Final Aquatic Life Study Report_010614

CENTRAL VALLEY SALINITY ALTERNATIVES FOR LONG‐TERM SUSTAINABILITY (CV–SALTS) AquaticLifeStudy
FinalReport
January 6, 2014 Prepared for SAN JOAQUIN VALLEY DRAINAGE AUTHORITY Submitted by DAVID BUCHWALTER, PH.D, NORTH CAROLINA STATE UNIVERSITY Table of Contents Section1 Introduction...............................................................................................................................................1‐1
1.1 ProjectBackgroundandPurpose.................................................................................................................1‐1
1.2 ScopeofWork.......................................................................................................................................................1‐1
1.3 DefinitionsandAcronyms...............................................................................................................................1‐4
1.3.1 Definitions.............................................................................................................................................1‐4
1.3.2 Acronyms..............................................................................................................................................1‐5
Section2 AnalysisofSalinity‐RelatedConstituents........................................................................................2‐1
2.1 TotalDissolvedSolids.......................................................................................................................................2‐1
2.1.1 Background..........................................................................................................................................2‐1
2.1.2 StateofSciencewithRespecttoUnderstandingtheToxicityof
ComplexTDSMatrices.....................................................................................................................2‐1
2.1.3 RegulatoryApproachestoTotalTDS/Salinity/ECforthehProtection
ofAquaticLife......................................................................................................................................2‐4
2.2 Chloride...................................................................................................................................................................2‐6
2.2.1 ChlorideWaterQualityCriteria..................................................................................................2‐6
2.2.2 VariousRationaleforAcuteandChronicChlorideCriteria............................................2‐7
2.2.3 ChlorideSummary..........................................................................................................................2‐14
2.3 Boron.....................................................................................................................................................................2‐14
2.3.1 Overview.............................................................................................................................................2‐14
2.3.2 BoronSummary..............................................................................................................................2‐19
2.4 Sulfate....................................................................................................................................................................2‐20
2.4.1 Overview.............................................................................................................................................2‐20
2.4.2 SulfateSummary.............................................................................................................................2‐21
2.5
OtherSalinity‐RelatedConstituents........................................................................................................2‐24
Section3 ApplicabilityofFindingstotheCentralValley
3.1 ApplicabilityofToxicityDatatoCentralValleyFauna.......................................................................3‐1
3.2 ToxicityofChloride,Boron,andSulfateinRelationtoWaterChemistry
ConcentrationsintheCentralValley..........................................................................................................3‐1
3.2.1 InterpretationofResidentBiologicalCommunitiesintheCentralValley...............3‐1
3.2.2 WaterChemistryintheCentralValley.....................................................................................3‐5
Section4 ConclusionsandRecommendations..................................................................................................4‐1
4.1 Conclusions............................................................................................................................................................4‐1
4.1.1 Salinity‐relatedToxicity.................................................................................................................4‐1
4.1.2 WaterChemistryintheCentralValley.....................................................................................4‐1
4.1.3 CentralValleyBiotaandBiologicalMonitoring...................................................................4‐1
4.2 RegulatoryOptions.............................................................................................................................................4‐2
4.2.1 WaterQualityObjectivesBasedonToxicity............................................................................4‐2
4.2.2 WaterQualityObjectivesBasedonChemistry.......................................................................4‐4
4.2.3 WaterQualityObjectivesBasedonBiology.............................................................................4‐4
4.2.4 HybridApproachesforSettingWaterQualityObjectives.................................................4‐4
4.3
FinalThoughts......................................................................................................................................................4‐5
Section5 References..................................................................................................................................................5‐1
AppendixA DataTables............................................................................................................................................A‐1
Version 2
Final Aquatic Life Report_Vers2_010614.docx i Table of Contents List of Figures Figure2‐1
Figure2‐2
Figure2‐3
Distributionofgenus‐specificXC95valuesfor163CAMgenera.......................................2‐5
SSDofshort‐termL/EC50toxicitydataforthechlorideioninfreshwater..................2‐9
SSDoflong‐termno‐andlow‐effectendpointtoxicityforthe
chlorideioninfreshwater.................................................................................................................2‐9
Figure2‐4 Influenceofwaterhardnessandsulfateontoxicityofchloride.....................................2‐11
Figure2‐5 Influenceofwaterhardnessontheacutetoxicityofchoridetothe
fingernailclam,planorbidsnailandtubificidworm............................................................2‐12
Figure2‐6 Distributionoftheacutetoxicitydataofboratetoaquaticorganisms
(lethalandnon‐lethalendpoints)basedonECOTOXdata................................................2‐16
Figure2‐7 Distributionofthechronictoxicitydataofboratetoaquaticorganisms
(lethalandnon‐lethalendpoints)basedonECOTOXdata...............................................2‐17
Figure2‐8 Compiledacuteandchronictoxicityvaluesforboroninfish..........................................2‐18
Figure2‐9 Availableacuteandchronictoxicityvaluesforboroninaquaticspeciesof
diversetaxonomicgroups................................................................................................................2‐19
Figure2‐10 Distributionoftheacutetoxicitydataofsulfatetoaquaticorganisms
(lethalandnon‐lethalendpoints)basedonECOTOXdata................................................2‐22
Figure2‐11 Distributionofthechronictoxicitydataofsulfatetoaquaticorganisms
(lethalandnon‐lethalendpoints)basedonECOTOXdata...............................................2‐23
Figure3‐1 Samplinglocationsforwaterchemistrymeasurementsreportedfromthe
SanJoaquinRiverandtributariesfromLelandandFend(1998)....................................3‐3
Figure3‐2 Cumulativepercentilesforoptimaandvariances(twostandarddeviations)
forSanJoaquinValleyinvertebratesreportedfromLelandandFend(1998)..........3‐4
Figure3‐3 SamplelocationsofCentralValleyTDSdatasummarizedinTable3‐2........................3‐7
Figure3‐4 SamplelocationsofCentralValleydissolvedchloridedatasummarized
inTable3‐2...............................................................................................................................................3‐8
Figure3‐5 SamplelocationsofCentralValleydissolvedsulfatedatasummarized
inTable3‐2...............................................................................................................................................3‐9
Figure3‐6 SamplelocationsofCentralValleydissolvedborondatasummarized
inTable3‐2.............................................................................................................................................3‐10
Figure4‐1 Generalapproachesforgeneratingsalinity/TDSrelatedWQOsforthe
protectionofaquaticlifeintheCentralValley.........................................................................4‐2
Figure4‐2 OptionsfordevelopingWQOsbasedontoxicity.....................................................................4‐3
Figure4‐3 HybridapproachcombiningatotalTDS/salinity/ECtriggervaluewith
WQOsforindividualions...................................................................................................................4‐5
List of Tables Table2‐1
Table2‐2
Table2‐3
ii TDSeffectconcentrationsfromWeber‐ScannellandDuffy(2007)...............................2‐3
ChloridecriteriafortheUS,BritishColumbia,CanadaandIowa....................................2‐7
Exampleofrelationshipbetweenhardnessandsulfateandcalculated
acutecriterion.......................................................................................................................................2‐13
Version 2
Final Aquatic Life Report_Vers2_010614.docx Table of Contents Table2‐4
Table2‐5
Table2‐6
Table3‐1
Table3‐2
Table4‐1
Exampleofrelationshipbetweenhardnessandsulfateandcalculated
chroniccriterion..................................................................................................................................2‐13
Predictedboroneffectlevels.........................................................................................................2‐15
ProposedIowasulfatecriteriabasedonbinnedchlorideandhardness
categories................................................................................................................................................2‐20
MajorionconcentrationsintheSanJoaquinRiverandtributariesfrom
LelandandFend(1998)......................................................................................................................3‐3
Waterqualitycharacteristicsofsalinity‐relatedconstituentsintheCentral
Valleyintermsofpercentiles...........................................................................................................3‐6
HC05estimatesfortheacuteandchronictoxicityofmajorions.......................................4‐3
TableA‐1
TableA‐2
TableA‐3
TableA‐4
TableA‐5
TableA‐6
TableA‐7
TableA‐8
TableA‐9
Final Aquatic Life Report_Vers2_010614.docx Four‐dayLC50valuesofvarioustaxaexposedtosodiumchloride..................................A‐2
Resultsofchronictoxicitytests(>7dayduration)conductedonfreshwater
organismsexposedtosodiumchloride.......................................................................................A‐3
Predictedcumulativepercentageofspeciesaffectedbychronicexposures
tochloride.................................................................................................................................................A‐4
ChloridetoxicityendpointdatafromCanadianWaterQualityGuidelinesfor
theprotectionofaquaticlife.............................................................................................................A‐5
ChloridetoxicityvaluesfromTables2and3,IDNR(2009)...............................................A‐8
Acutetoxicitydataforborate(ECOTOX).....................................................................................A‐9
Chronictoxicitydataforborate(ECOTOX).............................................................................A‐10
Acutetoxicitydataforsulfate(ECOTOX).................................................................................A‐11
Chronictoxicitydataforsulfate(ECOTOX).............................................................................A‐12
Version 2 iii Section 1 Introduction CentralValleySalinityAlternativesforLongTermSustainability(CV‐SALTS)isdevelopinga
comprehensiveregulatoryandprogrammaticapproachtothemanagementofsaltandnitrateinthe
CentralValleythatisconsistentwiththeStateRecycledWaterPolicy(SRWP).Thisworkisbeing
carriedoutcollaborativelywiththeCentralValleyRegionalWaterQualityControlBoard(Central
ValleyWaterBoard),theStateWaterResourcesControlBoard(StateWaterBoard),theCentralValley
SalinityCoalitionandStakeholders.AsstatedintheCV‐SALTSStrategyandFrameworkdocument,the
strategytofulfilltherequirementsoftheSRWPistoadoptaCentralValleySaltandNitrate
ManagementPlan(SNMP)andrevisetheBasinPlansapplicabletotheCentralValleytofacilitate
implementationoftheSNMP.Thiseffortincludesatechnicalreviewofthestateofsciencewith
regardstotheestablishmentofappropriatewaterqualityobjectives(WQO)toprotectsurfacewater
beneficialuses.ThisAquaticLifeStudywasundertakentoevaluatethetechnicalbasisforthe
establishmentofsalinity‐relatedWQOstoprotectaquaticlifeintheCentralValley.Thefindingsofthis
analysiswillbeconsideredbyCV‐SALTSduringdevelopmentandadoptionoftheSNMP.
1.1 Project Background and Purpose ThisreportisintendedtomeetthefollowingobjectivesoftheAquaticLifeStudy:

