_sheets/info_supt_ rec_guidelines/boron_literature_sum_draft.pdf CentralValleyRegionalWaterQualityControlBoard.2000.Salinity:ALiteratureSummary forDevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQuality ControlBoard,January2000. http://www.swrcb.ca.gov/rwqcb5//water_issues/swamp/historic_reports_and_faq_sheets/info_supt_rec_ guidelines/davis2000_salinity_litsum_ar07019.pdf. DepartmentofInterior(DOI).1998.GuidelinesfortheInterpretationofBiologicaleffectsof SelectedConstituentsinBiota,WaterandSediment.DepartmentofInterior,National IrrigationWaterQualityProgram,InformationReportNo.3.November1998.Inparticular, reviewthesectionstitledintroduction,boron,andsalinity. http://www.usbr.gov/niwqp/guidelines/index.html. Evans,M.andC.Frick.2001.TheEffectsofRoadSaltsonAquaticEcosystems.NWRI ContributionSeriesNo.02‐308,NationalWaterResearchInstituteandUniversityof Saskatchewan,Saskatoon,SK,Canada. IowaDepartmentofNaturalResources(IDNR).2009.WaterQualityStandardsReview: Chloride,SulfateandTotalDissolvedSolids.IowaDepartmentofNaturalResources, February9,2009.http://www.dnr.mo.gov/env/wpp/rules/rir/so4‐cl‐ws_review_idnr_so4‐cl.pdf Nagpal,N.K.,D.A.Levy,andD.D.MacDonald.2003.WaterQuality:AmbientWaterQuality GuidelinesforChloride‐OverviewReport.MinistryofEnvironment,BritishColumbia, Canada.http://www.env.gov.bc.ca/wat/wq/BCguidelines/chloride/chloride.html. StroudWaterResearchCenter.2010.ExpertReportontheProposedRulemakingbythe PennsylvaniaEnvironmentalQualityBoardforAmbientWaterQualityCriterionChloride(Cl). StroudWaterResearchCenter,Avondale,Pennsylvania.StroudReport#2010004.June14, 2010. http://www.sierraclub.org/naturalgas/rulemaking/documents/PA.Chapter93/2010.6.14.StroudReport.p df. Task2–SupplementalReviewofKeyTechnicalReferences.BasedonthereviewofTask1 documents,thefollowingdocumentswereidentifiedforadditionalreviewaspertinenttothe overallgoalsofthisproject.Additionaldocumentsreviewedarelistedbelowandfindingsare includedinSection2ofthisreport,asappropriate: 1‐2 Weber‐Scannell,P.K.andL.K.Duffy.2007.EffectsofTotalDissolvedSolidsonAquatic Organisms:AReviewofLiteratureandRecommendationforSalmonidSpecies.American JournalofEnvironmentalSciences3:1‐6. Birge,W.J.andJ.A.Black.1977.Sensitivityofvertebrateembryostoboroncompounds,April 1977FinalReport.EPA‐560/1‐76‐008.U.S.EnvironmentalProtectionAgency,Officeof ToxicSubstances.Washington,DC.66p. Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 1 Introduction Black,J.A.,J.B.Barnum,andW.J.Birge.1993.Anintegratedassessmentofthebiological effectsofborontotherainbowtrout.Chemosphere26:1383‐1413. Bradley,T.J.andJ.E.Phillips.1977.Regulationofrectalsecretioninsaline‐watermosquito larvaelivinginwatersofdiverseioniccomposition.JournalofExperimentalBiology66:83‐ 96. CanadianCouncilofMinistersoftheEnvironment(CCME).2011.Canadianwaterquality guidelinesfortheprotectionofaquaticlife:Chloride.In:CanadianEnvironmentalQuality Guidelines,1999. Goetsh,P.A.andC.G.Palmer.1997.Salinitytoleranceofselectedmacroinvertebratesofthe SabieRiver,KrugernationalPark,SouthAfrica.ArchiveofEnvironmentalContaminant Toxicology32:32‐41. Goodfellow,W.L.,L.W.Ausley,D.T.Burton,D.L.Denton,P.B.Dorn,D.R.Grothe,M.A.Heber, T.J.Norberg‐King,andJ.H.Rodgers,Jr.2000.Majoriontoxicityineffluents:Areviewwith permittingrecommendations.EnvironmentalToxicologyandChemistry19:175‐182. Leland,H.V.andS.V.Fend.1998.BenthicinvertebratedistributionsintheSanJoaquinRiver, California,inrelationtophysicalandchemicalfactors.CanadianJournalofFisheriesand AquaticSciences55:1051‐1067. Loewengart,G.2001.ToxicityofborontoRainbowTrout:Aweight‐of‐the‐evidence assessment.EnvironmentalToxicologyandChemistry20:796‐803. Rowe,R.I.,C.Bouzan,S.Nabili,andC.D.Eckert.1998.Theresponseoftroutandzebrafish embryostolowandhighboronconcentrationsisU‐shaped.BiologicalTraceElements Research66:237‐259. Schoderboeck,L.,S.Muhlegger,A.Losert,C.Gausterer,andR.Hornek.2011.Effects assessment:Boroncompoundsintheaquaticenvironment.Chemosphere82:883‐487. Soucek,D.J.,A.Dickinson,andB.T.Koch.2011.Acuteandchronictoxicityofborontoa varietyoffreshwaterorganisms.EnvironmentalToxicologyandChemistry30:1906‐1914. Task3–SupplementalReviewofFederalProcedures,PoliciesandGuidelines.Thistask largelyfocuseduponthereviewofdocumentsrelatedtothedevelopmentoffieldbased benchmarksforsalinity/totaldissolvedsolids(TDS)andreviewoftheEPAEcotoxicology database(ECOTOX;http://cfpub.epa.gov/ecotox/).FindingsareincorporatedintoSections2and 3ofthisreport,asapplicable. Task4–SupplementalReviewofCaliforniaPlans,Procedures,PoliciesandGuidelines. EffortsunderthistaskincludedcontactingtheCaliforniaRegionalWaterQualityControlBoards toidentifypotentiallyrelevantdocuments,determinethestatusofbiologicalassessmentin California,andevaluatetheapplicabilityofCalifornia’semergingBiologicalObjectivesfor determiningsalinityrelatedimpactsonaquaticbiotaintheCentralValley.Contactwiththe CaliforniaRegionalWaterQualityControlBoardsdidnotresultintheidentificationofanynew informationrelevanttothepurposesofthisstudy.InformationregardingCentralValleyaquatic Final Aquatic Life Report_Vers2_010614.docx Version 2 1‐3 Section 1 Introduction biotawithinthecontextofthepurposesofthisstudyisincorporatedintoSection3ofthis report. Task5–SupplementalReviewofSelectedInternationalProcedures,Policiesand Guidelines.ReviewsofspecificinternationalregulatoryapproachesaresummarizedinSection 2ofthisreport;theirapplicabilitytotheCentralValleyissummarizedinsubsequentsections, asappropriate.Internationalapproachesreviewedincluded: Canada–Summarizeanyapplicablewaterqualityguidelinesforprotectionofaquaticlife publishedbytheCCME.http://www.ccme.ca/publications/ceqg_rcqe.html. Australia/NewZealand‐Summarizeanyapplicablewaterqualityguidelinesforprotection ofaquaticlifeinAustralianandNewZealandGuidelinesforFreshandMarineWater Quality(ANZECCandAMCANZ2000).http://www.environment.gov.au/resource/australian‐and‐ new‐zealand‐guidelines‐fresh‐and‐marine‐water‐quality‐volume‐1‐guidelines. SouthAfrica‐Summarizeanyapplicablewaterqualityguidelinesforprotectionofaquatic lifeincludedinSouthAfricanWaterQualityGuidelines,Volume7:AquaticEcosystems DepartmentofWaterAffairsandForestry,1996). http://www.capetown.gov.za/en/CSRM/Documents/Aquatic_Ecosystems_Guidelines.pdf. 1.3 Definitions and Acronyms Thefollowingdefinitionsandacronymsareprovidedtosupportunderstandingofthematerial presentedinsubsequentsection. 1.3.1 Definitions ThefollowingdefinitionshavebeenprovidedconsistentwiththeUnitedStatesEnvironmental ProtectionAgency(EPA)Guidelines(Stephensetal.,1985): AcuteToxicity:Toxicityelicitedimmediatelyfollowingshort‐termexposuretoachemical.EPA derivesacutecriteriafrom48‐to96‐hourtestsoflethalityorimmobilization. AcutetoChronicRatio(ACR):ACR=Acutevalue/chronicvalue.ThreeACRvaluesarerequired,and typicallytheyareaveragedtoproduceaFinalAcute‐ChronicRatio(FACR). ChronicToxicity:Toxicityresultingfromlong‐termexposuretoatoxicantgenerallyatexposure levelsbelowthosethatelicitacutetoxicity.Exposuredurationsareconsideredinrelationtothe lifespanoftheorganismtested. ChronicValue(CV):CanbethegeometricmeanoftheNoObservedEffectConcentration(NOEC)and theLowestObservedEffectConcentration(LOEC),orastatisticallydefinedvalue(e.g.EC50). CriterionContinuousConcentration(CCC)(orchroniccriterion):Thisvalueisusuallyequivalent totheFCV(seebelow). CriterionMaximumConcentration(CMC)(oracutecriterion):Thisvalueisderivedbydividing theFAVbyasafetyfactor(usually2). EC50:Theeffectivetoxicantconcentrationthatresultsina50%decreaseinatestpopulationforanon‐ lethalresponse(e.g.,growth,reproductiveoutput). 1‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 1 Introduction FinalAcuteValue(FAV):Avalueusedtoestimateanacuteconcentrationthatwouldbeprotectiveof 95%ofspecies.Thesevaluescanbebasedonaspeciessensitivitydistribution(SSD)orextrapolated fromtheacutetoxicitydatafromthefourmostsensitiveGMAVs. FinalChronicValue(FCV):Avalueusedtoestimateachronicconcentrationthatwouldbeprotective of95%ofspecies.Ifsufficientchronicdataarenotavailable(from8families),chronicvaluesare estimatedfromacutevaluesviatheapplicationofACRs. GenusMeanAcuteValue(GMAV):Whendataformorethanonespecieswithinagivengenusis available,thegeometricmeanofthesevaluesisusedtocalculateaGMAV. HC05:Anestimateoftheconcentrationofatoxicantthatwillnotharm95%ofspeciesinacommunity. LC50:Medianlethalconcentration;theconcentrationofatoxicantthatresultsina50%reductionof survivalinthetestpopulation. 1.3.2 Acronyms Thefollowingacronymsareusedinthisdocument: ACR–AcutetoChronicRatio ANZ–Australia/NewZealand CAM–CentralAppalachianMountains CCC–CriterionContinuousConcentration(orchroniccriterion) CCME–CanadianCouncilofMinistersoftheEnvironment CEDEN–CaliforniaEnvironmentalDataExchangeNetwork CentralValleyWaterBoard–CentralValleyRegionalWaterQualityControlBoard CMC–CriterionMaximumConcentration(oracutecriterion) CV–ChronicValue CV‐SALTS‐CentralValleySalinityAlternativesforLongTermSustainability CWQG–CanadianWaterQualityGuidelines DOI–DepartmentofInterior EC–ElectricalConductivity ECOTOX–EPAEcotoxicologyDatabase EPA–U.S.EnvironmentalProtectionAgency FACR–FinalAcute‐ChronicRatio FAV–FinalAcuteValue Final Aquatic Life Report_Vers2_010614.docx Version 2 1‐5 Section 1 Introduction FCV–FinalChronicValue GLEC–GreatLakesEnvironmentalCenter GMAV–GenusMeanAcuteValue IDNR–IdahoDepartmentofNaturalResources INHS–IllinoisNaturalHistorySurvey LOAEL–LowestObservedAdverseEffectLevel NOAEL‐NoObservedAdverseEffectLevel PNEC–PredictedNoEffectConcentration SC–SpecificConductance SCCWRP–SouthernCaliforniaCoastalWaterResearchProject SNMP–SaltandNitrateManagementPlan SRWP–StateRecycledWaterPolicy SSD–SpeciesSensitivityDistribution StateWaterBoard–StateWaterResourcesControlBoard SWAMP–SurfaceWaterAmbientMonitoringProgram TDS–TotalDissolvedSolids WQO–WaterQualityObjective 1‐6 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Forthepurposesofthisproject,salinity‐relatedwaterqualityconstituentsreferstothefollowing parameters:TDS,electricalconductivity(EC),sodium(Na+),chloride(Cl‐),calcium(Ca),magnesium (Mg),potassium(K),sulfate(SO4‐),carbonate(CO3),bicarbonate(HCO3),hardness(asCaCO3),and boron(B).Thefollowingsectionsprovideinformationprimarilyonfouroftheseconstituents: TDS/EC,chloride,sulfateandboron.Aswillbenotedbelowinformationontherelationshipbetween othersaltsandpotentialimpactstoaquaticlifearenotwellstudiedordocumented. 2.1 Total Dissolved Solids 2.1.1 Background Asageneralpointofreference,Wetzel(1983)reportsthatthemeansalinityconcentrationsinthe world’sriversis120milligrams/liter(mg/L),andMcKeeandWolf(1963)statethat95%ofinland UnitedStateswatersare<400mg/L.ThisreporttreatsTDSandECjointlybecauseinpracticality,EC isthereadilyattainablemeasurementusedtoestimateTDS.TheDOINationalIrrigationProgram InformationReportNo3.(1998)providesasummaryoftherelationshipsbetweentheseparameters asfollows: Forspecificconductance(SC)lessthan5,000microsiemens/centimeter(µS/cm)at25°C,TDS= 0.584xSC+22.1 Forspecificconductancebetween5,000and9,000µS/cmat25°C,TDS=0.682xSC‐269 Where:TDS=mg/Ltotalsalt LinsleyandFranzini(1979)reportthatformostwaters,TDSconcentrationstypicallyrangefrom 0.55–0.7timesthespecificconductance,whereasHem(1985)reportsregressionslopesof0.54‐0.96 fordilutewaters.TheU.S.BureauofReclamation(1993)reportstheuseof0.64asa“ruleofthumb”, thoughthisvaluecanbehigheriftheprimarydriverofconductivityissulfate(>0.7).TheU.S. DepartmentofAgriculture(1954)recommendsaratioof0.64.ForportionsoftheSanJoaquinRiver, reportedconversionvaluesrangefrom0.59to0.69(StateWaterBoard,1987).Thus,whilethereis coarseagreementontheconversionofECvaluestoTDSconcentrations,itisclearthatindividualionic constituents,temperature,andionicstrengthandcanaltertheutilityofasingleconversionvalue. 2.1.2 State of the Science with Respect to Understanding the Toxicity of Complex TDS Matrices TDStoxicityiscomplexandremainspoorlyunderstoodbecause(a)individualionsvaryintheir toxicities(e.g.,Saikietal.,1992;Mountetal.,1997);(b)otherionsinsolutioncanplayprofound modifyingrolesinthetoxicityofindividualions(e.g.,SoucekandKennedy,2005;Soucek,2007; Souceketal.,2011);and(c)therelativetoxicitiesofindividualionsarenotconsistentacrossspecies (e.g.,Kunzetal.,2013).Further,itremainsuncleartowhatextentthe“balance”ofvariousions determinesthetoxicityofcomplexionmixtures,specifically: Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐1 Section 2 Analysis of Salinity‐Related Constituents Individualionsvaryintheirtoxicities.TheworkofSaikietal.