Identifysalinity‐relatedwaterqualitycriteriathatcouldbeusedasthebasisforestablishing
WQOsinCentralValleysurfacewatersforprotectionofaquaticlifebeneficialuses;

Identifysalinity‐relatedWQOs,standards,goals,proceduresand/orpoliciesthathavebeen
establishedelsewhere(state,federalorinternational)andcanbeusedtoinformeffortsto
establishWQOstoprotectaquaticlifebeneficialuses,consistentwiththeCentralValleyWater
Boardbiological‐relatedbeneficialuses(i.e.,WarmFreshwaterHabitat[WARM],Cold
FreshwaterHabitat[COLD],andPreservationofBiologicalHabitatsofSpecialSignificance
[BIOL]–collectivelyreferredtoas“aquaticlifebeneficialuses”);and

Preparetechnicalrecommendationsforadoptionofsalinity‐relatedWQOstoprotectaquatic
lifebeneficialusesforconsiderationbytheCentralValleyWaterBoard.
1.2 Scope of Work Toaccomplishthegoalslistedabove,fivekeytaskswereidentifiedasfollows:

Task1–ReviewSelectedLiteratureRegardingSalinityandProtectionofAquaticLife
BeneficialUses.ThefollowingdocumentswereidentifiedbyCV‐SALTSaspertinentforreview
andsummarizedinatechnicalmemorandum.Keyfindingsofthisreviewarepresentedin
Section2ofthisreport.
Version 2
Final Aquatic Life Report_Vers2_010614.docx 1‐1 Section 1  Introduction 
CentralValleyRegionalWaterQualityControlBoard.1999.Boron:ALiteratureSummary
forDevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQuality
ControlBoard,January1999.
http://www.swrcb.ca.gov/centralvalley/water_issues/swamp/historic_reports_and_faq_sheets/info_supt_
rec_guidelines/boron_literature_sum_draft.pdf

CentralValleyRegionalWaterQualityControlBoard.2000.Salinity:ALiteratureSummary
forDevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQuality
ControlBoard,January2000.
http://www.swrcb.ca.gov/rwqcb5//water_issues/swamp/historic_reports_and_faq_sheets/info_supt_rec_
guidelines/davis2000_salinity_litsum_ar07019.pdf.

DepartmentofInterior(DOI).1998.GuidelinesfortheInterpretationofBiologicaleffectsof
SelectedConstituentsinBiota,WaterandSediment.DepartmentofInterior,National
IrrigationWaterQualityProgram,InformationReportNo.3.November1998.Inparticular,
reviewthesectionstitledintroduction,boron,andsalinity.
http://www.usbr.gov/niwqp/guidelines/index.html.

Evans,M.andC.Frick.2001.TheEffectsofRoadSaltsonAquaticEcosystems.NWRI
ContributionSeriesNo.02‐308,NationalWaterResearchInstituteandUniversityof
Saskatchewan,Saskatoon,SK,Canada.

IowaDepartmentofNaturalResources(IDNR).2009.WaterQualityStandardsReview:
Chloride,SulfateandTotalDissolvedSolids.IowaDepartmentofNaturalResources,
February9,2009.http://www.dnr.mo.gov/env/wpp/rules/rir/so4‐cl‐ws_review_idnr_so4‐cl.pdf

Nagpal,N.K.,D.A.Levy,andD.D.MacDonald.2003.WaterQuality:AmbientWaterQuality
GuidelinesforChloride‐OverviewReport.MinistryofEnvironment,BritishColumbia,
Canada.http://www.env.gov.bc.ca/wat/wq/BCguidelines/chloride/chloride.html.

StroudWaterResearchCenter.2010.ExpertReportontheProposedRulemakingbythe
PennsylvaniaEnvironmentalQualityBoardforAmbientWaterQualityCriterionChloride(Cl).
StroudWaterResearchCenter,Avondale,Pennsylvania.StroudReport#2010004.June14,
2010.
http://www.sierraclub.org/naturalgas/rulemaking/documents/PA.Chapter93/2010.6.14.StroudReport.p
df.


Task2–SupplementalReviewofKeyTechnicalReferences.BasedonthereviewofTask1
documents,thefollowingdocumentswereidentifiedforadditionalreviewaspertinenttothe
overallgoalsofthisproject.Additionaldocumentsreviewedarelistedbelowandfindingsare
includedinSection2ofthisreport,asappropriate:

1‐2 Weber‐Scannell,P.K.andL.K.Duffy.2007.EffectsofTotalDissolvedSolidsonAquatic
Organisms:AReviewofLiteratureandRecommendationforSalmonidSpecies.American
JournalofEnvironmentalSciences3:1‐6.
Birge,W.J.andJ.A.Black.1977.Sensitivityofvertebrateembryostoboroncompounds,April
1977FinalReport.EPA‐560/1‐76‐008.U.S.EnvironmentalProtectionAgency,Officeof
ToxicSubstances.Washington,DC.66p.
Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 1  Introduction 
Black,J.A.,J.B.Barnum,andW.J.Birge.1993.Anintegratedassessmentofthebiological
effectsofborontotherainbowtrout.Chemosphere26:1383‐1413.

Bradley,T.J.andJ.E.Phillips.1977.Regulationofrectalsecretioninsaline‐watermosquito
larvaelivinginwatersofdiverseioniccomposition.JournalofExperimentalBiology66:83‐
96.

CanadianCouncilofMinistersoftheEnvironment(CCME).2011.Canadianwaterquality
guidelinesfortheprotectionofaquaticlife:Chloride.In:CanadianEnvironmentalQuality
Guidelines,1999.

Goetsh,P.A.andC.G.Palmer.1997.Salinitytoleranceofselectedmacroinvertebratesofthe
SabieRiver,KrugernationalPark,SouthAfrica.ArchiveofEnvironmentalContaminant
Toxicology32:32‐41.

Goodfellow,W.L.,L.W.Ausley,D.T.Burton,D.L.Denton,P.B.Dorn,D.R.Grothe,M.A.Heber,
T.J.Norberg‐King,andJ.H.Rodgers,Jr.2000.Majoriontoxicityineffluents:Areviewwith
permittingrecommendations.EnvironmentalToxicologyandChemistry19:175‐182.