(1992)isparticularlyrelevantin illustratingthispoint.Whenseawater(dominatedbyNa+andCl‐)wasdilutedtomatchtheTDS concentrationsinagriculturaldrainwater,bothjuvenileChinooksalmonandstripedbass survivedwellin28‐dayexposures.However,evendiluteddrainwater(50%dilutions)reduced performance.Thispoorperformancewasattributedtoeitherthehighsulfateconcentrationsor unusualratiosofmajorions.AstudybyBradleyandPhillips(1977)withsalinetolerant mosquitosdemonstratedthattheseinsectsdidnottoleratethesubstitutionofsulfatefor chlorideintheirrearingwater.Theauthorsspeculatedthatsulfatewasamoredifficultionto dealwith(morebulky)thanchloride,andpotentiallymoredifficulttoeliminate.Similarresults wereobservedforaSouthAfricanMayfly(GoetshandPalmer,1997). Otherionsinsolutioncanplayprofoundmodifyingrolesinthetoxicityofindividualions.For example,Souceketal.(2011)reportthatchloridereducesthetoxicityofborontothe crustaceanHyallelaazteca.Similarly,Soucek(2007)reportontheamelioratingeffectsofwater hardnessandchlorideonsulfatetoxicity.Severalotherstudiesexploresuchrelationshipsand arediscussedinlatersectionsofthisreport. Therelativetoxicitiesofindividualionsarenotconsistentacrossspecies.Forexample,Mountetal., (1997)describedsulfateasbeingtheleasttoxicofthemajorionstestedwithCeriodaphniadubia, DaphniamagnaandPimephalespromelas,whiletheSaikietal.(1992),BradleyandPhillips(1977), andGoetshandPalmer(1997)studiessuggestsulfatetobemoretoxicthanchlorideinotherspecies. Averyimportantandunder‐appreciatedissuethatneedstobeconsideredinanywaterquality criteriaorWQOdevelopmentprocessisthedisconnectbetweenthespeciescommonlyfoundin toxicitydatasetsandthespeciesthatoccurinfreshwaterecosystems.Inparticular,insectstendto dominatefreshwaterinvertebratecommunitiesandarethusthefocalgroupforecologicalassessment andmonitoringefforts.However,insectsremaintremendouslyunder‐representedintoxicity databases.ThuswhileatoxicitydatasetmaymeetEPArequirements(eightfamiliesrepresentedper themethodsdevelopedbyStephanetal.(1985))forcriteriadevelopment,considerableuncertainty willremainwithrespecttotheprotectionofaquaticcommunitiesifthepredominanttaxainthose communitiesarenotwellrepresentedinthedatasetsusedtogenerateregulatoryguidelines,criteria, orWQOs. Whiletherearemanyexamplesintheliteratureoffreshwaterorganismstoleratingextremelyhigh acuteexposurestohighTDSwaters,therearealsoexamplesofspeciespoorlytolerating environmentallyrelevanthighTDSconcentrations.IntheirbriefreviewofTDStoxicity,Weber‐ ScannellandDuffy(2007)compileddatafromseveralaquaticspeciesshowingsensitivityofaquatic organisms(Table2‐1)1.Theyconcludethatfertilizationandeggdevelopmentaregenerallythemost sensitivephysiologicalprocessesdisruptedbyhighTDSconcentrationsinfish.Itisnoteworthythat thetoxicityvaluescompiledbyWeber‐ScannellandDuffy(2007)areconsiderablylowerthanthose compiledinDOI(1998). Goodfellowetal.(2000)statethat,“Ingeneralterms,itismoreimportanttomatchthesalinity toleranceforchronicversusacutetoxicitytesting,giventhefactthatthegrowthandreproductive 1NotethatEC 50valuesforKhangarot(1991)inTable2‐1arebasedonimmobility.TheoriginalBaudoin (1974)referenceinTable2‐1wasnotfound;therefore,thebasisfortheEC50endpointscouldnotbe determined. 2‐2 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents endpointsaremoresensitivetoenergy‐taxingrequirementsofosmoregulationthanistheacute endpointofsurvival.”Workwithaquaticinsectsinourlaboratoryalsosupportstheneedforchronic exposurestoadequatelyevaluatetoxicityduetohighTDSexposures(Kunzetal.,2013). Table 2‐1. TDS effect concentrations from Weber‐Scannell and Duffy (2007) (References in table are not provided in this document – see original references). . Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐3 Section 2 Analysis of Salinity‐Related Constituents IDNR(2009)AppendixBisaDraftJustificationforChangingWaterQualityStandardsforSulfate, TotalDissolvedSolidsandMixingZonesproducedbytheIllinoisEnvironmentalProtectionAgency (2006).Thejustificationincludestheclaimthat,“Unlikemanytoxicantsthatexerttoxiceffectsover bothshorttermandlongtermperiods(acuteandchronictoxicity),sulfatehasbeendemonstratedto affectonlyshorttermsurvivaloftestorganisms.Inotherwords,organismsthatsurvivetheinitial osmoticshockofexposurewillsurviveindefinitelyatthatconcentration”.However,analysisofsulfate toxicitydatasuggestsmuchlowereffectlevelsresultingfromchronicexposuresthanfromacute exposures(seebelow).Thus,theIllinoisjustificationdoesnotappeartobesupportedbythedata2. TheconceptofhighTDSexposuresasenergy‐taxingisanimportantone.PimentelandBulkley(1983) reportthatlowtemperatures,“reducetheabilityoffishtoregulateinternalsaltbalance”.Thereare anecdotalreportsofmarkedincreasesinmayflyfoodconsumptionratesunderhighTDSexposures accompanyingsignificantdevelopmentaldelays(ittakeslongerforlarvaetodeveloptoadulthoodif theysurvivetheexposureregime)(DavidFunk,entomologist,StroudWaterResearchCenter, Avondale,PA,personalcommunication;DavidBuchwalter,directobservation). Theissuesdescribedabovecoupledwiththelackofclaritywithinthescientificcommunityregarding theeffectsofionbalanceorionicratiosonaquaticlifemaketheestablishmentofrationalregulations basedonun‐characterizedTDSorECchallenging.Weber‐ScannellandDuffy(2007)concludethat,“It isrecommendedthatdifferentlimitsforindividualions,ratherthanTDS,beusedforsalmonid species”.Whilethismaybemorescientificallydefensibleintheory,inpracticeitcreatestheneedfor well‐establishedcriteriaforallcomponentsofTDS.Thisrequiresthedevelopmentofamorecomplete understandingofthetoxicitiesofseveralionsandthemodifyingeffectsofotherinteractingionsin solution.Ourscientificunderstandingisconsiderablylackinginthisregard.TheStateofIowahas essentiallydecidedtoabandonits1,000mg/LTDSstandardforthedevelopmentofindividual chlorideandsulfatestandards(seebelow).YethowtheStateofIowawillproceedwithhighTDS dischargeswhenconstituentsotherthanchlorideorsulfatedominatethematrixremainsunclear. 2.1.3 Regulatory Approaches to Total TDS/Salinity/EC for the Protection of Aquatic Life IntheU.S.andCanada,thepredominantmannerbywhichcriteriaaredevelopedforaquaticlife protectionisthroughtheanalysisoftoxicitydatasetscontainingdatafornumerousspecies(e.g.,see Stephanetal.,1985).ThecomplexityofTDSmatricesandthevariabilityoftoxicitydescribedabove haveprecludedthedevelopmentoflabgeneratedcriteriavaluesfortotalsalinity/TDSatthefederal andstatelevels.Othernationshavedevelopedfield‐basedmethodsbasedonstatisticaldistributions ofsalinityinnaturalsystemstoformthebasisofregulatoryapproaches.Examplesofeachofthese approachesaredescribedbelow. United States Field‐based Regulatory Approach3 TheabsenceoffederalorstateregulatoryTDS/ECvaluesinCentralAppalachiaMountains(CAM) promptedEPAtodevelopafieldderivedconductivitybenchmarkinEcoregions68‐70,whereaquatic lifeisreportedtobehighlyimpairedbelowsurfacecoalminingoperations(EPA,2011).The benchmarkemployedafield‐derivedgenussensitivitydistributionbasedontheprobabilityof 2Theagencywasnotcontactedforthepurposesofthisstudy;additionalfollow‐upisrecommendedifthesedataweretobe usedforWQOdevelopment. 3Thedocumenttitled,AField‐BasedAquaticLifeBenchmarkforConductivityinCentralAppalachianStreamswasbrieflyused inthepermittingprocessforthecoalindustry.Currently,thebenchmarkisinlegalreview. 2‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents occurrenceofagivengenusasafunctionofconductivityfrom2,210biologicalsamplestakenwith accompanyingconductivitydata.The5thcentileofthedistributionofoccurrencewastakenforeach genustoreflectitsextirpationconcentration.Themethodcreatesasensitivitydistributionof extirpationconcentrationsofTDSacrossgenera.Thebenchmarkisbasedonthe5thcentileofthe distributionofgenusspecificextirpationconcentrationsandcalculatedtobe300µS/cm(Figure2‐1). Importantly,thisbenchmarkisintendedonlytoapplytoEcoregions68‐70wheretheionic compositionisdominatedbysulfate/bicarbonatesalts. Figure 2‐1. The distribution of genus‐specific XC95 values for 163 CAM genera (from Figure 8, EPA 2011). Australia/New Zealand (ANZ) TheANZapproachtoregulatingsalinityisthroughtheuseof“triggervalues”(ANZECCandAMCANZ, 2000).Triggervaluesareconcentrationsthatmayposepotentialenvironmentalrisk.Assuch,they “trigger”theneedforfurthertestingand/oranalysis.Ratherthanemployinga“onesizefitsall” approachforallfreshwaters,theANZapproachusesstatisticaldistributionsofsalinitybasedon waterbodytypes(e.g.,wetlands,smallstreams)andecologicalsettings(equivalenttoanEcoregion approach).Forexample,the80thpercentileofsalinitydistributionsforagivenwaterbodytypeina givenregionisusedasa“triggervalue”.Assuch,they“trigger”theneedforfurthertestingand/or analysis.Anothercomponenttothisapproachistheconsiderationoftheconservationvalueof individualwaterbodiesorstreamsegments.Here,thenaturalstatusofsurfacewatersareassignedto oneofthreedifferentclasseswithrespecttoconservation.Section3.1.3.1oftheANZGuidelines documenttitled“EcosystemConditionandLevelsofProtection”recognizesthreecategoriesof ecosystemconditions:(1)Highconservation/ecologicalvaluesystems;(2)Slightlytomoderately disturbedsystems;and(3)Highlydisturbedsystems.“Thethirdecosystemconditionrecognisesthat degradedaquaticecosystemsstillretain,orafterrehabilitationmayhave,ecologicalorconservation values,butforpracticalreasonsitmaynotbefeasibletoreturnthemtoaslightly–moderately disturbedcondition.” Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐5 Section 2 Analysis of Salinity‐Related Constituents South Africa TheSouthAfricanapproachforregulatingTDSsharessomesimilaritieswiththeANZapproachinthat isitbasedonastatisticalapproach(DepartmentofWaterAffairsandForestry,1996).Forallinland waters,TDSconcentrationsshouldnotbechangedby>15%fromnormalcyclesoftheofthe waterbodyunderun‐impactedconditionsatanytimeoftheyear;andtheamplitudeandfrequencyof naturalcyclesinTDSconcentrationsshouldnotbechanged.Theregulatorydocumentrecognizes differentnaturalsalinitiesasafunctionofunderlyinggeologies,andconsidersthathigh “evapoconcentration”rateshaveanelevatinginfluenceonTDSconcentrations. 2.2 Chloride Chloridetoxicityisperhapsthebeststudied/understoodofallofthemajorions.Robustacuteand chronicdatasetshavebeenusedtogeneratecriteriaatthenationallevelinCanadaandtheU.S.,the Canadianprovinciallevel(BritishColumbia),andatthestatelevel(e.g.,thestateofIowa).Areviewof theECOTOXdatabasedidnotidentifyanynewdatarelevantforthepurposesofthisstudy.Updated U.S.federalcriteriaarebeingconsideredbasedonthedevelopmentofIowa’scriteria,butatthe currenttime,the1988valuesarestillthecriteriarecommendedforusebytheEPA(seebelow). 2.2.1 Chloride Water Quality Criteria In1988,EPArecommendedanAmbientWaterQualityCriterionforChloride(EPA,1988)based primarilyonavailabledataforsodiumchloride(itisinterestingtonotethatEPAacknowledgedthat chloridesaltsofK,MgandCaweregenerallymoretoxicthanNasalts,butdecidednottoincludethese dataintheircriteriaderivation).EPA’sCMC(foracuteexposure)wassetat860mg/L,andtheCCC (forchronicexposure)wasset(basedonthemeanACRsofonlythreetaxa)at230mg/L(Table2‐2). Sincethattime,therehasbeenaconsiderablevolumeofdataaddedtoourknowledgebaseofchloride toxicity,andrecently,newcriteriahavebeendevelopedforBritishColumbia,Canada(Nagpaletal., 2003)andIowa(2009)(Table2‐2).AnationwidestandardforCanadawasestablishedin2011 (Table2‐2).Severalotherentitiesarecurrentlyconsideringchloridecriteria. EvansandFrick(2001)provideathoroughanddetailedevaluationofchlorideinsupportofCanada’s decisiontoregulatechlorideasapriority2toxicsubstance.Thoughtheydidnotestablishregulatory valuesperse,theircompilationoftoxicitydatahasbeeninstrumentalinsubsequentCanadian regulatoryapproachestochloride(SeeAppendixA,TableA‐1).Thoughtheirfocuswasonroadsalts (primarilyNasalts),theauthorsprovidetabulationsoftoxicitydataforCa,MgandKchloridesaltsas well. RecentresearchconductedbytheGreatLakesEnvironmentalCenter(GLEC)andtheIllinoisNatural HistorySurvey(INHS)ontheinteractionsofwaterchemistry(hardnessandsulfate)onchloride toxicityhavebeenincorporatedintochloridestandardsdevelopedbytheStateofIowa(2009). Briefly,itwasfoundthatforsometestspecies,chloridetoxicitywasdecreasedwithincreasingwater hardness(CaCO3)andsulfateconcentrations.Detailsofthosefindingandtheirutilityindeveloping sitespecificchloridecriteriaaredescribedbelow. 