Leland,H.V.andS.V.Fend.1998.BenthicinvertebratedistributionsintheSanJoaquinRiver,
California,inrelationtophysicalandchemicalfactors.CanadianJournalofFisheriesand
AquaticSciences55:1051‐1067.

Loewengart,G.2001.ToxicityofborontoRainbowTrout:Aweight‐of‐the‐evidence
assessment.EnvironmentalToxicologyandChemistry20:796‐803.

Rowe,R.I.,C.Bouzan,S.Nabili,andC.D.Eckert.1998.Theresponseoftroutandzebrafish
embryostolowandhighboronconcentrationsisU‐shaped.BiologicalTraceElements
Research66:237‐259.

Schoderboeck,L.,S.Muhlegger,A.Losert,C.Gausterer,andR.Hornek.2011.Effects
assessment:Boroncompoundsintheaquaticenvironment.Chemosphere82:883‐487.

Soucek,D.J.,A.Dickinson,andB.T.Koch.2011.Acuteandchronictoxicityofborontoa
varietyoffreshwaterorganisms.EnvironmentalToxicologyandChemistry30:1906‐1914.

Task3–SupplementalReviewofFederalProcedures,PoliciesandGuidelines.Thistask
largelyfocuseduponthereviewofdocumentsrelatedtothedevelopmentoffieldbased
benchmarksforsalinity/totaldissolvedsolids(TDS)andreviewoftheEPAEcotoxicology
database(ECOTOX;http://cfpub.epa.gov/ecotox/).FindingsareincorporatedintoSections2and
3ofthisreport,asapplicable.

Task4–SupplementalReviewofCaliforniaPlans,Procedures,PoliciesandGuidelines.
EffortsunderthistaskincludedcontactingtheCaliforniaRegionalWaterQualityControlBoards
toidentifypotentiallyrelevantdocuments,determinethestatusofbiologicalassessmentin
California,andevaluatetheapplicabilityofCalifornia’semergingBiologicalObjectivesfor
determiningsalinityrelatedimpactsonaquaticbiotaintheCentralValley.Contactwiththe
CaliforniaRegionalWaterQualityControlBoardsdidnotresultintheidentificationofanynew
informationrelevanttothepurposesofthisstudy.InformationregardingCentralValleyaquatic
Final Aquatic Life Report_Vers2_010614.docx Version 2 1‐3 Section 1  Introduction biotawithinthecontextofthepurposesofthisstudyisincorporatedintoSection3ofthis
report.

Task5–SupplementalReviewofSelectedInternationalProcedures,Policiesand
Guidelines.ReviewsofspecificinternationalregulatoryapproachesaresummarizedinSection
2ofthisreport;theirapplicabilitytotheCentralValleyissummarizedinsubsequentsections,
asappropriate.Internationalapproachesreviewedincluded:

Canada–Summarizeanyapplicablewaterqualityguidelinesforprotectionofaquaticlife
publishedbytheCCME.http://www.ccme.ca/publications/ceqg_rcqe.html.

Australia/NewZealand‐Summarizeanyapplicablewaterqualityguidelinesforprotection
ofaquaticlifeinAustralianandNewZealandGuidelinesforFreshandMarineWater
Quality(ANZECCandAMCANZ2000).http://www.environment.gov.au/resource/australian‐and‐
new‐zealand‐guidelines‐fresh‐and‐marine‐water‐quality‐volume‐1‐guidelines.

SouthAfrica‐Summarizeanyapplicablewaterqualityguidelinesforprotectionofaquatic
lifeincludedinSouthAfricanWaterQualityGuidelines,Volume7:AquaticEcosystems
DepartmentofWaterAffairsandForestry,1996).
http://www.capetown.gov.za/en/CSRM/Documents/Aquatic_Ecosystems_Guidelines.pdf.
1.3 Definitions and Acronyms Thefollowingdefinitionsandacronymsareprovidedtosupportunderstandingofthematerial
presentedinsubsequentsection.
1.3.1 Definitions ThefollowingdefinitionshavebeenprovidedconsistentwiththeUnitedStatesEnvironmental
ProtectionAgency(EPA)Guidelines(Stephensetal.,1985):
AcuteToxicity:Toxicityelicitedimmediatelyfollowingshort‐termexposuretoachemical.EPA
derivesacutecriteriafrom48‐to96‐hourtestsoflethalityorimmobilization.
AcutetoChronicRatio(ACR):ACR=Acutevalue/chronicvalue.ThreeACRvaluesarerequired,and
typicallytheyareaveragedtoproduceaFinalAcute‐ChronicRatio(FACR).
ChronicToxicity:Toxicityresultingfromlong‐termexposuretoatoxicantgenerallyatexposure
levelsbelowthosethatelicitacutetoxicity.Exposuredurationsareconsideredinrelationtothe
lifespanoftheorganismtested.
ChronicValue(CV):CanbethegeometricmeanoftheNoObservedEffectConcentration(NOEC)and
theLowestObservedEffectConcentration(LOEC),orastatisticallydefinedvalue(e.g.EC50).
CriterionContinuousConcentration(CCC)(orchroniccriterion):Thisvalueisusuallyequivalent
totheFCV(seebelow).
CriterionMaximumConcentration(CMC)(oracutecriterion):Thisvalueisderivedbydividing
theFAVbyasafetyfactor(usually2).
EC50:Theeffectivetoxicantconcentrationthatresultsina50%decreaseinatestpopulationforanon‐
lethalresponse(e.g.,growth,reproductiveoutput).
1‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 1  Introduction FinalAcuteValue(FAV):Avalueusedtoestimateanacuteconcentrationthatwouldbeprotectiveof
95%ofspecies.Thesevaluescanbebasedonaspeciessensitivitydistribution(SSD)orextrapolated
fromtheacutetoxicitydatafromthefourmostsensitiveGMAVs.
FinalChronicValue(FCV):Avalueusedtoestimateachronicconcentrationthatwouldbeprotective
of95%ofspecies.Ifsufficientchronicdataarenotavailable(from8families),chronicvaluesare
estimatedfromacutevaluesviatheapplicationofACRs.
GenusMeanAcuteValue(GMAV):Whendataformorethanonespecieswithinagivengenusis
available,thegeometricmeanofthesevaluesisusedtocalculateaGMAV.
HC05:Anestimateoftheconcentrationofatoxicantthatwillnotharm95%ofspeciesinacommunity.
LC50:Medianlethalconcentration;theconcentrationofatoxicantthatresultsina50%reductionof
survivalinthetestpopulation.
1.3.2 Acronyms Thefollowingacronymsareusedinthisdocument:

ACR–AcutetoChronicRatio

ANZ–Australia/NewZealand

CAM–CentralAppalachianMountains

CCC–CriterionContinuousConcentration(orchroniccriterion)

CCME–CanadianCouncilofMinistersoftheEnvironment

CEDEN–CaliforniaEnvironmentalDataExchangeNetwork

CentralValleyWaterBoard–CentralValleyRegionalWaterQualityControlBoard

CMC–CriterionMaximumConcentration(oracutecriterion)

CV–ChronicValue

CV‐SALTS‐CentralValleySalinityAlternativesforLongTermSustainability

CWQG–CanadianWaterQualityGuidelines

DOI–DepartmentofInterior

EC–ElectricalConductivity

ECOTOX–EPAEcotoxicologyDatabase

EPA–U.S.EnvironmentalProtectionAgency

FACR–FinalAcute‐ChronicRatio

FAV–FinalAcuteValue
Final Aquatic Life Report_Vers2_010614.docx Version 2 1‐5 Section 1  Introduction 
FCV–FinalChronicValue