2‐6 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Table 2‐2. Chloride criteria for the U.S., British Columbia, Canada and Iowa (see text for rationale) Acute (mg/L) Chronic (mg/L) US EPA (1988) 860a 230b Based on NaCl only British Columbia, Canada 600 c 150d Based on T. tubifex data only Canada 640 120 Based on data for sodium and calcium chloride salts only Entity Iowa = 287 * [hardness]0.205797 * [sulfate] ‐0.07452 0.205797 = 177.87 * [hardness] [sulfate] ‐0.07452 Notes * See text below a CMC (not to be exceeded for more than 1 hour every three years) CCC (typically to be implemented as a 4‐day average) c Instantaneous maximum d The average of 5 weekly measurements taken over a 30‐day period b 2.2.2 Various Rationale for Acute and Chronic Chloride Criteria Thefollowingsectionsprovidetherationaleorbasisfortheestablishmentofchloridecriteria summarizedinTable2‐2: U.S. EPA Rationale Acute:TheEPACMCisdrivenbythelowestfourGMAVsfromthewaterfleaDaphnia(1,974), snailPhysa(2,540),isopodLirceus(2,950)andmidgeCricotopus(3,795)andaFAVof1,720.A safetyfactoroftwowasappliedtoestablishaCMCof860. Chronic:TheEPACCCisbasedonchronictestswithfatheadminnows,rainbowtroutand Daphniapulex,withACRsof15.17,7.31,and3.93,respectively.EPAappliedthegeometricmean ofthesethreevalues(7.594)totheCMC(860/7.594)androundedtothenearest10. British Columbia Rationale ThefollowinglanguageinquotationsistakendirectlyfromNagpaletal.(2003)describingthe rationalefortheBritishColumbiachronicandacutevalues: Acute:“Theguidelineformaximumchlorideconcentrationwasderivedbyapplyingasafety factoroftwotothe96‐hEC50of1,204mg/Lforthetubificidworm,Tubifextubifex–themost sensitivespeciesintheirdataset(AppendixA,TableA‐2),androundingthenumberto nearesttenth.Safetyfactoroftwoisappliedtotheacutedatabecauseoftherelativestrengthof theacutedataset.” Chronic:“TherecommendedwaterqualityguidelinewasderivedbydividingthelowestLOEC (lowestobservedeffectconcentration)fromachronictoxicitytestbyasafetyfactoroffive.The lowestLOECforachronictoxicitytestis735mg/LforCeriodaphniadubia(AppendixA,Table A‐3);thischlorideconcentrationresultedina50%reductioninreproductionoverthe7day testduration.Utilizingthisvalueandfollowingapplicationofasafetyfactoroffive,thechronic guidelineis150mg/L(roundedtonearesttenthplace)…Thesafetyfactoroffiveinthe derivationofthechronicguidelinewasjustifiedasfollows:(a)Chronicdata(AppendixA,Table Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐7 Section 2 Analysis of Salinity‐Related Constituents A‐2)availablefromtheliteraturewerescant;(b)inarecentstudy,Diamondetal.(1992)found aLOEC/NOECratioforreproductionof3.75inC.dubiaexposedtoNaClfor7days.Also, LC50/LC0 of3andLC100/LC0 of4wereobtainedbyHughes(1973),whereastheDeGreaveetal. (1992)datayieldedLC50/NOECratiosthatrangedfromabout1.0to6.9;(c)additional protectionmayberequiredforthosespeciesthataremoresensitivebuthavenotyetbeen testedintheliterature.” Canadian Rationale ItwasdeterminedthattoxicityresultingfromtestsusingMgCl2orKClresultedfromMgorKtoxicity, andthuswerenotincludedinthederivationofchloridecriteriaforCanada.Forchloride,thespecific rationaleisasfollows: Acute:“Derivedwithsevere‐effectsdata(suchaslethality)andarenotintendedtoprotectall componentsofaquaticecosystemstructureandfunctionsbutrathertoprotectmostspecies againstlethalityduringseverebuttransientevents(e.g.,inappropriateapplicationordisposal ofthesubstanceofconcern”). TheCanadianapproachwastouseaSSDofacutetoxicityvalues(Figure2‐2,seeAppendixA, TableA‐4foratableofvalues).Alog‐normaldistributionfitsthesedatabest,with640mg chloride/Lrepresentingthe5thpercentileofthedistribution.Thelowerandupper90% confidencebandsaboutthe5thpercentilewere605mg/Land680mg/L,respectively. Onenoteworthyobservationfromthesedata,isthatglochidia(mussellarvalstage)testswith endangeredfreshwatermusselspeciesEpioblasmatorulosarangiana(244mg/L)(Gillis,2011), anda48‐hourEC50forimmobilizationinDaphniamagna(621mg/L)(KhangarotandRay, 1989)fallbelowthe640mg/Lcriterion.Datafromotherfreshwatermusseltests(Lampsilis fasciolaandLampsilissiliquoidea)suggestthatfreshwatermusselsmaybethemostsensitive grouptochlorideyetstudied. Chronic:“Derivedwithmostlyno‐andsomelow‐effectdataandareintendedtoprotectagainst negativeeffectstoaquaticecosystemstructureandfunctionduringindefiniteexposures…Long‐ termexposureguidelinesidentifybenchmarksintheaquaticecosystemthatareintendedto protectallformsofaquaticlifeforindefiniteexposureperiods.Long‐termexposureguidelines arederivedusinglong‐termdata(≥7‐dayexposuresforfishandinvertebrates,≥24‐hourfor aquaticplantsandalgae).” TheCanadianapproachwastousetheSSDofchronictoxicityvalues(Figure2‐3,seeAppendix 2,TableA‐4foratableofvalues).Alog‐logisticdistributionfitthesedatabest,with120mg chloride/Lrepresentingthe5thpercentileofthedistribution.Thelowerandupper90% confidencebandsaboutthe5thpercentileofthedistributionwere90mg/Land150mg/L, respectively. 2‐8 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Figure 2‐2. SSD of short‐term L/EC50 toxicity data for the chloride ion in freshwater derived by fitting the Normal model to the logarithm of acceptable toxicity data for 51 aquatic species versus Hazen plotting position (proportion of species affected). The arrow at the bottom of the graph denotes the 5th percentile and the corresponding short‐term benchmark concentration value (Source: Figure and caption from CCME, 2011) Figure 2‐3. SSD of long‐term no‐ and low‐effect endpoint toxicity data for the chloride ion in freshwater (where mussels are present) derived by fitting the Logistic model to the logarithm of acceptable data for 28 aquatic species versus Hazen plotting position (proportion of species affected). The arrow at the bottom of the graph denotes the 5th percentile and the corresponding long‐term Canadian Water Quality Guideline value (Source: Figure and caption from CCME, 2011). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐9 Section 2 Analysis of Salinity‐Related Constituents Aswasthecasewiththeacutedata,testswiththeglochidiastagesoffreshwatermussels(Gillis, 2011;Bringolf,2010)fellbelowthe120mgCl‐/Lcriterion.TheProtectionClauseinthe CanadianGuidelinesgivesentitiestheoptionofestablishinglowercriteriavaluestoprotect commercially,recreationally,orecologicallyimportantspecies.Thus,thisvaluemaynotapply (itmaybelowered)whenendangeredmusselsarepresentinagivenwaterbody. Anotherstudy(KarrakerandGibbs,2011)basedonmasschangesinspottedsalamander (Ambystomamaculatum)eggstransferredtocleanwaterfollowingexposuretochloridewas notincludedinthecalculationoftheCanadianchronicvalue. Withregardstotoxicitymodifyingfactors,thefollowingparagraphwastakenverbatimfromCCME, 2011CanadianWaterQualityGuidelines(CWQG)fortheProtectionofAquaticLife‐Chloride document: “Somestudieshaveindicatedthatincreasedhardnessmayhaveanamelioratingeffecton thetoxicityofchloride.Onelong‐termstudybyElphicketal.(2011)assessedtheeffectof hardness(10,20,40,80,160,320mg/LasCaCO3)onsodiumchloridetoxicitytothewater fleaCeriodaphniadubiaduringa7‐dayexposure.Anapproximate4‐folddifferencewas observedinthe7‐dayIC25/50(reproduction)effectconcentrations,anda9‐folddifferencein 7‐dayLC50concentrationsoverthehardnessrangetested.Gillis(2011)exposedglochidiaof thefreshwatermusselLampsilissiliquoideatowaterofvaryinghardness(47,99,172,322 mg/LasCaCO3).Anapproximate2.5‐folddifferencein24‐hourEC50(glochidiasurvival) valueswasobservedoverthehardnessrangetested.GLECandINHS(2008)alsoconducted someshort‐termexposuresindicatingtheexistenceofahardness‐chloridetoxicity relationshipforthewaterfleaCeriodaphniadubia,thefingernailclamSphaeriumsimile,the oligochaeteTubifextubifexandtheaquaticsnailGyraulusparvus.Insufficientdatawere availabletodevelopahardnessrelationshipforchronictoxicityandthus,ahardness‐based CWQGwasnotdeveloped.CCMEwillre‐visitthechlorideguidelineswhensufficientstudies areavailable.Jurisdictionsmaychoosetoderivesite‐specifichardness‐adjustedwater qualitycriteria(orobjectives)whereappropriate.” Iowa Rationale Priorto2009,Iowadidnothaveachloridestandardfortheprotectionofaquaticlife,butusedEPA (1988)chronic(230mg/L)andacute(860mg/L)chloridevaluestotriggerwholeeffluenttoxicity testing.TheIDNRworkedwithDr.CharlesStephan(EPA)tocompiledataforupdatedcriteria.That literaturereviewnotonlyprovidedseveralstudiesconductedpost‐1988,butalsoidentifiedan importantearlystudybyWurtzandBridges(1961)thathadnotbeenusedinEPA’sinitialcriteria development.TheWurtzandBridgesstudyincludeddatafortwospecies–asnail(Gyraulus circumstriatus),andthefingernailclam(Sphaeriumtenue)whichappearedtobesensitivetochloride. Additionally,theKhangarot(1991)studywithTubifextubifex(thestudythatdrivestheBritish Columbiacriteria)suggestedthatthisspeciesmayalsobesensitivetochloride.Theadditionofnew dataresultedinanFAVof1,364mg/L,whichwouldresultinanewCMC(acutecriterion)of682mg/L afterasafetyfactoroftwoisapplied(butIowadidnotchoosethisoption). 2‐10 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents EPAcontractedwiththeGLECandtheINHStoexploretheinfluencesofhardnessandsulfateon chloridetoxicitytosensitiveaquatictaxa–Ceriodaphniadubia,Sphaeriumsimile,Gyraulusparvusand Tubifextubifex(Figures2‐4and2‐5). Figure 2‐4. Influence of water hardness (as CaCO3) (Panel A) and sulfate (Panel B) on the toxicity of chloride in parallel studies conducted by GLEC and the INHS. The exponents associated with hardness in the Iowa criteria (0.205797) are primarily based on these data (but see Figure 2‐5 below). The exponent associated with sulfate in the Iowa criteria (‐0.07452) is based primarily on the data shown in Panel B. These data were plotted from the Table 2 data in the IDNR (2009) report (see Appendix A, Table A‐5). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐11 Section 2 Analysis of Salinity‐Related Constituents LC 50 mg Cl-/L Figure 2‐5. Influence of water hardness (as CaCO3) on the acute toxicity of chloride to the fingernail clam (Sphaerium simile), planorbid snail (Gyraulus parvus), and tubificid worm (Tubifex tubifex). x fe bi tu x ife Tu b au yr G Sp ha er lu iu s m pa si rv m us ile Acute:Basedontherelationshipsbetweenchloridetoxicityandhardness(Figures2‐4Aand2‐ 5)andsulfate(Figure2‐4B),Iowaevaluatedthefollowingfouroptionsbelow,andchoseOption Ctoestablishanacutecriterion: OptionA:Acutevalueswerenotnormalizedforeitherhardnessorsulfateandthecriterion isnotdependentoneitherhardnessorsulfate; OptionB:Acutevalueswerenotnormalizedforeitherhardnessorsulfate,butthecriterion isdependentonbothhardnessandsulfate; OptionC:Acutevalueswerenormalizedforbothhardnessandsulfateandthecriterionis dependentonbothhardnessandsulfate(Table2‐3); OptionD:Acutevalueswerenormalizedforhardness(butnotsulfate)andthecriterionis dependentonhardness(butnotsulfate). Chronic:EPA’s1988chronicchloridecriteriarelieduponchronicdataforonlythreespecies (seeabove),applyingthegeometricmeanvalue(7.594)inacutetochronicratios.ForIowa’s chronicvalue,thefatheadminnowACR(15.17)wasdiscarded,andnewerACRvalueswere consideredfromstudieswithCeriodaphniadubia(1.508,2.601and3.841),Daphniaambigua (4.148),andDaphniamagna(1.974).ThesevaluesgeneratedaCCC(chroniccriterion)of417 mg/L(substantiallyhigherthanEPA’soriginalvalueof230mg/L).Thus,Iowaconsidered differentoptionsforapplyingACRsasfollows: 2‐12 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents CCC1:DerivedusingACR=4.826,whichisthegeometricmeanoftheACRsforRainbow TroutandDaphnia.CCC1istoohighforspeciesatthe5thpercentile. CCC2:DerivedusingACR=3.187,whichistheACRforDaphnia.CCC2isappropriatefor speciesatthe5thpercentile. CCC3:DerivedfrompredictedGenusMeanChronicValuesthatwerecalculatedusingACR= 7.308ofRainbowTroutforallvertebratesandACR=3.187ofDaphniaforallinvertebrates. Thenthesimilarprocedureforderivingacutecriterionwasusedtoderivethechronic criterion(Table2‐4). IowaoptedforCCC3underOptionC. Table 2‐3. Example of relationship between hardness and sulfate and calculated acute criterion1 25 Hardness Exponent 0.2057979 Sulfate Exponent ‐0.07452 Adjusted Criteria 287 50 0.2057979 ‐0.07452 513 100 100 0.2057979 ‐0.07452 553 287 200 200 0.2057979 ‐0.07452 634 287 400 400 0.2057979 ‐0.07452 694 287 800 800 0.2057979 ‐0.07452 777 FAV Hardness Sulfate 287 25 287 50 287 1 The FAV (FAV=574/2 =287) is adjusted based on water hardness and sulfate as follows: 287 * [hardness]0.205797 * [sulfate] ‐0.07452 Table 2‐4. Example of relationship between hardness and sulfate and calculation of chronic criterion1 1 ACR adjusted FCV Hardness Sulfate Adjusted Toxicity Value 177.87 177.87 177.87 177.87 177.87 177.87 177.87 177.87 50 100 200 300 100 100 100 100 200 200 200 200 300 400 500 600 268.1 309.2 365.6 387.6 300.0 293.6 288.8 284.9 Acute toxicity values were adjusted via ACRs (adjustment: 177.87*[hardness]0.205797 * [sulfate] ‐0.07452 Technically,therearesomeissuestoconsidershouldtheCentralValleydecidetoincorporatewater chemistry(e.g.,hardness)adjustmentstoexistingdatasetsasIowahasoptedto.First,theapplication ofthehardnessadjustmentgeneratedfromonlyonespecies(Ceriodaphniadubia)toallothertaxais troubling.ThejustificationusedbyIowawasthatthemeanoftheslopevaluestakenfromSphaerium simile,GyraulusparvusandTubifextubifexdata(seeFigure2‐4)wassimilartotheCeriodaphniadubia data.Itisimportanttonotethatthese“slopes”arebasedontwodatapointsperspecies,andthatone Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐13 Section 2 Analysis of Salinity‐Related Constituents ofthesespecies,theplanorbidsnail(Gyraulusparvus)showednoinfluenceofhardnesswhatsoever. Thiscallsintoquestionwhetherthehardnessadjustmentwouldunder‐protectsensitivespecies whosesensitivitytochlorideislessaffectedbywaterhardnessthanisCeriodaphniadubia. AnotherissuetoconsideristheapplicationofACRstoestablishchroniccriteria.TheEPAandStateof Iowaapproachesarearbitraryandbasedonaverysmallnumberofspecies.TheCanadianapproach tochroniccriteriaismuchmoretransparent–andthusiseasiertocommunicatetostakeholders. 2.2.3 Chloride Summary DifferentapproacheshavebeenestablishedforderivingchloridecriteriaintheU.S.andCanada atbothnationalandstate/provinciallevels(Note:EPAmayupdateitsnationalcriteria recommendationsinthenearfuture). Oftheapproachesoutlined,itappearsthattheCanadianapproachisthemosttransparentand considersadjustmentsonasite‐specificbasisbasedonthepresence/absenceofendangered musselpopulations. TheIowaapproachmakesadjustmentforchlorideandsulfate,whereasCanadadidnot considerthatsufficientdataexistedtomakesuchadjustments. 2.3 Boron 2.3.1 Overview TheCentralValleyWaterBoard(1999)reportprovidesabroadoverviewofboronwithrespectto differentbeneficialuses.Atafirstapproximation,itwouldappearthatcriteriadevelopedtoprotect sensitivecropsshouldalsobeprotectiveofaquaticlifeuses.TheDOIGuidelinesdocument(DOI, 1998)concurswiththisnotionintheirtableofpredictedboroneffects,withlevelsofconcernfor:(a) cropsandaquaticplantslistedat0.5‐10mg/L(NoObservedAdverseEffectLevel[NOAEL]‐Lowest ObservedAdverseEffectLevel[LOAEL]);(b)aquaticinvertebrates(Daphniamagna)at6‐13mg/L (NOAEL–LOAEL);and(c)fishat5‐25mg/L(NOAEL–LOAEL).However,dataforboronisstillfairly limited(Table2‐5). ThereappearstobeconsiderableconsternationregardingdatageneratedbyBirgeandBlack(1977), wherea0.1mg/Lconcentrationwasreportedtocausetoxicityinrainbowtroutembryo‐larvaltests. Followupstudies(Blacketal.,1993)concludethat,“theflatconcentration‐responsecurveobserved forboron(i.e.,smallchangesineffectsrelativetolargeincreasesinboronconcentrations)sometimes affectedprecisioninthedeterminationofno‐effectorthresholdconcentrations.”Theyfurtherstate, “…aconcentrationofbetween0.75and1.0mg/Lisdeterminedtobeareasonable,environmentally acceptablelimitforboroninaquaticsystems.”Inhis1998review,Howe(1998)lists1‐2mg/Lasa commonNOECforcommunitylevelstudies,and1mg/LasaNOECforstudieswithfish. AnanalysisofECOTOXforthetoxicityofboronisprovidedbelow(rawdataareprovidedin AppendixA,TablesA‐6andA‐7).Boratesarethepredominantformofboroninnaturalwaters,and ECOTOXcontainedsubstantialdataforthetoxicityofboronassodiumborate(NaBO4).Species sensitivitydistributionsweregeneratedbyrankingthetoxicityvaluesandcreatingcentilessuchthat thecumulativepercentageofspeciesaffectedcouldbeplottedagainstconcentration.Analyzingthe datainthismannerallowsfortheestimateofanHC05–theconcentrationofcontaminantexpectedto beprotectiveof95%ofthespeciesinagivencommunity.TheinherentassumptioninthisEPA 2‐14 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents methodologyisthatthepopulationofspeciesinatoxicitydatasetisareasonableproxyforthe populationofspeciesinrealecosystems. Thefollowingfouranalyseswereconductedfromtheexistingborondata: (1) Onlyshorttermexposures(acutestudies)withlethalityendpoints(Figure2.6A). (2) Onlyshorttermexposures(acutestudies)withbothlethalityandnon‐lethalityendpoints(e.g., immobility,growth)combined(Figure2.6B). (3) Onlylongtermexposures(chronicstudies)withlethalityendpoints(Figure2.7A). (4) Onlylongtermexposures(chronicstudies)withbothlethalityandnon‐lethalityendpoints(e.g., growth,reproductiveoutput)(Figure2.7B). Table 2‐5. Predicted boron effect levels (Source: DOI, 1998; see original reference for references in table). Medium No Effect (NOAEL) Level of Concern Toxicity Threshold (LOAEL) 0.5 0.5 ‐ 19 10 6 6 – 13 13 5 5 – 25 25 ‐‐ ‐‐ < 200 13 13 – 20 20 Smith and Anders (1989), Stanley et al. (1996); 20 = EC10 for viability of mallard eggs ‐‐ > 30 ‐‐ LOAEL for mallards; impaired growth of ducklings ‐‐ > 80 ‐‐ LOAEL for rodents; decreased fetal body weight Water (mg/L) Bird Eggs (mg/kg fw) Waterfowl Diet (mg/kg) Mammal Diet (mg/kg bw/day) Explanation For crops and aquatic plants (Perry et al., 1994) For aquatic invertebrates (NOAEL and LOAEL for Daphnia magna) For fish (viz., catfish and trout embryos; Birge and Black, 1977; Perry et al., 1994) For amphibians (LC100 for leopard frog embryos) ForFigures2.6and2.7thelargerplotshowstheentiredistributionofthetoxicitydata.Thesmaller insetsshowonlythesensitivetailofthesensitivitydistributionandthelinearregressionsusedto estimateHC05concentrations.Noassumptionsweremadeabouttheoverallshapesofthe distributionsaslinearfitstothetruncateddatafitthedatawell. TheHC05estimatebasedonacutelethalityonlyis18.08mg/L,whereastheinclusionofallacute endpointsresultsinanHC05estimateof3.99mg/L.Chronically,HC05estimatesaresimilarwhether lethalityonly(1.18mg/L)orifallchronicendpointsareconsidered(1.57mg/L). AreviewofavailableboronliteraturebyLoewengart(2001)makesacompellingargumentthatthe shapeofborondose‐responsecurvesinrainbowtroutsuggeststhatboronmaybeessential,andlow doseeffectscouldbetheresultofborondeficiency.Tosupportthisargument,U‐shapeddose responsecurvesreportedbyRoweetal.(1998),andthestimulatoryeffectsoflowconcentrationsof boronongrowth(Eckert,1998)aresummarizedinadditiontofieldobservationsofvibranttrout populationsoccurringinhighboronenvironments. Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐15 Section 2 Analysis of Salinity‐Related Constituents Cumulative Percent Affected A. 100 80 60 60 40 40 20 HC05= 18.08 mg Borate/L 20 0 0 100 200 300 0 0 2000 4000 6000 8000 10000 mg Borate/L Cumulative Percent Affected 100 B. 80 60 40 30 40 20 10 20 HC05=3.99mg Borate/L 0 0 5 10 15 20 25 0 0 2000 4000 6000 mg Borate/L 8000 10000 Figure 2.6. Distribution of the acute toxicity data of borate to aquatic organisms (lethal and non‐lethal endpoints) based on ECOTOX data: A (top) ‐ Distribution of the data based only on a lethality endpoint; B (bottom) ‐ Distribution of data based on a combination of lethality and other endpoints (data from Figure 2.6A included). 2‐16 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Cumulative Percent Affected 100 A. 80 60 50 40 40 30 20 20 10 HC05=1.13 mg Borate/L 0 0 5 10 15 0 0 50 100 150 mg Borate/L Cumulative Percent Affected B. 100 80 60 60 40 40 20 20 HC05=1.57mg Borate/L 0 0 5 10 15 20 0 0 100 200 300 mg Borate/L 400 500 Figure 2.7. Distribution of the chronic toxicity data of borate to aquatic organisms (lethal and non‐lethal endpoints based on ECOTOX data: A (top) ‐ Distribution of data based on lethal endpoint; B (bottom) ‐ Distribution of data based on both lethal and other endpoints (data from Figure 2.7A included). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐17 Section 2 Analysis of Salinity‐Related Constituents ArecentcompilationofborondatainsupportofEuropeanUnionREACHinitiatives(dealingwiththe Registration,Evaluation,AuthorisationandRestrictionofChemicalsubstances)comparedthe traditionalassessment(safety)factorandSSDapproachestoinferaPredictedNoEffectConcentration (PNEC)forboroninaquaticenvironments(Schoderboecketal.,2011)(Figures2‐8and2‐9).Their standardapproachgeneratedaPNECof0.18mg/LandtheirSSDapproachgeneratedaPNECof0.34 mg/L. ArelativelynewstudybySouceketal.(2011)testedboronwitheightspecies,allofwhichresultedin typicallyhighLC50valuesforboron.pHandhardnessdidnotaffectborontoxicity,thoughchloride providedanameliorativeeffectinstudieswiththecrustaceansCeriodaphniadubiaandHyallela Azteca.AspectsoftheSouceketal.(2011)dataaresimilartothoseinotherstudies,wherethereare suggestionsofsubtletoxicaffectsatlowerboronconcentrations,butsignificantincreasesinboron concentrationdonotseemtoincreasetoxicity.Theseauthorsconcludethatthecurrentstandardfor boroninIllinois(1mg/L)isconservative. Figure 2‐8. Compiled acute and chronic toxicity values for boron in fish (Source: Figure 2 in Schoderboeck et al., 2011). AttherequestofCV‐SALTS,additionalreviewwasconductedtoevaluateborontoxicityforfish speciesthatmovefreelyfromfreshwatertotheocean.Relevantstudiesofsuchsalmonidsnotcitedin Schoderboecketal.(2011)includethefollowing: 2‐18 HamiltonandBuhl(1990):AcuteboronLC50valuesforchinooksalmonandcohosalmonfry were>100mg/L. Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Thompsonetal.(1976):Testsconductedfor283hoursin“underyearling”cohosalmon resultedinanLC50valueof113mg/Linfreshwaterand12.2mg/Linsaltwater. Figure 2‐9. Available chronic toxicity values for boron in aquatic species of diverse taxonomic groups (Source: Figure 1 in Schoderboeck et al., 2011). 2.3.2 Boron Summary ThereisenoughtoxicitydatabyEPAstandards(i.e.,Stephanetal.,1985)toestablishaboron criterion: Acutetoxicitydatasuggestthataconcentrationof4mg/Lcouldbeusedtoestablishan acutecriterion(seeFigures2.6A,B). Chronictoxicitydatasuggeststhatachroniccriterionof1.0‐1.3mg/Lcouldbeestablished (seeFigures2.7A,B). However,thereremainsconsiderableuncertaintyregardinganappropriatecriterionbecauseof thefollowingissueswiththeavailabletoxicitydata: Thereissomedisagreementaboutthenatureofthefewlowtoxicityvaluesforboron(see discussionabove),whichmayrequirere‐evaluationofthosedatawithrespectto essentiality(deficiency)arguments. Aquaticinsects,animportantpartofthebiologicalcommunity,remainunder‐studiedwith respecttoborontoxicity. Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐19 Section 2 Analysis of Salinity‐Related Constituents 2.4 Sulfate 2.4.1 Overview Thereissufficienttoxicitydataavailable(byEPAstandards)togeneratewaterqualitycriteria/ objectivesforsulfate,butfewentitieshaveestablishedthemtodate.TheIDNR(2009)reportlargely followstheleadofeffortsinIllinoistoestablishhardnessandchlorideadjustedsulfatecriteria,as showninTable2‐6.Thisapproachisbasedonanextremelylimitedsetofspeciesandassuch,much uncertaintyremainswithrespecttoitsprotectivenessofaquaticcommunities.Inparticular,available dataforsulfatetoxicityisextremelylimitedforaquaticinsects,whichmaybemoresensitivetosulfate thanothercommonlyusedspecies.Thelimitedavailabledatasuggeststhataquaticinsectsmaybe moresensitivetosulfatethanchloride: BradleyandPhillips(1977)reportahighersensitivitytosulfatethanchlorideinasalttolerant mosquito.Thereisgrowingevidencethatthesamemaybetrueforsomemayflies.Goetschand Palmer(1997)reportthatsodiumsulfatewas,“considerablymoretoxictoTricorythussp.,than sodiumchloride.”Theyfurtherreiteratethat“mortalitycannotbelinkedonlytoconductivityor totaldissolvedsolid(TDS)concentrations”,butthatthenatureofthesaltwasimportant. Recentresearch(Kunzetal.,2013)usedreconstitutedhighTDSwaterstomimicwater chemistriesfoundinCentralAppalachianstreamsaffectedbymountaintopcoalmining.The datashowthatthemayflyCentroptilumtrianguliferandfreshwatermusselLampsilissiliquoidea werehighlysensitivetoelevatedTDSdominatedbysulfatesaltswhereascommonlyusedtest speciesCeriodaphniadubiaandHyalellaaztecawererelativelyunaffected. Insectswillundoubtedlybethepredominantfaunalgroupusedinbiologicalassessmentsof freshwaterhabitatsintheSanJoaquinRiverbasin.Itthereforemakessensetoconsiderthe potentialforsulfatetobeanissueinlightoftheapparentsensitivityofinsectstosulfate. Sulfateand/orbicarbonatearethelikelydriversofreducedmacroinvertebrate(particularly mayflies)inWestVirginiastreamsreceivinghighTDSinputsfromsurfacecoalmining. TheIDNR(2009)documentpointstowards“theIllinoisapproach”(IllinoisEPA,2006),whichasserts that,“unlikemanytoxicantsthatexerttoxiceffectsoverbothshorttermandlongtermperiods(acute andchronictoxicity),sulfatehasbeendemonstratedtoaffectonlyshorttermsurvivaloforganisms.In otherwords,organismsthatsurvivetheinitialosmoticshockofexposurewillsurviveindefinitelyat thatconcentration.”AnalysisofsulfatedatafromtheECOTOXdatabasesuggeststhatthislineof reasoningisquestionable4. Table 2‐6. Proposed Iowa sulfate criteria based on binned chloride and hardness categories. Chloride Concentration (mg/L) Hardness (mg/L as CaCO3) Cl < 5 5 ≤ Cl‐ ≤ 25 25 ≤ Cl‐ ≤ 500 H < 100 500 500 500 100 ≤ H ≤ 500 500 [‐57.478 + 5.79 (hardness) + 54.163 (chloride)] *0.65 [1276.7 + 5.508 (hardness) – 1.457 (chloride)] *0.65 H > 500 500 2,000 2,000 ‐ 4Theagencywasnotcontactedforthepurposesofthisstudy;additionalfollow‐upisrecommendedifthesedataweretobe usedforWQOdevelopment. 