GLEC–GreatLakesEnvironmentalCenter

GMAV–GenusMeanAcuteValue

IDNR–IdahoDepartmentofNaturalResources

INHS–IllinoisNaturalHistorySurvey

LOAEL–LowestObservedAdverseEffectLevel

NOAEL‐NoObservedAdverseEffectLevel

PNEC–PredictedNoEffectConcentration

SC–SpecificConductance

SCCWRP–SouthernCaliforniaCoastalWaterResearchProject

SNMP–SaltandNitrateManagementPlan

SRWP–StateRecycledWaterPolicy

SSD–SpeciesSensitivityDistribution

StateWaterBoard–StateWaterResourcesControlBoard

SWAMP–SurfaceWaterAmbientMonitoringProgram

TDS–TotalDissolvedSolids

WQO–WaterQualityObjective
1‐6 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2 Analysis of Salinity‐Related Constituents Forthepurposesofthisproject,salinity‐relatedwaterqualityconstituentsreferstothefollowing
parameters:TDS,electricalconductivity(EC),sodium(Na+),chloride(Cl‐),calcium(Ca),magnesium
(Mg),potassium(K),sulfate(SO4‐),carbonate(CO3),bicarbonate(HCO3),hardness(asCaCO3),and
boron(B).Thefollowingsectionsprovideinformationprimarilyonfouroftheseconstituents:
TDS/EC,chloride,sulfateandboron.Aswillbenotedbelowinformationontherelationshipbetween
othersaltsandpotentialimpactstoaquaticlifearenotwellstudiedordocumented.
2.1 Total Dissolved Solids 2.1.1 Background Asageneralpointofreference,Wetzel(1983)reportsthatthemeansalinityconcentrationsinthe
world’sriversis120milligrams/liter(mg/L),andMcKeeandWolf(1963)statethat95%ofinland
UnitedStateswatersare<400mg/L.ThisreporttreatsTDSandECjointlybecauseinpracticality,EC
isthereadilyattainablemeasurementusedtoestimateTDS.TheDOINationalIrrigationProgram
InformationReportNo3.(1998)providesasummaryoftherelationshipsbetweentheseparameters
asfollows:

Forspecificconductance(SC)lessthan5,000microsiemens/centimeter(µS/cm)at25°C,TDS=
0.584xSC+22.1

Forspecificconductancebetween5,000and9,000µS/cmat25°C,TDS=0.682xSC‐269
Where:TDS=mg/Ltotalsalt
LinsleyandFranzini(1979)reportthatformostwaters,TDSconcentrationstypicallyrangefrom
0.55–0.7timesthespecificconductance,whereasHem(1985)reportsregressionslopesof0.54‐0.96
fordilutewaters.TheU.S.BureauofReclamation(1993)reportstheuseof0.64asa“ruleofthumb”,
thoughthisvaluecanbehigheriftheprimarydriverofconductivityissulfate(>0.7).TheU.S.
DepartmentofAgriculture(1954)recommendsaratioof0.64.ForportionsoftheSanJoaquinRiver,
reportedconversionvaluesrangefrom0.59to0.69(StateWaterBoard,1987).Thus,whilethereis
coarseagreementontheconversionofECvaluestoTDSconcentrations,itisclearthatindividualionic
constituents,temperature,andionicstrengthandcanaltertheutilityofasingleconversionvalue.
2.1.2 State of the Science with Respect to Understanding the Toxicity of Complex TDS Matrices TDStoxicityiscomplexandremainspoorlyunderstoodbecause(a)individualionsvaryintheir
toxicities(e.g.,Saikietal.,1992;Mountetal.,1997);(b)otherionsinsolutioncanplayprofound
modifyingrolesinthetoxicityofindividualions(e.g.,SoucekandKennedy,2005;Soucek,2007;
Souceketal.,2011);and(c)therelativetoxicitiesofindividualionsarenotconsistentacrossspecies
(e.g.,Kunzetal.,2013).Further,itremainsuncleartowhatextentthe“balance”ofvariousions
determinesthetoxicityofcomplexionmixtures,specifically:
Version 2
Final Aquatic Life Report_Vers2_010614.docx 2‐1 Section 2  Analysis of Salinity‐Related Constituents 
Individualionsvaryintheirtoxicities.TheworkofSaikietal.(1992)isparticularlyrelevantin
illustratingthispoint.Whenseawater(dominatedbyNa+andCl‐)wasdilutedtomatchtheTDS
concentrationsinagriculturaldrainwater,bothjuvenileChinooksalmonandstripedbass
survivedwellin28‐dayexposures.However,evendiluteddrainwater(50%dilutions)reduced
performance.Thispoorperformancewasattributedtoeitherthehighsulfateconcentrationsor
unusualratiosofmajorions.AstudybyBradleyandPhillips(1977)withsalinetolerant
mosquitosdemonstratedthattheseinsectsdidnottoleratethesubstitutionofsulfatefor
chlorideintheirrearingwater.Theauthorsspeculatedthatsulfatewasamoredifficultionto
dealwith(morebulky)thanchloride,andpotentiallymoredifficulttoeliminate.Similarresults
wereobservedforaSouthAfricanMayfly(GoetshandPalmer,1997).