2‐20 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents AnanalysisoftheECOTOXdatabaseforthetoxicityofsulfateisprovidedbelow(rawdataare providedinAppendixA,TablesA‐8andA‐9).TheECOTOXdatabasecontainedsubstantialdatafor thetoxicityofsulfateasNaSO4.Speciessensitivitydistributionsweregeneratedbyrankingthe toxicityvaluesandcreatingcentilessuchthatthecumulativepercentageofspeciesaffectedcouldbe plottedagainstconcentration.AnalyzingthedatainthismannerallowsfortheestimateofanHC05– theconcentrationofcontaminantexpectedtobeprotectiveof95%ofthespeciesinagiven community.TheinherentassumptioninthisEPAmethodologyisthatthepopulationofspeciesina toxicitydatasetisareasonableproxyforthepopulationofspeciesinrealecosystems. Thefollowingfouranalyseswereconductedfromtheexistingsulfatedata: (1) Onlyshorttermexposures(acutestudies)withlethalityendpoints(Figure.2.10A). (2) Onlyshorttermexposures(acutestudies)withbothlethalityandnon‐lethalityendpoints(e.g., immobility,growth)combined(Figure2.10B). (3) Onlylongtermexposures(chronicstudies)withlethalityendpoints(Figure2.11A). (4) Onlylongtermexposures(chronicstudies)withbothlethalityandnon‐lethalityendpoints(e.g., growth,reproductiveoutput)(Figure2.11B). ForFigures2.10and2.11,thelargerplotshowstheentiredistributionofthetoxicitydata.Thesmaller insetsshowonlythesensitivetailofthesensitivitydistributionandthelinearregressionsusedto estimateHC05concentrations.Noassumptionsweremadeabouttheoverallshapesofthe distributionsaslinearfitsofthetruncateddataforcedthroughtheoriginfitthedatawell. TheHC05foracutelethalitywascalculatedas464mgSO4/L.Theinclusionofothernon‐lethalacute dataloweredtheHC05calculationto234mgSO4/L.TheHC05forchroniclethalitydatawasestimated as154mgSO4/L,whereastheinclusionofotherchronicnon‐lethalendpointsloweredtheHC05 estimateslightlyto124mgSO4/L. 2.4.2 Sulfate Summary ThereisenoughtoxicitydatabyEPAstandards(i.e.,Stephanetal.,1985)toestablishasulfate criterion: Existingacutetoxicitydataforsulfatecouldbeusedtosupportanacutecriterionof234mg SO4/L(seeFigures2.10A,B). Existingchronictoxicitydataforsulfatecouldbeusedtosupportachroniccriterionof124 mgSO4/L(seeFigures2.11A,B). However,thereremainsconsiderableuncertaintyregardinganappropriatecriterionbecauseof thefollowingissueswiththeavailabletoxicitydata: Thelackofavailableaquaticinsectdataforsulfateraisesconsiderableuncertaintyaboutthe protectivenessofthesepotentialobjectivestoresidentcentralvalleyaquaticcommunities. Thehardnessandchlorideeffectsonsulfatetoxicityneedtobeexaminedingreaterdetail. Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐21 Section 2 Analysis of Salinity‐Related Constituents A. 80 60 cumulative % affected Cumulative % Affected 100 40 20 60 40 20 HC05 = 464mg SO4/L 0 0 0 10000 2000 4000 6000 20000 30000 mg SO4/L 100 B. 80 60 60 cumulative % affected Cumulative % Affected 0 40 20 40 20 HC05 = 234 mg SO4/L 0 0 0 0 5000 10000 1000 15000 mg SO4/L 2000 20000 3000 25000 Figure 2.10. Distribution of the acute toxicity data of sulfate to aquatic organisms (lethal and non‐lethal endpoints) based on ECOTOX data: A (top) ‐ Distribution of the data based only on a lethality endpoint; B (bottom) ‐ Distribution of data based on a combination of lethality and other endpoints (data from Figure 2.10A included). 2‐22 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Cumulative % Affected A. 100 80 60 60 40 40 20 20 HC05 = 154 mg SO4/L 0 0 0 0 500 5000 1000 1500 2000 10000 15000 mg SO4/L Cumulative % Affected B. 100 80 80 60 60 40 40 20 20 HC05 = 124 mg/L SO4 0 0 0 0 500 5000 1000 1500 10000 2000 15000 mg SO4/L Figure 2.11. Distribution of the chronic toxicity data of sulfate to aquatic organisms (lethal and non‐lethal endpoints based on ECOTOX data: A (top) ‐ Distribution of data based on lethal endpoint; B (bottom) ‐ Distribution of data based on both lethal and other endpoints (data from Figure 2.11A included). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐23 Section 2 Analysis of Salinity‐Related Constituents 2.5 Other Salinity‐Related Constituents Documentsprovidedforreviewwerelimitedwithrespecttothetoxicityofothermajorions(Na,Ca, Mg,K,CO3,HCO3andhardness.InthecaseofNa,themostcommonlyusedsaltfortoxicitytestinghas beenNaCl,withtoxicitygenerallybeingascribedtotheClionratherthantheNaion.EvansandFrick (2001)providelimiteddataforotherchloridesalts(CaCl2,MgCl2,KCl),butingeneral,thesesalts remainrelativelyunder‐studiedrelativetothesaltssummarizedabove.Carbonate,bicarbonateand hardnesstoxicityremainpoorlyunderstood.Considerableuncertaintyremainsregardingtherelative toxicityoftheanionsvs.cationsinsaltexposures. 2‐24 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to the Central Valley 3.1 Applicability of Toxicity Data to Central Valley Fauna Theextrapolationoftoxicityvaluesfromahandfuloflaboratorytestedspeciestovaluesintendedto protectaquaticcommunitiesinnaturehasahighdegreeofuncertaintyassociatedwithit.Arguments thatsuchapproachesareprotectivecitetheuseofsafetyfactorsandconservativethresholds (extrapolationtoprotect95%ofspecies).Argumentsthatsuchapproachesmaynotbeprotective pointtowardsthefactthataquaticcommunitiestendtobedominatedbyinsects,yettoxicitydatasets aredominatedbycrustaceansandfish.Regardless,theapplicationoftoxicityvaluestosetwater qualitycriteriaisthenormintheU.S.andCanada,andlocalfaunaarerarelygivenspecial considerationunlesstheyhavespecialeconomic,conservationorculturalvalue. Theremaybecompellingreasonstoquestionwhetherthefaunafromagivenregionaredifferentially adaptedtoparticularsalinities.Forexample,onecouldarguethattaxaevolvedinlowTDS environments(e.g.CentralAppalachianheadwaterstreams,SierraNevadastreams)maybemore sensitivetoelevatedTDSthanspeciesthatevolvedinhighernaturalsalinities(e.g.,Westslopeofthe CentralValley).Whiledirectevidenceforthisconceptislacking,itisimportanttoconsiderthestatus ofthefaunaintendedtobeprotectedbythedevelopmentofWQOshere. ThewholesaleconversionoftheCentralValleytoagricultural(andurban)landusesandthe developmentofwatersupplyandwaterconveyancesystemshasessentiallyrenderedstreamsinthis entireregionofthestateassignificantlyaltered(degraded)fromnaturalorreferenceconditions.Ode etal.(personalcommunication)reportthatonlyoneCentralValleyreferencestreamcurrentlyexists inCalifornia’sSurfaceWaterAmbientMonitoringProgram(SWAMP)databaseofreferencestreams, andthisstreamislikelybetterclassifiedasaSierraNevadafoothillsstreamthanavalleyfloorstream (Dr.RaphaelMazor,SouthernCaliforniaCoastalWaterResearchProject[SCCWRP]personal communication,4/29/2013).Thus,theregionalspeciespoolintheCentralValleyfloorexistsinhighly degradedstreamsandlikelyrepresentsagenerallymoretolerant/facultativefauna.Itislikelythat TDSsensitivefauna,ifanywereoriginallypresent,havealreadybeenexcludedfromstreamswith elevatedTDSintheCentralValley. 3.2 Toxicity of Chloride, Boron and Sulfate in Relation to Water Chemistry Concentrations in the Central Valley 3.2.1 Interpretation of Resident Biological Communities in the Central Valley Thelackofstreamsinreference(ornearreference)conditionprovidesamajorchallengeto practitionersofbiologicalassessmentfortheStateofCalifornia,becausescoringtoolsforstreamsare reliantonsuitablesuitesofreferencestreamstoadequatelyassessecologicalconditionsatagiven site.WhatthismeanspracticallyfortheCentralValley,isthatbiologicalmonitoringeffortswill(at leastintheshortterm)notbeabletoincorporatethenewlydevelopedscoringtoolsassociatedwith theemergingbiologicalobjectivesthatmaybeimplementedintheremainderofthestate.Thisdoes notmeanthatmonitoringofbiologicalcommunitiesintheCentralValleyisnotfeasible.Theworkof LelandandFend(1998)(summarizedbelow)providesanexampleofawell‐executedmonitoring Version 2 Final Aquatic Life Report_Vers2_010614.docx 3‐1 Section 3 Applicability of Findings to Central Valley study.Whatisimportanttoconsiderhowever,isthatbiologicalcommunitiesareresponsivetohabitat andotherwaterchemistry(e.g.,pesticidesandnutrients)thatmayco‐occurwithelevatednaturalor anthropogenicTDS.Biomonitoringeffortsbythemselvescannotadequatelyascribecause(s)of ecologicalimpairment.Thus,anyTDS/salinityobjectivesthatareeventuallyestablishedwillinitially beextremelydifficulttolinkdirectlytochangesinbiologicalassemblages.However,shouldactivities associatedwiththeimplementationofTDS/salinityobjectivessuccessfullyreduceTDSconcentrations insiteswithhistoricallyelevatedTDSconcentrations,increasesinbiodiversitymeasuresmaybe evidentovertime. AstudybyLelandandFend(1998)titled“BenthicinvertebratedistributionsintheSanJoaquinRiver, California,inrelationtophysicalandchemicalfactors”hasseveralrelevantpiecesofinformationthat shouldbeconsideredbyCV‐SALTSasdiscussedbelow. Salinityhasimportantgeographicsignatures: SamplesweretakenalongtheSanJoaquinRiverandtributaries(Figure3‐1).Sampleswere collectedeveryotherweekforoneyear,andmonthlyforanadditional16months.Valuesare depthintegratedacrosstherivercrosssections,andthusmorerobustthansinglegrabsamples. Resultsofchemicalanalysis(Table3‐1)showthatthetributariesfeedingtheSanJoaquinRiver fromtheeast(StanislausRiver,TuolumneRiver,MercedRiver)haveasignificantdilutingeffect onmainstemchemistry.Incontrast,MudSloughandSaltSlough(northeasterlyflowing tributaries)contributehighlyelevatedsaltconcentrationstotheSanJoaquinRiver.Tributaries feedingtheSanJoaquinRiverfromthewestwerenotmeasured,butcanbeassumedtobehigher innaturallyoccurringsalinitiesbasedontheunderlyinggeologiesinthatregion. 3‐2 Biologicalcommunitiesrespondtosalinitygradients Salinitywasidentifiedasaprimarydeterminantofspeciesassemblages,andisdominatedby sulfate/bicarbonate.Itremainsuncertainwhethersulfate,bicarbonate,combinedionic interactionsorgeneralionicimbalanceistheprimarydriverofspeciesresponses. Substrate(sandgrainsize)wasalsoanimportantdeterminantofinvertebrateassemblages. ThisisimportantbecausethelackofreferencesystemsintheCentralValleycoupledwith heterogeneityofsubstratesizesseriouslylimitstheabilitytobiomonitoreffectively.Leland andFend(1998)usedstandardizedsubstratestoteaseapartwaterchemistryvs.substrate effects.Whileanappropriatetechnicalapproach,myconcernhereisthatthedevelopmentof salinityguidelinesforaquaticlifeusescannotatthistimebeeffectivelytiedtoanymeaningful biologicalmonitoringeffortsunlesstheuseofstandardizedsubstratesareroutinely employed. Table3ofLelandandFend(1998)listsspecies‐specificTDSoptimafor73speciesbasedon thedensitiesofindividualtaxacollectedasafunctionofsalinity.Atolerancescoreisalso providedanddefinedasonestandarddeviation(variance)aroundtheoptimalvalue.Inmany cases,thevariancesarerelativelysmall,suggestingthespeciesperformanceisstrongly affectedbysalinity.Specieswithwidervarianceswouldappeartohaveabroaderrangeof “comfortable”salinities.Figure3‐2belowshowsacumulativerankingofspeciesbasedon boththereportedoptimaandtwostandarddeviationsfromtheiroptima(LelandandFend, 1998)usingtheequation:CumulativePercentile=(100*Rank)/(n+1). Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to Central Valley Figure 3‐1. Sampling locations for water chemistry measurements reported from the San Joaquin River and tributaries from Leland and Fend (1998) (Data reported in Table 3‐1). Table 3‐1. Major ion concentrations in the San Joaquin River and tributaries from Leland and Fend (1998). Total TDS values from Table 1 of that publication; remaining values were converted from mequiv/L units. Central Valley Waterbody San Joaquin River (River Km) (see Figure 3‐1) Ion Stanislaus River Tuolumne River Merced River Mud Slough Salt Slough 116 125 159 185 202 213 Ca 22-34 24-46 36-54 32-60 36-86 19-68 8-12 4-15 9-16 60-142 54-112 Mg 10-17 9-22 16-29 16-30 15-49 7-30 3-5 2-7 3-5 42-70 24-60 Na 44-78 41-108 78-163 80-170 76-253 34-170 3-6 3-16 10-22 252-437 124-321 Cl 49-106 53-135 85-191 89-191 103-312 22-191 2-5 8-15 8-20 248-425 152-389 SO4 53-91 57-110 105-187 101-207 101-331 20-269 3-8 6-9 10-14 394-672 172-442 HCO3 67-104 73-128 98-152 73-128 104-183 79-159 33-52 28-79 40-73 140-238 128-195 Total TDS 250-350 270-540 420-690 420-740 410-970 200-620 54-78 55-140 74-140 1300-1700 650-1200 Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐3 Section 3 Applicability of Findings to Central Valley Figure 3‐2. Cumulative percentiles for optima and variances (two standard deviations) for San Joaquin Valley invertebrates reported from Leland and Fend (1998). KeyfeaturesoftherelationshipshowninFigure3‐2include: Approximately50%ofthetaxafromthisdatasethavesalinityoptimaof<400mg/L. Thesamplingcoverageandintensitywaslikelynotpowerfulenoughtousethesedataontheir owntomakeregulatorydecisionsbecausethesamplingwasnotrandomly/statistically determined. Atafirstapproximation,thesedatawouldappearsimilartothedatausedbyEPAtocreatefield‐based SSDsinAppalachianstreamsaffectedbysurfacecoalmining(seeSection2).However,certain conditionsassociatedwiththeCAMexampledonotholdtrueforCalifornia’sCentralValley: TheCAMsituationisuniqueinthattheaffectedhabitatsrangefromheadwaterstorelatively loworderstreamswithlittleprevioushistoryofimpairmentandanamplepoolofsuitable referencestreamsavailableforcomparativepurposes.CentralValleystreamshavenosuch appropriatereferenceconditionsfromwhichtodeveloparegionalscale,field‐basedcriterion. TheCAMexamplereliesupontheideathattherearesignaturewaterchemistrychanges (elevatedsulfateandbicarbonate)exclusivelyassociatedwithmininglanduses,andthatthere arenonaturalsourcesofelevatedTDStoconfoundtheanalysis.Further,theCAMsituationand associatedEPAbenchmarkimpliesthatTDSrelatedtoxicityisderivedfromtheserelatively predictablewaterchemistrychanges.However,theremaybeflawsinthisassumption.Inthe CentralValley,thenaturallyhigherconductivitiesofWestslopetributariescanbeconfounded withtheelevatedconductivitiesassociatedwithirrigationpractices,resultinginamixtureof naturalandanthropogenicsourcesofelevatedTDS. 3‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to Central Valley TheCAMexampleissetamidabackdropofrelativelyhighwaterquality,andtherelativelackof otherproximalstressorsthatmayaffectbiologicalcommunities.IntheCentralValley,both physicalhabitatalterations(sediments)andotherwaterchemistryissues(e.g.,pesticides, nutrients,temperature,selenium)precludetheabilityofbioassessmenttoolstoelucidateor assigncausesofbiologicalimpairmenttostrictlyTDSrelatedissues(thoughLelandandFend [1998]devisedwaystocontrolforphysicalhabitatdifferencesamongsites,andnotethat, “EphemeropteransintheSanJoaquinRiverrarelyoccurredatsalinities>1,000mg/LTDS”). Thus,thedevelopmentofbioticsurveyapproachestoinferTDSeffectsinstreamsappears possiblewithsomeeffort,butisunlikelytobesuccessfulatthispointwithoutadditional researcheffort. Anothermajordifferenceisthathereweusetwostandarddeviationsfromtheoptimalscore, whereasEPAessentiallyusedextirpationsalinities(salinitiesatwhichtaxafailedtobe effectivelypresentinsamples).Itisunclearhowtheapplicationofvariances(e.g.,oneortwo timesthestandarddeviation)tooptimascoreswouldrelatetoanextirpationconcentrationfor eachtaxon.Moreover,EPA’sanalysiswasfarmorerobustwithrespecttosamplingintensity andincludedasubstantialreferencepopulation. Forthisstudyalistof72taxaforthesingleCentralValleyreferencesite(DeerCreek)wasobtained fromtheCaliforniareferencedatabase,wheremosttaxaareidentifiedtothegenuslevel.Thissiteis likelybetterthoughtofas“Sierrafoothillsitethanavalleyfloorsite” (R.Mazor,SCCWRP,personal communication).Ofthese72taxaoccurringinthereferencesite,only25appearintheLelandand Fend(1998)SanJoaquinstudyarea.Whileitisnotpossibletodeterminewhyarelativelysmall numberofreferencetaxaoccurredintheSanJoaquinstudy,itisperhapsinstructivethatthemean salinityoptimareportedbyLelandandFendforthesetaxaintheSanJoaquinstudyareawas336 mg/LTDS.ThissuggeststhatthetaxapresentinbothreferenceandSanJoaquinsiteshadarelatively highsalinitytolerance. 3.2.2 Water Chemistry in the Central Valley TheanalysisofwaterchemistryintheCentralValleywithrespecttoTDSorothersalinity‐related constituentswasnotpartofthescopeofworkforthisreview.However,toassessthe feasibility/attainabilityofanyfutureWQOs,itwouldbeusefultoassesssomeofthespatialaspectsof salinityrelatedconstituentsintheCentralValleyaswellasthemagnitudesofdifferentconstituents. AttemptstosummarizeexistingCaliforniaEnvironmentalDataExchangeNetwork(CEDEN)datawere hamperedbyalackofdocumentationregardingthenatureofthesamplesreported.Specifically,it couldnotbeadequatelydeterminedifmanyreportedvaluesforsalinity‐relatedconstituentswere total(unfiltered)ordissolved(filtered)values.Thisgreatlyreducedtheavailabledataset.Table3‐2 summarizesobservedwaterqualityconcentrationsofdissolvedsulfate,dissolvedchloride,dissolved boron,andTDSaspercentilesoftheavailabledatasetfortheCentralValley.Withtheexceptionof TDS,itisnotablethatthemajorityofdissolveddataforsalinity‐relatedconstituentsisfromSierra NevadafoothilllocationsratherthanfromtheflooroftheCentralValley(Figures3‐3,3‐4,3‐5and3‐ 6forTDS,chloride,sulfateandboron,respectively).Basedontheselimiteddataitdifficulttomake anyusefulfindingsregardingtypicalwaterqualityintheCentralValleyfortheseconstituents.Asa resultitisnotpossibletoreliablyassessthefeasibilityofattainingpotentialWQOsforthese constituentsatthistime. Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐5 Section 3 Applicability of Findings to Central Valley Table 3‐2. Water quality characteristics of salinity‐related constituents in the Central Valley in terms of percentiles Statistic 3‐6 Dissolved Sulfate (mg/L) Dissolved Chloride (mg/L) Dissolved Boron (mg/L) TDS (mg/L) N 186 222 35 4711 10% 0.585 0.351 0.0266 39 25% 1.285 0.6625 0.041 85 50% 3.04 2.65 0.135 220 75% 9.68 9.2775 0.225 580 90% 19.95 42.58 0.902 1,100 95% 32.325 63.455 1.083 1,700 Note: Percentiles calculated from all available CEDEN database (provided courtesy of Melissa Turner, Michael L. Johnson, LLC) Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to Central Valley Figure 3‐3. Sample locations of Central Valley TDS data summarized in Table 3‐2. Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐7 Section 3 Applicability of Findings to Central Valley Figure 3‐4. Sample locations of Central Valley dissolved chloride data summarized in Table 3‐2. 3‐8 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to Central Valley Figure 3‐5. Sample locations of Central Valley dissolved sulfate data summarized in Table 3‐2. Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐9 Section 3 Applicability of Findings to Central Valley Figure 3‐6. Sample locations of Central Valley dissolved boron data summarized in Table 3‐2. 3‐10 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 4 Conclusions and Recommendations 4.1 Conclusions 4.1.1 Salinity‐related Toxicity ToxicityofcomplexTDSmatricesisconsiderablymorevariable(andlesspredictable)thanthe toxicityofsimplesalts.Thisvariabilitymaystemfromionicinteractionsandionicbalance issuesaswellascomplexphysiologicalresponsesofaquaticorganismstothesedifferent mixtures.Thuswhileampletoxicitydataexistforsimplesalts,therewillremainconsiderable uncertaintyintheapplicationofthesevaluesasthebasisfordevelopingWQOs. Thereissufficientdata(byEPAstandards)forthetoxicityofindividualions(chloride,boron, andsulfate)toproduceWQOsbasedontoxicity.However,anysuchWQOswillcontaina significantamountofuncertaintyforthefollowingreasons: Methodsforinferringtheionsresponsiblefortoxicityincomplexmixturesarenotwell developedatthistime; Interactionsamongionsandtheireffectsontoxicityremainpoorlyunderstood; ItremainsunclearwhetherthetoxicityofTDSmixturesresultsfromindividualions causingtoxicityorwhetherionsincombinationelicittoxicity;and Thepredominantspeciesfoundinfreshwaterecosystemsareusuallyinsects,andthese speciesarelargelyabsentfrommosttoxicitydatabases. 4.1.2 Water Chemistry in the Central Valley Thereappearstobealargedifferencebetweennaturalsalinitiesinstreamsflowingfromthe eastandwestslopesoftheCentralValley. Otherwaterchemistryissues(i.e.,pesticides,nutrients)likelyplayalargeroleinspecies compositionbutwerenotconsideredhere;therefore,itisnotpossibletoestablishwithany certaintythedegreetowhichsalinityisafactorinestablishmentofaquaticcommunitiesinthe CentralValley. 4.1.3 Central Valley Biota and Biological Monitoring Thelackofstreamsinreference(ornearreference)conditionssuggeststhattheregional speciespooliscomprisedoflargelytolerant/facultativespecies. Thelackofstreamsinreference(ornearreference)conditionsgreatlyhindersbiomonitoring approachesthatcouldbeusedtoassessthesuccess/failureofanyadoptedsalinity‐related WQOsunlesstrends(changesinspeciescomposition/biodiversityovertime)atagivensiteare thebasisofassessment. Version 2 Final Aquatic Life Report_Vers2_010614.docx 4‐1 Section 4 Conclusions and Recommendations 4.2 Regulatory Options Giventhefindingsofthisstudy,therearethreegeneralapproaches/optionsforgenerating salinity/TDSrelatedWQOsfortheprotectionofaquaticlifeintheCentralValleybasedon(a)toxicity; (b)chemistry;and(c)biology(Figure4‐1). Figure 4‐1. General approaches for generating salinity/TDS related WQOs for the protection of aquatic life in the Central Valley. 4.2.1 Water Quality Objectives Based on Toxicity Toxicitydatasetsforchloride,boronandsulfatecouldbeusedtogenerateWQOs(Figure4‐2); however,itisimportanttorecognizethatthereareanumberoffactorsthatmayneedtobe consideredifthesedatasetswereusedtodevelopWQOs.ForexampletheCanadianGuidelineswhich providethebasisfortheChloridevaluesinTable4‐1identifyhowtheseguidelinesshouldbe interpreted5.Table4‐1listsacuteandchronicHC05estimatesbasedonexistingtoxicitydatasets. 5FromCCME(2011)‐GuidanceontheUseofGuidelines:Theseguidelinesforthechlorideionareonlyintendedtoprotect againstdirecttoxiceffectsofchloride,basedonstudiesusingNaClandCaCl2salts.Theguidelineshouldbeusedasascreening andmanagementtooltoensurethatchloridedoesnotleadtothedegradationoftheaquaticenvironment…Theshort‐term benchmarkconcentration[acute]andlong‐term[chronic]CWQGforchloridearesettoprovideprotectionforshort‐andlong‐ termexposureperiods,respectively.Theyarebasedongenericenvironmentalfateandbehaviourandtoxicitydata.Thelong‐ termwaterqualityguidelineisaconservativevaluebelowwhichallformsofaquaticlife,duringalllifestagesandinall Canadianaquaticsystems,shouldbeprotected–withoneexception.Asnotedearlier,theCWQGmaynotbeprotectiveofthe early(glochidia)life‐stage[of]certainspeciesof…endangeredandspecialconcernfreshwatermussels…Becausetheguideline isnotcorrectedforanytoxicitymodifyingfactors(e.g.,hardness),itisagenericvaluethatdoesnottakeintoaccountanysite‐ specificfactors.Moreover,sincetheguidelineismostlybasedontoxicitytestsusingnaïve(i.e.,non‐tolerant)laboratory organisms,theguidelinemaybeover‐protectiveforareaswithanaturally‐elevatedconcentrationofchlorideandassociated adaptedecologicalcommunity(CCME,2007).Thus,ifanexceedenceoftheguidelineisobserved(duetoanthropogenically‐ enrichedwaterorbecauseofelevatednaturalbackgroundconcentrations),itdoesnotnecessarilysuggestthattoxiceffects willbeobserved,butratherindicatestheneedtodeterminewhetherornotthereisapotentialforadverseenvironmental effects…Ingeneral,CWQGsarenumericalconcentrationsornarrativestatementsthatarerecommendedaslevelsthatshould resultinnegligibleriskofadverseeffectstoaquaticbiota.Asrecommendations,theCWQGsarenotlegallyenforceablelimits, thoughtheymayformthescientificbasisforlegislation,regulationand/ormanagementattheprovincial,territorial,or municipallevel.CWQGsmayalsobeusedasbenchmarksortargetsintheassessmentandremediationofcontaminatedsites, astoolstoevaluatetheeffectivenessofpoint‐sourcecontrols,oras“alertlevels”toidentifypotentialrisks. 4‐2 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 4 Conclusions and Recommendations Table 4‐1. HC05 estimates for the acute and chronic toxicity of major ions. Constituent Chloride Boron 1 2 Sulfate2 1 2 Acute (mg/L) Chronic (mg/L) 640 120 4 1.13 234 124 Based on Canadian Guidelines (CCME, 2011) Based on use of ECOTOX data and EPA standard methods (Stephan et al., 1985) AdvantagesofadoptingWQOsbasedonavailabletoxicitydatainclude: Approachistransparentandobjective;itusesreadilyavailabledatafacilitatingcommunication withstakeholders ApproachisbasedonEPA‐establishedmethodologies PrimarydisadvantagesofadoptingWQOsbasedonavailabletoxicitydatainclude: Dataareforsimplematrices(sodiumsaltsofthegivenions)anddonotrepresentthecomplex mixturesofionsfoundinnaturalsurfacewaters MixturetoxicityofmajorionsinCentralValleywatersremainspoorlyunderstood DatasetsusedtogeneratetheseHC05estimatesarepoorwithrespecttoaquaticinsectdata. Sinceinsectswillpredominatethespeciespoolintheecosystemsinquestion,major uncertaintyexistswithrespecttoprotectiveness. Figure 4‐2. Options for developing WQOs based on toxicity. Final Aquatic Life Report_Vers2_010614.docx Version 2 4‐3 Section 4 Conclusions and Recommendations 4.2.2 Water Quality Objectives Based on Chemistry WQOsbasedonallowabledeviationsfromnaturalsalinities(theSouthAfricanapproach,seeSection 2.1.3)couldbedeveloped.Suchanapproachcouldtakeintoconsiderationthebroadrangeofnatural salinitiespresentintheCentralValleysourcewaters,andapplyanallowabledegreeofchange (salinityincrease)onageographic(eastvs.westslopeoriginatingwaters;valleyfloororiginating waters)oronacasebycasebasis(amoresite‐specificapproach).Itishighlyrecommendedthata statisticallybased,spatiallyexplicitevaluationofavailablewaterchemistrydatabeperformedto betterunderstandbothnaturaldistributionsofsalinitiesinsourcewatersandanthropogenicchanges tothosechemistriesonageographicbasis,regardlessofwhetherornotWQOsarebasedonwater chemistry. ShouldWQOsbedevelopedbasedondeviationsfrom“natural”conditions,theallowabledegreeof salinitychangewouldbepolicydecision.SuchanapproachcouldbeappliedtototalTDS/salinity/EC ortoindividualconstituents.Theadvantagesofthisapproacharethatitwouldremovethesituation whereaone‐size‐fits‐allWQOcouldrendernaturallylowerTDSsitesasunder‐protected,whereas naturallyhighTDSsitescouldneverreachattainablestatus.Themajordifficultyassociatedwiththis approachisthedeterminationofwhatshouldbethenaturalsalinitiesoflargerriversystems (segmentscontaininginputsfromseveralsourcesofsalinity).TheAZNapproachoftailoringlocal criteriatotheperceivedconservationvaluecouldalsobeconsideredhere(seeSection2.1.3). 