Otherionsinsolutioncanplayprofoundmodifyingrolesinthetoxicityofindividualions.For
example,Souceketal.(2011)reportthatchloridereducesthetoxicityofborontothe
crustaceanHyallelaazteca.Similarly,Soucek(2007)reportontheamelioratingeffectsofwater
hardnessandchlorideonsulfatetoxicity.Severalotherstudiesexploresuchrelationshipsand
arediscussedinlatersectionsofthisreport.
Therelativetoxicitiesofindividualionsarenotconsistentacrossspecies.Forexample,Mountetal.,
(1997)describedsulfateasbeingtheleasttoxicofthemajorionstestedwithCeriodaphniadubia,
DaphniamagnaandPimephalespromelas,whiletheSaikietal.(1992),BradleyandPhillips(1977),
andGoetshandPalmer(1997)studiessuggestsulfatetobemoretoxicthanchlorideinotherspecies.
Averyimportantandunder‐appreciatedissuethatneedstobeconsideredinanywaterquality
criteriaorWQOdevelopmentprocessisthedisconnectbetweenthespeciescommonlyfoundin
toxicitydatasetsandthespeciesthatoccurinfreshwaterecosystems.Inparticular,insectstendto
dominatefreshwaterinvertebratecommunitiesandarethusthefocalgroupforecologicalassessment
andmonitoringefforts.However,insectsremaintremendouslyunder‐representedintoxicity
databases.ThuswhileatoxicitydatasetmaymeetEPArequirements(eightfamiliesrepresentedper
themethodsdevelopedbyStephanetal.(1985))forcriteriadevelopment,considerableuncertainty
willremainwithrespecttotheprotectionofaquaticcommunitiesifthepredominanttaxainthose
communitiesarenotwellrepresentedinthedatasetsusedtogenerateregulatoryguidelines,criteria,
orWQOs.
Whiletherearemanyexamplesintheliteratureoffreshwaterorganismstoleratingextremelyhigh
acuteexposurestohighTDSwaters,therearealsoexamplesofspeciespoorlytolerating
environmentallyrelevanthighTDSconcentrations.IntheirbriefreviewofTDStoxicity,Weber‐
ScannellandDuffy(2007)compileddatafromseveralaquaticspeciesshowingsensitivityofaquatic
organisms(Table2‐1)1.Theyconcludethatfertilizationandeggdevelopmentaregenerallythemost
sensitivephysiologicalprocessesdisruptedbyhighTDSconcentrationsinfish.Itisnoteworthythat
thetoxicityvaluescompiledbyWeber‐ScannellandDuffy(2007)areconsiderablylowerthanthose
compiledinDOI(1998).
Goodfellowetal.(2000)statethat,“Ingeneralterms,itismoreimportanttomatchthesalinity
toleranceforchronicversusacutetoxicitytesting,giventhefactthatthegrowthandreproductive
1NotethatEC
50valuesforKhangarot(1991)inTable2‐1arebasedonimmobility.TheoriginalBaudoin
(1974)referenceinTable2‐1wasnotfound;therefore,thebasisfortheEC50endpointscouldnotbe
determined.
2‐2 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents endpointsaremoresensitivetoenergy‐taxingrequirementsofosmoregulationthanistheacute
endpointofsurvival.”Workwithaquaticinsectsinourlaboratoryalsosupportstheneedforchronic
exposurestoadequatelyevaluatetoxicityduetohighTDSexposures(Kunzetal.,2013).
Table 2‐1. TDS effect concentrations from Weber‐Scannell and Duffy (2007) (References in table are not provided in this document – see original references). .
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐3 Section 2  Analysis of Salinity‐Related Constituents IDNR(2009)AppendixBisaDraftJustificationforChangingWaterQualityStandardsforSulfate,
TotalDissolvedSolidsandMixingZonesproducedbytheIllinoisEnvironmentalProtectionAgency
(2006).Thejustificationincludestheclaimthat,“Unlikemanytoxicantsthatexerttoxiceffectsover
bothshorttermandlongtermperiods(acuteandchronictoxicity),sulfatehasbeendemonstratedto
affectonlyshorttermsurvivaloftestorganisms.Inotherwords,organismsthatsurvivetheinitial
osmoticshockofexposurewillsurviveindefinitelyatthatconcentration”.However,analysisofsulfate
toxicitydatasuggestsmuchlowereffectlevelsresultingfromchronicexposuresthanfromacute
exposures(seebelow).Thus,theIllinoisjustificationdoesnotappeartobesupportedbythedata2.
TheconceptofhighTDSexposuresasenergy‐taxingisanimportantone.PimentelandBulkley(1983)
reportthatlowtemperatures,“reducetheabilityoffishtoregulateinternalsaltbalance”.Thereare
anecdotalreportsofmarkedincreasesinmayflyfoodconsumptionratesunderhighTDSexposures
accompanyingsignificantdevelopmentaldelays(ittakeslongerforlarvaetodeveloptoadulthoodif
theysurvivetheexposureregime)(DavidFunk,entomologist,StroudWaterResearchCenter,
Avondale,PA,personalcommunication;DavidBuchwalter,directobservation).
Theissuesdescribedabovecoupledwiththelackofclaritywithinthescientificcommunityregarding
theeffectsofionbalanceorionicratiosonaquaticlifemaketheestablishmentofrationalregulations
basedonun‐characterizedTDSorECchallenging.Weber‐ScannellandDuffy(2007)concludethat,“It
isrecommendedthatdifferentlimitsforindividualions,ratherthanTDS,beusedforsalmonid
species”.Whilethismaybemorescientificallydefensibleintheory,inpracticeitcreatestheneedfor
well‐establishedcriteriaforallcomponentsofTDS.Thisrequiresthedevelopmentofamorecomplete
understandingofthetoxicitiesofseveralionsandthemodifyingeffectsofotherinteractingionsin
solution.Ourscientificunderstandingisconsiderablylackinginthisregard.TheStateofIowahas
essentiallydecidedtoabandonits1,000mg/LTDSstandardforthedevelopmentofindividual
chlorideandsulfatestandards(seebelow).YethowtheStateofIowawillproceedwithhighTDS
dischargeswhenconstituentsotherthanchlorideorsulfatedominatethematrixremainsunclear.
2.1.3 Regulatory Approaches to Total TDS/Salinity/EC for the Protection of Aquatic Life IntheU.S.andCanada,thepredominantmannerbywhichcriteriaaredevelopedforaquaticlife
protectionisthroughtheanalysisoftoxicitydatasetscontainingdatafornumerousspecies(e.g.,see
Stephanetal.,1985).ThecomplexityofTDSmatricesandthevariabilityoftoxicitydescribedabove
haveprecludedthedevelopmentoflabgeneratedcriteriavaluesfortotalsalinity/TDSatthefederal
andstatelevels.Othernationshavedevelopedfield‐basedmethodsbasedonstatisticaldistributions
ofsalinityinnaturalsystemstoformthebasisofregulatoryapproaches.Examplesofeachofthese
approachesaredescribedbelow.
United States Field‐based Regulatory Approach3 TheabsenceoffederalorstateregulatoryTDS/ECvaluesinCentralAppalachiaMountains(CAM)
promptedEPAtodevelopafieldderivedconductivitybenchmarkinEcoregions68‐70,whereaquatic
lifeisreportedtobehighlyimpairedbelowsurfacecoalminingoperations(EPA,2011).The
benchmarkemployedafield‐derivedgenussensitivitydistributionbasedontheprobabilityof
2Theagencywasnotcontactedforthepurposesofthisstudy;additionalfollow‐upisrecommendedifthesedataweretobe
usedforWQOdevelopment.
3Thedocumenttitled,AField‐BasedAquaticLifeBenchmarkforConductivityinCentralAppalachianStreamswasbrieflyused
inthepermittingprocessforthecoalindustry.Currently,thebenchmarkisinlegalreview.
2‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents occurrenceofagivengenusasafunctionofconductivityfrom2,210biologicalsamplestakenwith
accompanyingconductivitydata.The5thcentileofthedistributionofoccurrencewastakenforeach
genustoreflectitsextirpationconcentration.Themethodcreatesasensitivitydistributionof
extirpationconcentrationsofTDSacrossgenera.Thebenchmarkisbasedonthe5thcentileofthe
distributionofgenusspecificextirpationconcentrationsandcalculatedtobe300µS/cm(Figure2‐1).
Importantly,thisbenchmarkisintendedonlytoapplytoEcoregions68‐70wheretheionic
compositionisdominatedbysulfate/bicarbonatesalts.
Figure 2‐1. The distribution of genus‐specific XC95 values for 163 CAM genera (from Figure 8, EPA 2011). Australia/New Zealand (ANZ) TheANZapproachtoregulatingsalinityisthroughtheuseof“triggervalues”(ANZECCandAMCANZ,
2000).Triggervaluesareconcentrationsthatmayposepotentialenvironmentalrisk.Assuch,they
“trigger”theneedforfurthertestingand/oranalysis.Ratherthanemployinga“onesizefitsall”
approachforallfreshwaters,theANZapproachusesstatisticaldistributionsofsalinitybasedon
waterbodytypes(e.g.,wetlands,smallstreams)andecologicalsettings(equivalenttoanEcoregion
approach).Forexample,the80thpercentileofsalinitydistributionsforagivenwaterbodytypeina
givenregionisusedasa“triggervalue”.Assuch,they“trigger”theneedforfurthertestingand/or
analysis.Anothercomponenttothisapproachistheconsiderationoftheconservationvalueof
individualwaterbodiesorstreamsegments.Here,thenaturalstatusofsurfacewatersareassignedto
oneofthreedifferentclasseswithrespecttoconservation.Section3.1.3.1oftheANZGuidelines
documenttitled“EcosystemConditionandLevelsofProtection”recognizesthreecategoriesof
ecosystemconditions:(1)Highconservation/ecologicalvaluesystems;(2)Slightlytomoderately
disturbedsystems;and(3)Highlydisturbedsystems.“Thethirdecosystemconditionrecognisesthat
degradedaquaticecosystemsstillretain,orafterrehabilitationmayhave,ecologicalorconservation
values,butforpracticalreasonsitmaynotbefeasibletoreturnthemtoaslightly–moderately
disturbedcondition.”
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐5 Section 2  Analysis of Salinity‐Related Constituents South Africa TheSouthAfricanapproachforregulatingTDSsharessomesimilaritieswiththeANZapproachinthat
isitbasedonastatisticalapproach(DepartmentofWaterAffairsandForestry,1996).Forallinland
waters,TDSconcentrationsshouldnotbechangedby>15%fromnormalcyclesoftheofthe
waterbodyunderun‐impactedconditionsatanytimeoftheyear;andtheamplitudeandfrequencyof
naturalcyclesinTDSconcentrationsshouldnotbechanged.Theregulatorydocumentrecognizes
differentnaturalsalinitiesasafunctionofunderlyinggeologies,andconsidersthathigh
“evapoconcentration”rateshaveanelevatinginfluenceonTDSconcentrations.
2.2 Chloride Chloridetoxicityisperhapsthebeststudied/understoodofallofthemajorions.Robustacuteand
chronicdatasetshavebeenusedtogeneratecriteriaatthenationallevelinCanadaandtheU.S.,the
Canadianprovinciallevel(BritishColumbia),andatthestatelevel(e.g.,thestateofIowa).Areviewof
theECOTOXdatabasedidnotidentifyanynewdatarelevantforthepurposesofthisstudy.Updated
U.S.federalcriteriaarebeingconsideredbasedonthedevelopmentofIowa’scriteria,butatthe
currenttime,the1988valuesarestillthecriteriarecommendedforusebytheEPA(seebelow).
2.2.1 Chloride Water Quality Criteria In1988,EPArecommendedanAmbientWaterQualityCriterionforChloride(EPA,1988)based
primarilyonavailabledataforsodiumchloride(itisinterestingtonotethatEPAacknowledgedthat
chloridesaltsofK,MgandCaweregenerallymoretoxicthanNasalts,butdecidednottoincludethese
dataintheircriteriaderivation).EPA’sCMC(foracuteexposure)wassetat860mg/L,andtheCCC
(forchronicexposure)wasset(basedonthemeanACRsofonlythreetaxa)at230mg/L(Table2‐2).
Sincethattime,therehasbeenaconsiderablevolumeofdataaddedtoourknowledgebaseofchloride
toxicity,andrecently,newcriteriahavebeendevelopedforBritishColumbia,Canada(Nagpaletal.,
2003)andIowa(2009)(Table2‐2).AnationwidestandardforCanadawasestablishedin2011
(Table2‐2).Severalotherentitiesarecurrentlyconsideringchloridecriteria.
EvansandFrick(2001)provideathoroughanddetailedevaluationofchlorideinsupportofCanada’s
decisiontoregulatechlorideasapriority2toxicsubstance.Thoughtheydidnotestablishregulatory
valuesperse,theircompilationoftoxicitydatahasbeeninstrumentalinsubsequentCanadian
regulatoryapproachestochloride(SeeAppendixA,TableA‐1).Thoughtheirfocuswasonroadsalts
(primarilyNasalts),theauthorsprovidetabulationsoftoxicitydataforCa,MgandKchloridesaltsas
well.
RecentresearchconductedbytheGreatLakesEnvironmentalCenter(GLEC)andtheIllinoisNatural
HistorySurvey(INHS)ontheinteractionsofwaterchemistry(hardnessandsulfate)onchloride
toxicityhavebeenincorporatedintochloridestandardsdevelopedbytheStateofIowa(2009).
Briefly,itwasfoundthatforsometestspecies,chloridetoxicitywasdecreasedwithincreasingwater
hardness(CaCO3)andsulfateconcentrations.Detailsofthosefindingandtheirutilityindeveloping
sitespecificchloridecriteriaaredescribedbelow.
2‐6 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents Table 2‐2. Chloride criteria for the U.S., British Columbia, Canada and Iowa (see text for rationale)
Acute (mg/L) Chronic (mg/L) US EPA (1988) 860a 230b Based on NaCl only British Columbia, Canada 600 c
150d Based on T. tubifex data only Canada 640 120 Based on data for sodium and calcium chloride salts only
Entity Iowa = 287 * [hardness]0.205797 * [sulfate] ‐0.07452 0.205797
= 177.87 * [hardness]
[sulfate] ‐0.07452 Notes * See text below a
CMC (not to be exceeded for more than 1 hour every three years) CCC (typically to be implemented as a 4‐day average) c
Instantaneous maximum d
The average of 5 weekly measurements taken over a 30‐day period b 2.2.2 Various Rationale for Acute and Chronic Chloride Criteria Thefollowingsectionsprovidetherationaleorbasisfortheestablishmentofchloridecriteria
summarizedinTable2‐2:
U.S. EPA Rationale 
Acute:TheEPACMCisdrivenbythelowestfourGMAVsfromthewaterfleaDaphnia(1,974),
snailPhysa(2,540),isopodLirceus(2,950)andmidgeCricotopus(3,795)andaFAVof1,720.A
safetyfactoroftwowasappliedtoestablishaCMCof860.