4.2.3 Water Quality Objectives Based on Biology Thelackofsuitablereferencesystemsrendersthisoptionverydifficulttodevelop,muchlessdefend. Additionally,thesoftsubstratesofmanyCentralValleystreams(andtheheterogeneityassociated withparticlesizes)practicallyaffectstheabilitytoeffectivelycomparesamplesfromsitetosite. LelandandFend(1998)wereabletogetaroundthisissuebyusingartificialsubstrates.However,as notedabove,thistypeofdataisnotnormallycollected. 4.2.4 Hybrid Approaches for Setting Water Quality Objectives Ahybridapproachcouldborrowthe“triggervalue”conceptfromtheAZNApproach(Figure4‐3). ExceedanceofatotalTDS/salinity/EC“triggervalue”couldprompttheneedforfurtherchemical analysistoquantifytheconcentrationsofindividualmajorionsand/orwholeeffluenttypetoxicity testing.Onlywhereaconcernwasidentifiedforaparticularion,e.g.,chlorideorsulfate,woulditbe necessarytoconsiderimplementationofacontrolmeasure. 4‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 4 Conclusions and Recommendations Figure 4‐3. A hybrid approach combining a total TDS/salinity/EC trigger value with WQOs for individual ions. 4.3 Final Thoughts ThisreportprovidespotentialdirectionsthatcouldbetakenforthedevelopmentofWQOsforthe protectionofaquaticlifeforTDS/salinityrelatedconstituentsintheCentralValley.Thereareseveral reasonswhyexplicitrecommendationsforWQOswerenotmadehere.First,(andobviously),there areconsiderablescientific/technicaluncertaintiesthatarehighlightedthroughoutthisreport.In addition,thereisagenerallackofdissolvedwaterchemistrydatainmuchoftheCentralValleyfloor. Thatsaid,therewillalwaysbescientificuncertainty,andthisaloneshouldnotnecessarilybeabasis forinaction.Basedonbothfieldandtoxicitystudiesoutlinedhere,thereisthepotentialforsalinityto becausingecologicalimpairmentinatleastsomestreamsegmentsintheCentralValley.Inthose situations,settingsomeregulatorylimitsonTDS/salinitycomponentsfortheprotectionofaquaticlife wouldmakesense.However,thereremainsasurprisinglyincompletepictureofTDSrelated chemistryonthegroundintheCentralValley.Beforeanynewregulatorytoolsareconsidered(e.g., otherthantheuseofthenarrativeWQOs),thereshouldbeastrongunderstandingofbothspatialand temporalchemistrydynamicsintheCentralValley,suchthattheattainabilityofanyfutureagreed uponnumericWQOsarewellunderstood,asthesecouldhaveregulatoryandeconomicconsequences Additionally,thereshouldbesomearticulation(ideallybasedonstakeholderconsensus)regarding theconservationgoalsforaquaticlifeintheCentralValley.Thedegreetowhichthewholeecosystem Final Aquatic Life Report_Vers2_010614.docx Version 2 4‐5 Section 4 Conclusions and Recommendations hasbeenmodifiedplacestheecologywelloutsideofanyhistoricorcomparableecosystem.This renderswadablestreamsintheCentralValleyoutsideofthecurrentcapacitytoadequately biomonitorusingtraditionalreferenceapproaches.Iftherearespecies/ecosystemprocessesthatare identifiedasofparticularimportance/conservationvalue,thisshouldbearticulated. Giventheuncertaintiesanddatagapsdescribedabove,itisnotrecommendedthatWQOsforaquatic lifebeestablishedatthistime.However,iftheCentralValleyWaterBoardweretoimplementprojects toresolvethesedatagapsanduncertainties,thenitisrecommendedthatthefollowingactivitiesbe carriedout: Generatearobustassessmentofwaterchemistry(dissolved)onthevalleyfloor(thisincludes bothspatialandseasonalcoverage). Determinetheextenttowhichelevatedsaltsarisefromnatural(seeps,springsandstreams drainingsaltbearinggeology)vs.anthropogenicsources(irrigationdrainwater). Ifsalinityisdeemedtocomefromprimarilyanthropogenicactivities,considerimplementing toxicitybasedobjectivesafterperformingananalysisofattainability. Articulatewhichbiologicalcommunities/speciesareprioritiesforprotectionandhowsalinity basedobjectiveswouldbeapplied. 4‐6 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 5 References AustralianandNewZealandEnvironmentandConservationCouncil(ANZECC)andAgricultureand ResourceManagementCouncilofAustraliaandNewZealand(ARMCANZ).2000.AustralianandNew ZealandGuidelinesforFreshandMarineWaterQuality.Volume1:TheGuidelines.ANZECCand AMCANZ.October2000. Birge,W.J.andJ.A.Black.1977.Sensitivityofvertebrateembryostoboroncompounds,April1977Final Report.EPA‐560/1‐76‐008.U.S.EnvironmentalProtectionAgency,OfficeofToxicSubstances. Washington,DC.66p. Black,J.A.,J.B.Barnum,andW.J.Birge.1993.Anintegratedassessmentofthebiologicaleffectsofboron totherainbowtrout.Chemosphere26:1383‐1413. Bradley,T.J.andJ.E.Phillips.1977.Regulationofrectalsecretioninsaline‐watermosquitoLarvaeliving inwatersofdiverseioniccomposition.JournalofExperimentalBiology66:83‐96. Bright,D.A.andJ.Addison.2002.DerivationofMatrixSoilStandardsforSaltundertheBritishColumbia ContaminatedSitesRegulation.ReporttotheBritishColumbiaMinistryofWater,LandandAir Protection,MinistryofTransportationandHighways,BritishColumbiaBuildingsCorporation,andthe CanadianAssociationofPetroleumProducers.June2002. Bringolf,R.B.2010.EmailtoM.Nowierski,June14.Calculationof<EC50effectconcentrationsfromdata presentedinBringolfetal.,2007. Bringolf,R.B.,W.G.Cope,C.B.Eads,P.R.Lazaro,M.C.Barnhart,andD.Shea.2007.AcuteandChronic ToxicityofTechnicalgradePesticidestoGlochidiaandJuvenilesofFreshwaterMussels(Unionidae). EnvironmentalToxicologyandChemistry26:2086‐2093. CanadianCouncilofMinistersoftheEnvironment(CCME).2011.Canadianwaterqualityguidelinesfor theprotectionofaquaticlife:Chloride.In:Canadianenvironmentalqualityguidelines,1999.Canadian CouncilofMinistersoftheEnvironment,Winnipeg. CentralValleyRegionalWaterQualityControlBoard.1999.Boron:ALiteratureSummaryfor DevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQualityControlBoard, January1999. CentralValleyRegionalWaterQualityControlBoard.2000.Salinity:ALiteratureSummaryfor DevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQualityControlBoard, January2000. Degreave,G.M.,J.D.Cooney,B.H.Marsh,T.L.Pollock,andN.G.Reichenbach.1992.Variabilityinthe performanceofthe7‐dCeriodaphniadubiasurvivalandreproductiontest:anintra‐andinter‐ laboratorycomparison.EnvironmentalToxicologyandChemistry11:851‐866. Version 2 Final Aquatic Life Report_Vers2_010614.docx 5‐1 Section 5 References DepartmentofInterior(DOI).1998.Guidelinesfortheinterpretationofbiologicaleffectsofselected constituentsinbiota,waterandsediment.Boron.DepartmentofInterior,NationalIrrigationWater QualityProgram,InformationReportNo.3.November1998. DepartmentofInterior(DOI).1998.Guidelinesfortheinterpretationofbiologicaleffectsofselected constituentsinbiota,waterandsediment.Salinity.DepartmentofInterior,NationalIrrigationWater QualityProgram,InformationReportNo.3.November1998. DepartmentofWaterAffairsandForestry.1996.SouthAfricanWaterQualityGuidelines(second edition).Volume7:AquaticEcosystems.SHolmes(ed.).CSIREnvironmentalServices. Diamond,J.M.,E.L.Winchester,D.G.Mackler,andD.Gruber.1992.UseofthemayflyStenonema modestum(Heptageniidae)insubacutetoxicityassessments.EnvironmentalToxicologyandChemistry 11:415‐425. Eckert,C.D.1998.Boronstimulatesembryonictroutgrowth.JournalofNutrition128:2488‐2493. Elphick,J.R.F.,K.D.BerghandH.C.Bailey.2011.Chronictoxicityofchloridetofreshwaterspecies:effects ofhardnessandimplicationsforwaterqualityguidelines.EnvironmentalToxicologyandChemistry30: 239‐246. EPA.1988.Ambientaquaticlifecriteriaforchloride‐1988.EPA440/5‐88‐001.U.S.Environmental ProtectionAgency,Duluth,Minnesota. EPAEcotoxicologydatabase(ECOTOX).http://cfpub.epa.gov/ecotox/). EPA.2011.Finalpublication:Afield‐basedaquaticlifebenchmarkforconductivityinCentral Appalachianstreams.EPA/600/R‐10/023F,U.S.EPA,OfficeofResearchandDevelopment,Cincinnati, OH.March2011. Evans,M.andC.Frick.2001.Theeffectsofroadsaltsonaquaticecosystems.NWRIContributionSeries No.02‐308,NationalWaterResearchInstituteandUniversityofSaskatchewan,Saskatoon,SK,Canada. Gillis,P.L.2011.Assessingthetoxicityofsodiumchloridetotheglochidiaoffreshwatermussels: Implicationsforsalinizationofsurfacewaters.EnvironmentalPollution159:1702‐1708. Goetsh,P.A.andC.G.Palmer.1997.SalinitytoleranceofselectedmacroinvertebratesoftheSabieRiver, KrugerNationalPark,SouthAfrica.ArchivesofEnvironmentalContaminationandToxicology32:32‐ 41. Goodfellow,W.L.,L.W.Ausley,D.T.Burton,D.L.Denton,P.B.Dorn,D.R.Grothe,M.A.Heber,T.J. Norberg‐King,andJ.H.Rodgers,Jr.2000.Majoriontoxicityineffluents:Areviewwithpermitting recommendations.EnvironmentalToxicologyandChemistry19:175‐182. GreatLakesEnvironmentalCenter(GLEC)andIllinoisNaturalHistorySurvey(INHS).2008.Acute toxicityofchloridetoselectfreshwaterinvertebrates.PreparedfortheU.S.EPA.EPAContractNumber: 68‐C‐04‐006.October28,2008. Hamilton,S.J.andK.J.Buhl.1990.Acutetoxicityofboron,molybdenumandseleniumtofryofchinook salmonandcohosalmon.ArchivesofEnvironmentalContaminationandToxicology19:366‐373. 5‐2 Version 2 Final Aquatic Life Report_Vers2_010614.docx Section 5 References Hem,J.D.1985.Studyandinterpretationsofthechemicalcharacteristicsofnaturalwater,thirdedition. U.S.GeologicalSurveyWaterSupplyPaper2254. Howe,P.D.1998.Areviewofboroneffectsintheenvironment.BiologicalTraceElementsResearch66: 153‐166. Hughes,J.S.,1973.AcutetoxicityofthirtychemicalstoStripedBass(Moronesaxatilis).Louisiana WildlifeandFisheriesCommission(A:2012). IllinoisEnvironmentalProtectionAgency.2006.Preliminarytechnicaljustificationforchangingwater qualitystandardsforsulfates,totaldissolvedsolidsandmixingzones.IllinoisEnvironmentalProtection Agency.April2006. IowaDepartmentofNaturalResources(IDNR).2009.WaterQualityStandardsReview:Chloride, SulfateandTotalDissolvedSolids.IowaDepartmentofNaturalResources,February9,2009. Karraker,N.E.andJ.P.Gibbs.2011.Roadde‐icingsaltirreversiblydisruptsosmoregulationof salamandereggclutches.EnvironmentalPollution159:833‐835. Khangarot,B.S.,andP.K.Ray.1989.Investigationofcorrelationbetweenphysicochemicalpropertiesof metalsandtheirtoxicitytothewaterfleaDaphniamagnaStraus.EcotoxicologyandEnvironmental Safety18:109‐120. Khangarot,B.S.1991.Toxicityofmetalstoafreshwatertubificidworm,Tubifextubifex(Muller).Bulletin ofEnvironmentalContaminationandToxicology46:906‐912. Kunz,J.L.,J.M.Conley,D.B.Buchwalter,T.J.Norberg‐King,N.E.Kemble,N.WangandC.G.Ingersoll. 