Chronic:TheEPACCCisbasedonchronictestswithfatheadminnows,rainbowtroutand
Daphniapulex,withACRsof15.17,7.31,and3.93,respectively.EPAappliedthegeometricmean
ofthesethreevalues(7.594)totheCMC(860/7.594)androundedtothenearest10.
British Columbia Rationale ThefollowinglanguageinquotationsistakendirectlyfromNagpaletal.(2003)describingthe
rationalefortheBritishColumbiachronicandacutevalues:

Acute:“Theguidelineformaximumchlorideconcentrationwasderivedbyapplyingasafety
factoroftwotothe96‐hEC50of1,204mg/Lforthetubificidworm,Tubifextubifex–themost
sensitivespeciesintheirdataset(AppendixA,TableA‐2),androundingthenumberto
nearesttenth.Safetyfactoroftwoisappliedtotheacutedatabecauseoftherelativestrengthof
theacutedataset.”

Chronic:“TherecommendedwaterqualityguidelinewasderivedbydividingthelowestLOEC
(lowestobservedeffectconcentration)fromachronictoxicitytestbyasafetyfactoroffive.The
lowestLOECforachronictoxicitytestis735mg/LforCeriodaphniadubia(AppendixA,Table
A‐3);thischlorideconcentrationresultedina50%reductioninreproductionoverthe7day
testduration.Utilizingthisvalueandfollowingapplicationofasafetyfactoroffive,thechronic
guidelineis150mg/L(roundedtonearesttenthplace)…Thesafetyfactoroffiveinthe
derivationofthechronicguidelinewasjustifiedasfollows:(a)Chronicdata(AppendixA,Table
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐7 Section 2  Analysis of Salinity‐Related Constituents A‐2)availablefromtheliteraturewerescant;(b)inarecentstudy,Diamondetal.(1992)found
aLOEC/NOECratioforreproductionof3.75inC.dubiaexposedtoNaClfor7days.Also,
LC50/LC0 of3andLC100/LC0 of4wereobtainedbyHughes(1973),whereastheDeGreaveetal.
(1992)datayieldedLC50/NOECratiosthatrangedfromabout1.0to6.9;(c)additional
protectionmayberequiredforthosespeciesthataremoresensitivebuthavenotyetbeen
testedintheliterature.”
Canadian Rationale ItwasdeterminedthattoxicityresultingfromtestsusingMgCl2orKClresultedfromMgorKtoxicity,
andthuswerenotincludedinthederivationofchloridecriteriaforCanada.Forchloride,thespecific
rationaleisasfollows:

Acute:“Derivedwithsevere‐effectsdata(suchaslethality)andarenotintendedtoprotectall
componentsofaquaticecosystemstructureandfunctionsbutrathertoprotectmostspecies
againstlethalityduringseverebuttransientevents(e.g.,inappropriateapplicationordisposal
ofthesubstanceofconcern”).
TheCanadianapproachwastouseaSSDofacutetoxicityvalues(Figure2‐2,seeAppendixA,
TableA‐4foratableofvalues).Alog‐normaldistributionfitsthesedatabest,with640mg
chloride/Lrepresentingthe5thpercentileofthedistribution.Thelowerandupper90%
confidencebandsaboutthe5thpercentilewere605mg/Land680mg/L,respectively.
Onenoteworthyobservationfromthesedata,isthatglochidia(mussellarvalstage)testswith
endangeredfreshwatermusselspeciesEpioblasmatorulosarangiana(244mg/L)(Gillis,2011),
anda48‐hourEC50forimmobilizationinDaphniamagna(621mg/L)(KhangarotandRay,
1989)fallbelowthe640mg/Lcriterion.Datafromotherfreshwatermusseltests(Lampsilis
fasciolaandLampsilissiliquoidea)suggestthatfreshwatermusselsmaybethemostsensitive
grouptochlorideyetstudied.

Chronic:“Derivedwithmostlyno‐andsomelow‐effectdataandareintendedtoprotectagainst
negativeeffectstoaquaticecosystemstructureandfunctionduringindefiniteexposures…Long‐
termexposureguidelinesidentifybenchmarksintheaquaticecosystemthatareintendedto
protectallformsofaquaticlifeforindefiniteexposureperiods.Long‐termexposureguidelines
arederivedusinglong‐termdata(≥7‐dayexposuresforfishandinvertebrates,≥24‐hourfor
aquaticplantsandalgae).”
TheCanadianapproachwastousetheSSDofchronictoxicityvalues(Figure2‐3,seeAppendix
2,TableA‐4foratableofvalues).Alog‐logisticdistributionfitthesedatabest,with120mg
chloride/Lrepresentingthe5thpercentileofthedistribution.Thelowerandupper90%
confidencebandsaboutthe5thpercentileofthedistributionwere90mg/Land150mg/L,
respectively.
2‐8 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents Figure 2‐2. SSD of short‐term L/EC50 toxicity data for the chloride ion in freshwater derived by fitting the Normal model to the logarithm of acceptable toxicity data for 51 aquatic species versus Hazen plotting position (proportion of species affected). The arrow at the bottom of the graph denotes the 5th percentile and the corresponding short‐term benchmark concentration value (Source: Figure and caption from CCME, 2011) Figure 2‐3. SSD of long‐term no‐ and low‐effect endpoint toxicity data for the chloride ion in freshwater (where mussels are present) derived by fitting the Logistic model to the logarithm of acceptable data for 28 aquatic species versus Hazen plotting position (proportion of species affected). The arrow at the bottom of the graph denotes the 5th percentile and the corresponding long‐term Canadian Water Quality Guideline value (Source: Figure and caption from CCME, 2011). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐9 Section 2  Analysis of Salinity‐Related Constituents Aswasthecasewiththeacutedata,testswiththeglochidiastagesoffreshwatermussels(Gillis,
2011;Bringolf,2010)fellbelowthe120mgCl‐/Lcriterion.TheProtectionClauseinthe
CanadianGuidelinesgivesentitiestheoptionofestablishinglowercriteriavaluestoprotect
commercially,recreationally,orecologicallyimportantspecies.Thus,thisvaluemaynotapply
(itmaybelowered)whenendangeredmusselsarepresentinagivenwaterbody.
Anotherstudy(KarrakerandGibbs,2011)basedonmasschangesinspottedsalamander
(Ambystomamaculatum)eggstransferredtocleanwaterfollowingexposuretochloridewas
notincludedinthecalculationoftheCanadianchronicvalue.
Withregardstotoxicitymodifyingfactors,thefollowingparagraphwastakenverbatimfromCCME,
2011CanadianWaterQualityGuidelines(CWQG)fortheProtectionofAquaticLife‐Chloride
document:
“Somestudieshaveindicatedthatincreasedhardnessmayhaveanamelioratingeffecton
thetoxicityofchloride.Onelong‐termstudybyElphicketal.(2011)assessedtheeffectof
hardness(10,20,40,80,160,320mg/LasCaCO3)onsodiumchloridetoxicitytothewater
fleaCeriodaphniadubiaduringa7‐dayexposure.Anapproximate4‐folddifferencewas
observedinthe7‐dayIC25/50(reproduction)effectconcentrations,anda9‐folddifferencein
7‐dayLC50concentrationsoverthehardnessrangetested.Gillis(2011)exposedglochidiaof
thefreshwatermusselLampsilissiliquoideatowaterofvaryinghardness(47,99,172,322
mg/LasCaCO3).Anapproximate2.5‐folddifferencein24‐hourEC50(glochidiasurvival)
valueswasobservedoverthehardnessrangetested.GLECandINHS(2008)alsoconducted
someshort‐termexposuresindicatingtheexistenceofahardness‐chloridetoxicity
relationshipforthewaterfleaCeriodaphniadubia,thefingernailclamSphaeriumsimile,the
oligochaeteTubifextubifexandtheaquaticsnailGyraulusparvus.Insufficientdatawere
availabletodevelopahardnessrelationshipforchronictoxicityandthus,ahardness‐based
CWQGwasnotdeveloped.CCMEwillre‐visitthechlorideguidelineswhensufficientstudies
areavailable.Jurisdictionsmaychoosetoderivesite‐specifichardness‐adjustedwater
qualitycriteria(orobjectives)whereappropriate.”
Iowa Rationale Priorto2009,Iowadidnothaveachloridestandardfortheprotectionofaquaticlife,butusedEPA
(1988)chronic(230mg/L)andacute(860mg/L)chloridevaluestotriggerwholeeffluenttoxicity
testing.TheIDNRworkedwithDr.CharlesStephan(EPA)tocompiledataforupdatedcriteria.That
literaturereviewnotonlyprovidedseveralstudiesconductedpost‐1988,butalsoidentifiedan
importantearlystudybyWurtzandBridges(1961)thathadnotbeenusedinEPA’sinitialcriteria
development.TheWurtzandBridgesstudyincludeddatafortwospecies–asnail(Gyraulus
circumstriatus),andthefingernailclam(Sphaeriumtenue)whichappearedtobesensitivetochloride.
Additionally,theKhangarot(1991)studywithTubifextubifex(thestudythatdrivestheBritish
Columbiacriteria)suggestedthatthisspeciesmayalsobesensitivetochloride.Theadditionofnew
dataresultedinanFAVof1,364mg/L,whichwouldresultinanewCMC(acutecriterion)of682mg/L
afterasafetyfactoroftwoisapplied(butIowadidnotchoosethisoption).
2‐10 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents EPAcontractedwiththeGLECandtheINHStoexploretheinfluencesofhardnessandsulfateon
chloridetoxicitytosensitiveaquatictaxa–Ceriodaphniadubia,Sphaeriumsimile,Gyraulusparvusand
Tubifextubifex(Figures2‐4and2‐5).
Figure 2‐4. Influence of water hardness (as CaCO3) (Panel A) and sulfate (Panel B) on the toxicity of chloride in parallel studies conducted by GLEC and the INHS. The exponents associated with hardness in the Iowa criteria (0.205797) are primarily based on these data (but see Figure 2‐5 below). The exponent associated with sulfate in the Iowa criteria (‐0.07452) is based primarily on the data shown in Panel B. These data were plotted from the Table 2 data in the IDNR (2009) report (see Appendix A, Table A‐5). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐11 Section 2  Analysis of Salinity‐Related Constituents LC 50 mg Cl-/L
Figure 2‐5. Influence of water hardness (as CaCO3) on the acute toxicity of chloride to the fingernail clam (Sphaerium simile), planorbid snail (Gyraulus parvus), and tubificid worm (Tubifex tubifex). x
fe
bi
tu
x
ife
Tu
b
au
yr
G
Sp
ha
er
lu
iu
s
m
pa
si
rv
m
us
ile

Acute:Basedontherelationshipsbetweenchloridetoxicityandhardness(Figures2‐4Aand2‐
5)andsulfate(Figure2‐4B),Iowaevaluatedthefollowingfouroptionsbelow,andchoseOption
Ctoestablishanacutecriterion:
 OptionA:Acutevalueswerenotnormalizedforeitherhardnessorsulfateandthecriterion
isnotdependentoneitherhardnessorsulfate;
 OptionB:Acutevalueswerenotnormalizedforeitherhardnessorsulfate,butthecriterion
isdependentonbothhardnessandsulfate;
 OptionC:Acutevalueswerenormalizedforbothhardnessandsulfateandthecriterionis
dependentonbothhardnessandsulfate(Table2‐3);
 OptionD:Acutevalueswerenormalizedforhardness(butnotsulfate)andthecriterionis
dependentonhardness(butnotsulfate).

Chronic:EPA’s1988chronicchloridecriteriarelieduponchronicdataforonlythreespecies
(seeabove),applyingthegeometricmeanvalue(7.594)inacutetochronicratios.ForIowa’s
chronicvalue,thefatheadminnowACR(15.17)wasdiscarded,andnewerACRvalueswere
consideredfromstudieswithCeriodaphniadubia(1.508,2.601and3.841),Daphniaambigua
(4.148),andDaphniamagna(1.974).ThesevaluesgeneratedaCCC(chroniccriterion)of417
mg/L(substantiallyhigherthanEPA’soriginalvalueof230mg/L).Thus,Iowaconsidered
differentoptionsforapplyingACRsasfollows:
2‐12 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents  CCC1:DerivedusingACR=4.826,whichisthegeometricmeanoftheACRsforRainbow
TroutandDaphnia.CCC1istoohighforspeciesatthe5thpercentile.
 CCC2:DerivedusingACR=3.187,whichistheACRforDaphnia.CCC2isappropriatefor
speciesatthe5thpercentile.
 CCC3:DerivedfrompredictedGenusMeanChronicValuesthatwerecalculatedusingACR=
7.308ofRainbowTroutforallvertebratesandACR=3.187ofDaphniaforallinvertebrates.
Thenthesimilarprocedureforderivingacutecriterionwasusedtoderivethechronic
criterion(Table2‐4).
IowaoptedforCCC3underOptionC.
Table 2‐3. Example of relationship between hardness and sulfate and calculated acute criterion1
25 Hardness Exponent
0.2057979 Sulfate Exponent ‐0.07452 Adjusted Criteria
287 50 0.2057979 ‐0.07452 513 100 100 0.2057979 ‐0.07452 553 287 200 200 0.2057979 ‐0.07452 634 287 400 400 0.2057979 ‐0.07452 694 287 800 800 0.2057979 ‐0.07452 777 FAV Hardness Sulfate 287 25 287 50 287 1
The FAV (FAV=574/2 =287) is adjusted based on water hardness and sulfate as follows: 287 * [hardness]0.205797 * [sulfate] ‐0.07452 Table 2‐4. Example of relationship between hardness and sulfate and calculation of chronic criterion1 1
ACR adjusted FCV Hardness Sulfate Adjusted Toxicity Value 177.87 177.87 177.87 177.87 177.87 177.87 177.87 177.87 50 100 200 300 100 100 100 100 200 200 200 200 300 400 500 600 268.1 309.2 365.6 387.6 300.0 293.6 288.8 284.9 Acute toxicity values were adjusted via ACRs (adjustment: 177.87*[hardness]0.205797 * [sulfate] ‐0.07452 Technically,therearesomeissuestoconsidershouldtheCentralValleydecidetoincorporatewater
chemistry(e.g.,hardness)adjustmentstoexistingdatasetsasIowahasoptedto.First,theapplication
ofthehardnessadjustmentgeneratedfromonlyonespecies(Ceriodaphniadubia)toallothertaxais
troubling.ThejustificationusedbyIowawasthatthemeanoftheslopevaluestakenfromSphaerium
simile,GyraulusparvusandTubifextubifexdata(seeFigure2‐4)wassimilartotheCeriodaphniadubia
data.Itisimportanttonotethatthese“slopes”arebasedontwodatapointsperspecies,andthatone
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐13 Section 2  Analysis of Salinity‐Related Constituents ofthesespecies,theplanorbidsnail(Gyraulusparvus)showednoinfluenceofhardnesswhatsoever.
Thiscallsintoquestionwhetherthehardnessadjustmentwouldunder‐protectsensitivespecies
whosesensitivitytochlorideislessaffectedbywaterhardnessthanisCeriodaphniadubia.
AnotherissuetoconsideristheapplicationofACRstoestablishchroniccriteria.TheEPAandStateof
Iowaapproachesarearbitraryandbasedonaverysmallnumberofspecies.TheCanadianapproach
tochroniccriteriaismuchmoretransparent–andthusiseasiertocommunicatetostakeholders.
2.2.3 Chloride Summary 
DifferentapproacheshavebeenestablishedforderivingchloridecriteriaintheU.S.andCanada
atbothnationalandstate/provinciallevels(Note:EPAmayupdateitsnationalcriteria
recommendationsinthenearfuture).