2013.Useofreconstitutedwaterstoevaluateeffectsofelevatedmajorionsassociatedwithmountaintop coalminingonfreshwaterinvertebrates.EnvironmentalToxicologyandChemistry32:2826‐2835. Leland,H.V.andS.V.Fend.1998.BenthicinvertebratedistributionsintheSanJoaquinRiver,California, inrelationtophysicalandchemicalfactors.CanadianJournalofFisheriesandAquaticSciences55: 1051‐1067. Linsley,R.K.andJ.B.Franzini.1979.Waterresourceengineering.McGrawHill.Singapore. Loewengart,G.2001.ToxicityofborontoRainbowTrout:Aweight‐of‐the‐evidenceassessment. EnvironmentalToxicologyandChemistry20:796‐803. McKee,J.E.andH.W.Wolf.1963.Waterqualitycriteria,2ndedition.Publication3‐A.CaliforniaState WaterQualityControlBoard,Sacramento,CA.USA. Mount,D.R.,D.D.Gulley,J.R.Hockett,T.D.Garrison,andJ.M.Evans.1997.Statisticalmodelstopredict thetoxicityofmajorionstoCeriodaphniadubia,DaphniamagnaandPimephalespromelas(Fathead Minnows).EnvironmentalToxicologyandChemistry16:2009‐2019. Nagpal,N.K.,D.A.Levy,andD.D.MacDonald.2003.Waterquality:Ambientwaterqualityguidelinesfor chloride‐overviewreport.MinistryofEnvironment,BritishColumbia,Canada. Pimentel,R.andR.V.Bulkley.1983.Influenceofwaterhardnessonfluoridetoxicitytorainbowtrout. EnvironmentalToxicologyandChemistry2:381–386. Final Aquatic Life Report_Vers2_010614.docx Version 2 5‐3 Section 5 References Rowe,R.I.,C.Bouzan,S.Nabili,andC.D.Eckert.1998.Theresponseoftroutandzebrafishembryosto lowandhighboronconcentrationsisU‐shaped.BiologicalTraceElementsResearch66:237‐259. Saiki,M.K.,M.R.Jennings,andR.H.Wiedemeyer.1992.Toxicityofagriculturalsubsurfacedrainwater fromtheSanJoaquinValley,California,tojuvenileChinooksalmonandstripedbass.Transactionsofthe AmericanFisheriesSociety121:78‐93. Schoderboeck,L.,S.Muhlegger,A.Losert,C.Gausterer,andR.Hornek.2011.Effectsassessment:Boron compoundsintheaquaticenvironment.Chemosphere82:483‐487. Soucek,D.J.2007.Comparisonofhardness‐andchloride‐regulatedacuteeffectsofsodiumsulfateontwo freshwatercrustaceans.EnvironmentalToxicologyandChemistry26:773‐779. Soucek,D.J.,A.Dickinson,andB.T.Koch.2011.Acuteandchronictoxicityofborontoavarietyof freshwaterorganisms.EnvironmentalToxicologyandChemistry30:1906‐1914. SoucekD.J.andA.J.Kennedy.2005.Effectsofhardness,chloride,andacclimationontheacutetoxicityof sulfatetofreshwaterinvertebrates.EnvironmentalToxicologyandChemistry24:1204‐1210. StateWaterResourcesControlBoard(StateWaterBoard).1987.Regulationofagriculturaldrainageto theSanJoaquinRiver.TheTechnicalCommitteeReportMainReportStateWaterBoardOrderNoW.Q 85‐1SanJoaquinRiverBasinSacramento. StephanC.E.,D.I.Mount,D.J.Hansen,J.H.Gentile,G.A.Chapman,andW.A.Brungs.1985.Guidelinesfor derivingnumericalnationalwaterqualitycriteriafortheprotectionofaquaticorganismsandtheiruses. U.S.EPA,OfficeofResearchandDevelopment,Washington,DC. StroudWaterResearchCenter.2010.ExpertReportontheProposedRulemakingbythePennsylvania EnvironmentalQualityBoardforAmbientWaterQualityCriterionChloride(Cl).StroudWaterResearch Center,Avondale,Pennsylvania.StroudReport#2010004.June14,2010. Thompson,J.A.J.andJ.C.Davis.1976.Toxicity,uptakeandsurveystudiesofboroninthemarine environment.WaterResearch10:869‐875. U.S.BureauofReclamation.1993.Drainagemanual:Aguidetointegratingplant,soilandwater relationshipsfordrainageofirrigatedlands.U.S.BureauofReclamation,Denver,Colorado.Water ResourcesTechnicalPublication. U.S.DepartmentofAgriculture.1954.Improvementofsalineandalkalisoils.U.S.SalinityLaboratory Staff(AgriculturalHandbookNo60). Weber‐Scannell,P.K.andL.K.Duffy.2007.Effectsoftotaldissolvedsolidsonaquaticorganisms:A reviewofliteratureandrecommendationforsalmonidspecies.AmericanJournalofEnvironmental Sciences3:1‐6. Wetzel,R.G.1983.Limnology.SecondEdition.SaundersCollegePublishing.NY.767p. Wurtz,C.B.,andC.H.Bridges.1961.Preliminaryresultsfrommacroinvertebratebioassays.Proceedings ofthePennsylvaniaAcademyofSciences35:51‐56. 5‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Version 2 Final Aquatic Life Report_Vers2_010614.docx A‐1 Appendix A Data Tables Table A‐1 ‐ Predicted cumulative percentage of species affected by chronic exposures to chloride (from Evans and Frick, 2001). Cumulative % of Species Affected Mean Chloride Concentration (mg/L) Lower Confidence Limit (mg/L) Upper Confidence Limit (mg/L) 5 213 136 290 10 238 162 314 25 329 260 397 50 563 505 622 75 964 882 1,045 90 1,341 1,254 1,428 A‐2 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Table A‐2 ‐ Four‐day LC50 values of various taxa exposed to sodium chloride (adapted from Table 7‐5 in Evans and Frick, 2001 and Table B.6 in Bright and Addison, 2002) (References in table not provided in this document – see original references). Species Common Name 96 h LC50 (mg Cl/L) References Tubifex tubifex Tubificid worm 1,204 Khangarot, 1995 Ceriodaphnia dubia Cladoceran 1,400 Cowgill and Milazzo, 1990 Daphnia pulex Cladoceran 1,470 Birge et al., 1985 Ceriodaphnia dubia Cladoceran 1,596 WI SLOH, 1995 Daphnia magna Cladoceran 1,853 Anderson, 1948 Daphnia magna Cladoceran 2,390 Arambasic et al., 1995 Physa gyrina Snail 2,480 Birge et al., 1985 Lirceus fontanels Isopod 2,970 Birge et al., 1985 Cirrhinius mrigalo Indian carp fry 3,021 Gosh and Pal, 1969 Labeo rohoto Indian carp fry 3,021 Gosh and Pal, 1969 Catla catla Indian carp fry 3,021 Gosh and Pal, 1969 Daphnia magna Cladoceran 3,658 Cowgill and Milazzo, 1990 Cricotopus trifascia Chironomid 3,795 Hamilton et al., 1975 Chironomus attenatus Chironomid 4,026 Thorton and Sauer, 1972 Hydroptila angusta Caddisfly 4,039 Hamilton et al., 1975 Daphnia magna Cladoceran 4,071 WI SLOH, 1995 Limnephilus stigma Caddisfly 4,255 Sutcliffe, 1961 Anaobolia nervosa Caddisfly 4,255 Sutcliffe, 1961 Carassius auratus Goldfish 4,453 Adelman et al., 1976 Pimephales promelas Fathead minnow 4,600 WI SLOH, 1995 Pimephales promelas Fathead minnow 4,640 Adelman et al., 1976 Lepomis macrochirus Bluegill 5,840 Birge et al., 1985 Culex sp. Mosquito 6,222 Dowden and Bennett, 1965 Pimephales promelas Fathead minnow 6,570 Birge et al., 1985 Lepomis macrochirus Bluegill 7,864 Trama, 1954 Gambusia affinis Mosquito fish 10, 616 Wallen et al., 1957 Anguilla rostrata American eel 10,900 Hinton and Eversole, 1978 Anguilla rostrata American eel 13,085 Hinton and Eversole, 1978 Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐3 Appendix A Data Tables Table A‐3 ‐ Results of chronic toxicity tests (> 7 day duration) conducted on freshwater organisms exposed to sodium chloride (adapted from Table 7‐6 in Evans and Frick, 2001 and Table B.6 in Bright and Addison, 2002) (References in table not provided in this document – see original references). LC50/EC50 Measured Species Common Name (mg Cl/L) Endpoint References Ceriodaphnia dubia Cladoceran 735 brood size Degreave et al., 1985 Pimephales promelas Fathead minnow 874 survival Beak, 1999 Ceriodaphnia dubia Cladoceran 1,068 brood size Cowgill and Milazzo, 1990 Oncorhynchus mykiss Rainbow trout 1,456 survival Beak, 1999 Nitschia linearis Diatom 1,475 cell numbers Gonzales‐Moreno et al., 1997 Xenopus leavis Frog 1,524 survival Beak, 1999 Oncorhynchus mykiss Rainbow trout 1,595 survival Beak, 1999 Daphnia magna Cladoceran 2,451 brood size Cowgill and Milazzo, 1990 Pimephales promelas Larvae 3,029 growth Beak, 1999 Lemna minor Duckweed 3,150 population Buckley et al., 1996 Myriophyllum spicatum Eurasian Watermilfoil 4,291 population Stanley, 1974 Myriophyllum spicatum Eurasian Watermilfoil 4,681 growth Stanley, 1974 A‐4 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Table A‐4 – Chloride toxicity endpoint data from Canadian Water Quality Guidelines for the Protection of Aquatic Life (2011) (References in table not provided in this document – see original reference). Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐5 Appendix A Data Tables A‐6 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐7 Appendix A Data Tables Table A‐5 – Chloride toxicity values from Tables 2 and 3, IDNR (2009). A‐8 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Table A‐6. Acute toxicity data for borate (ECOTOX). Table A. Acute borate LC50 toxicity data Genus Limanda Carassius Americamysis Menidia Ictalurus Daphnia Xyrauchen Rasbora Cyprinodon Ptychocheilus Gila Lepomis Catostomus Oncorhynchus Xenopus Chironomus Spirostomum Gambusia Common Name Flounder Ray‐finned Fish Opossum Shrimp Silverside Fish Channel Catfish Water Flea Sucker Fish Minnow Sheepshead Minnow Pike Minnow Chub Fish Bluegill Fish Sucker Fish Silver Salmon African Clawed Frogs Midge Ciliate Protist Western Mosquitofish Mean Concentration (mg/L) 78.43 121.75 130.01 160.92 169.25 196.20 204.00 231.67 245.56 302.00 310.67 321.75 421.75 934.96 978.11 1,376.00 5,348.00 9,650.00 Table B. Acute borate data – Non‐LC50 data Genus Entosiphon Tetrahymena Chilomonas Dugesia Anacystis Pseudokirchneriella Chironomus Kuhlia Lemna Dreissena Ceriodaphnia Simocephalus Uronema Anthocidaris Colpidium Rasbora Americamysis Menidia Xyrauchen Xenopus Daphnia Ptychocheilus Spirostomum Danio Cypris Poecilia Oncorhynchus Pimephales Tubifex Anguilla Gammarus Final Aquatic Life Report_Vers2_010614.docx Common Name Protist Flagellates Ciliated Protozoan Algae Flatworm Algae Green Algae Midge Flagtail Fish Duckweed Zebra Mussel Water Flea Water Flea Algae Sea Urchin Ciliate Minnow Opossum Shrimp Silverside Fish Sucker Fish African Clawed Frogs Water Flea Pike Minnow Ciliate Protist Zebra Fish Ostracod Molly Fish Silver Salmon Fathead Minnow Sludge Worm Freshwater Eel Scud Version 2 Mean Concentration (mg/L) 1.00 1.00 8.30 10.00 11.25 15.40 20.00 20.00 20.34 50.00 79.16 80.75 109.00 127.00 182.97 196.67 199.72 251.43 288.00 296.88 336.99 360.00 558.00 568.84 2,022.50 4,333.33 5,000.00 5,275.00 6,000.00 6,083.33 10,000.00 A‐9 Appendix A Data Tables Table A‐7. Chronic toxicity data for borate (ECOTOX). Table A. Chronic borate LC50 toxicity data Genus Hyalella Elodea Myriophyllum Ranunculus Daphnia Carassius Oncorhynchus Micropterus Ictalurus Common Name Scud Waterweed Eurasian Watermilfoil Buttercup Plant Water Flea Ray‐finned Fish Silver Salmon Largemouth Bass Channel Catfish Mean Concentration (mg/L) 3.04 5.00 5.00 10.00 52.70 61.25 76.94 92.00 100.75 Table B. Chronic borate data – Non‐LC50 data Genus Scenedesmus Ranunculus Elodea Chlorella Lemna Micropterus Ceriodaphnia Daphnia Ambystoma Bufo Lithobates Anacystis Myriophyllum Xenopus Oncorhynchus Phragmites Typha Common Name Green Algae Buttercup Plant Waterweed Green Algae Duckweed Largemouth Bass Water Flea Water Flea Salamander Toad Bullfrog Algae Eurasian Watermilfoil African Clawed Frogs Silver Salmon Common Reed Grass Common Cattail A‐10 Mean Concentration (mg/L) 0.58 1.50 1.80 5.60 8.50 12.17 15.70 22.99 49.50 49.50 49.50 73.00 98.43 150.00 161.60 430.00 430.00 Version 2 Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Table A‐8. Acute toxicity data for sulfate (ECOTOX). Table A. Acute sulfate LC50 toxicity data Genus Morone Tricorythus Nitzschia Hyalella Sphaerium Ceriodaphnia Lampsilis Daphnia Lymnaea Pimephales Lepomis Culex Chironomus Gambusia Poecilia Americamysis Cyprinodon Menidia Common Name Striped Bass Mayfly Diatom Scud Grooved Fingernail Clam Water Flea Lamp‐Mussel Water Flea Pond Snail Fathead Minnow Bluegill Fish Mosquito Midge Western Mosquitofish Sailfin Molly Fish Opossum Shrimp Sheepshead Minnow Inland Silverside Fish Mean Concentration (mg/L) 600.44 660.00 1,900.00 2,204.03 2,402.86 2,541.56 2,882.30 4,498.54 4,938.50 6,985.16 11,271.25 12,390.00 14,134.00 17,000.00 18,018.00 18,659.94 19,502.80 28,507.43 Table B. Acute sulfate data – Non‐LC50 data Genus Artemia Ophryotrocha Notropis Gammarus Bulinus Lymnaea Brachionus Dreissena Corbicula Hyalella Americamysis Navicula Morone Pseudokirchneriella Pimephales Ceriodaphnia Oncorhynchus Cyprinidae Daphnia Biomphalaria Polycelis Chimarra Tricorythus Chironomus Cyprinodon Ictalurus Lepomis Micropterus Menidia Common Name Brine Shrimp Polychaete Shiner Fish Scud Snail Pond Snail Rotifer Zebra Mussel Asiatic Clam Scud Opossum Shrimp Diatom Striped Bass Green Algae Fathead Minnow Water Flea Silver Salmon Minnow Water Flea Freshwater Snail Planarian Caddisfly Mayfly Midge Sheepshead Minnow Channel Catfish Bluegill Fish Largemouth Bass Inland Silverside Fish Mean Concentration (mg/L) 6.60 6.60 100.00 299.75 850.00 950.00 1,267.75 1,420.40 1,500.00 1,544.89 1,800.00 1,900.00 2,237.50 2,258.41 2,359.95 2,408.35 3,942.72 4,500.00 4,915.50 5,133.33 6,817.92 7,340.00 7,340.00 11,682.00 19,613.46 20,000.00 20,000.00 20,000.00 20,538.98 Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐11 Appendix A Data Tables Table A‐9. Chronic toxicity data for sulfate (ECOTOX). Table A. Chronic sulfate LC50 toxicity data Genus Calla Equisetum Glyceria Juncus Menyanthes Potamogeton Thelypteris Fontinalis Pseudacris Corbicula Hyalella Ceriodaphnia Myriophyllum Caridina Pseudokirchneriella Oncorhynchus Rana Ictalurus Americamysis Lepomis Micropterus Common Name Water Arum Water Horsetail Reed Mannagrass Rush Buck‐bean Pondweed Eastern Marsh Fern Common Water Moss Pacific Chorus Frog Asiatic Clam Scud Water Flea Eurasian Watermilfoil Common Water Shrimp Green Algae Silver Salmon Bullfrog Channel Catfish Opossum Shrimp Bluegill Fish Largemouth Bass Mean Concentration (mg/L) 284.08 284.08 284.08 284.08 284.08 284.08 284.08 920.25 1,498.19 1,500.00 1,565.00 1,586.83 2,341.00 2,341.43 3,000.00 3,208.81 4,261.20 9,166.67 9,236.15 10,000.00 13,800.00 Table B. Chronic sulfate data – all lethal and non‐lethal data Genus Calla Equisetum Glyceria Juncus Menyanthes Potamogeton Thelypteris Anabaena Chlorella Dunaliella Platymonas Porphyridium Tetraselmis Fontinalis Pseudacris Corbicula Hyalella Ceriodaphnia Myriophyllum Caridina Pseudokirchneriella Oncorhynchus Rana Ictalurus Americamysis Lepomis Micropterus Common Name Water Arum Water Horsetail Reed Mannagrass Rush Buck‐bean Pondweed Eastern Marsh Fern Blue‐Green Algae Green Algae Green Algae Green Flagellate Red Algae Prasinophyte Common Water Moss Pacific Chorus Frog Asiatic Clam Scud Water Flea Eurasian Watermilfoil Common Water Shrimp Green Algae Silver Salmon Bullfrog Channel Catfish Opossum Shrimp Bluegill Fish Largemouth Bass Mean Concentration (mg/L) 284.08 284.08 284.08 284.08 284.08 284.08 284.08 390.00 850.00 850.00 850.00 850.00 850.00 920.25 1,430.24 1,500.00 1,565.00 1,586.83 2,341.00 2,798.75 3,000.00 3,657.83 4,261.20 9,166.67 9,236.15 10,000.00 13,800.00 A‐12 Version 2 Final Aquatic Life Report_Vers2_010614.docx
© Copyright 2026 Paperzz