Oftheapproachesoutlined,itappearsthattheCanadianapproachisthemosttransparentand
considersadjustmentsonasite‐specificbasisbasedonthepresence/absenceofendangered
musselpopulations.

TheIowaapproachmakesadjustmentforchlorideandsulfate,whereasCanadadidnot
considerthatsufficientdataexistedtomakesuchadjustments.
2.3 Boron 2.3.1 Overview TheCentralValleyWaterBoard(1999)reportprovidesabroadoverviewofboronwithrespectto
differentbeneficialuses.Atafirstapproximation,itwouldappearthatcriteriadevelopedtoprotect
sensitivecropsshouldalsobeprotectiveofaquaticlifeuses.TheDOIGuidelinesdocument(DOI,
1998)concurswiththisnotionintheirtableofpredictedboroneffects,withlevelsofconcernfor:(a)
cropsandaquaticplantslistedat0.5‐10mg/L(NoObservedAdverseEffectLevel[NOAEL]‐Lowest
ObservedAdverseEffectLevel[LOAEL]);(b)aquaticinvertebrates(Daphniamagna)at6‐13mg/L
(NOAEL–LOAEL);and(c)fishat5‐25mg/L(NOAEL–LOAEL).However,dataforboronisstillfairly
limited(Table2‐5).
ThereappearstobeconsiderableconsternationregardingdatageneratedbyBirgeandBlack(1977),
wherea0.1mg/Lconcentrationwasreportedtocausetoxicityinrainbowtroutembryo‐larvaltests.
Followupstudies(Blacketal.,1993)concludethat,“theflatconcentration‐responsecurveobserved
forboron(i.e.,smallchangesineffectsrelativetolargeincreasesinboronconcentrations)sometimes
affectedprecisioninthedeterminationofno‐effectorthresholdconcentrations.”Theyfurtherstate,
“…aconcentrationofbetween0.75and1.0mg/Lisdeterminedtobeareasonable,environmentally
acceptablelimitforboroninaquaticsystems.”Inhis1998review,Howe(1998)lists1‐2mg/Lasa
commonNOECforcommunitylevelstudies,and1mg/LasaNOECforstudieswithfish.
AnanalysisofECOTOXforthetoxicityofboronisprovidedbelow(rawdataareprovidedin
AppendixA,TablesA‐6andA‐7).Boratesarethepredominantformofboroninnaturalwaters,and
ECOTOXcontainedsubstantialdataforthetoxicityofboronassodiumborate(NaBO4).Species
sensitivitydistributionsweregeneratedbyrankingthetoxicityvaluesandcreatingcentilessuchthat
thecumulativepercentageofspeciesaffectedcouldbeplottedagainstconcentration.Analyzingthe
datainthismannerallowsfortheestimateofanHC05–theconcentrationofcontaminantexpectedto
beprotectiveof95%ofthespeciesinagivencommunity.TheinherentassumptioninthisEPA
2‐14 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents methodologyisthatthepopulationofspeciesinatoxicitydatasetisareasonableproxyforthe
populationofspeciesinrealecosystems.
Thefollowingfouranalyseswereconductedfromtheexistingborondata:
(1) Onlyshorttermexposures(acutestudies)withlethalityendpoints(Figure2.6A).
(2) Onlyshorttermexposures(acutestudies)withbothlethalityandnon‐lethalityendpoints(e.g.,
immobility,growth)combined(Figure2.6B).
(3) Onlylongtermexposures(chronicstudies)withlethalityendpoints(Figure2.7A).
(4) Onlylongtermexposures(chronicstudies)withbothlethalityandnon‐lethalityendpoints(e.g.,
growth,reproductiveoutput)(Figure2.7B).
Table 2‐5. Predicted boron effect levels (Source: DOI, 1998; see original reference for references in table). Medium No Effect (NOAEL) Level of Concern Toxicity Threshold (LOAEL)
0.5 0.5 ‐ 19 10 6 6 – 13 13 5 5 – 25 25 ‐‐ ‐‐ < 200 13 13 – 20 20 Smith and Anders (1989), Stanley et al. (1996); 20 = EC10 for viability of mallard eggs ‐‐ > 30 ‐‐ LOAEL for mallards; impaired growth of ducklings ‐‐ > 80 ‐‐ LOAEL for rodents; decreased fetal body weight Water (mg/L) Bird Eggs (mg/kg fw) Waterfowl Diet (mg/kg) Mammal Diet (mg/kg bw/day) Explanation For crops and aquatic plants (Perry et al., 1994) For aquatic invertebrates (NOAEL and LOAEL for Daphnia magna) For fish (viz., catfish and trout embryos; Birge and Black, 1977; Perry et al., 1994) For amphibians (LC100 for leopard frog embryos) ForFigures2.6and2.7thelargerplotshowstheentiredistributionofthetoxicitydata.Thesmaller
insetsshowonlythesensitivetailofthesensitivitydistributionandthelinearregressionsusedto
estimateHC05concentrations.Noassumptionsweremadeabouttheoverallshapesofthe
distributionsaslinearfitstothetruncateddatafitthedatawell.
TheHC05estimatebasedonacutelethalityonlyis18.08mg/L,whereastheinclusionofallacute
endpointsresultsinanHC05estimateof3.99mg/L.Chronically,HC05estimatesaresimilarwhether
lethalityonly(1.18mg/L)orifallchronicendpointsareconsidered(1.57mg/L).
AreviewofavailableboronliteraturebyLoewengart(2001)makesacompellingargumentthatthe
shapeofborondose‐responsecurvesinrainbowtroutsuggeststhatboronmaybeessential,andlow
doseeffectscouldbetheresultofborondeficiency.Tosupportthisargument,U‐shapeddose
responsecurvesreportedbyRoweetal.(1998),andthestimulatoryeffectsoflowconcentrationsof
boronongrowth(Eckert,1998)aresummarizedinadditiontofieldobservationsofvibranttrout
populationsoccurringinhighboronenvironments.
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐15 Section 2  Analysis of Salinity‐Related Constituents Cumulative Percent Affected
A.
100
80
60
60
40
40
20
HC05= 18.08 mg Borate/L
20
0
0
100
200
300
0
0
2000
4000
6000
8000
10000
mg Borate/L
Cumulative Percent Affected
100
B.
80
60
40
30
40
20
10
20
HC05=3.99mg Borate/L
0
0
5
10
15
20
25
0
0
2000
4000
6000
mg Borate/L
8000
10000
Figure 2.6. Distribution of the acute toxicity data of borate to aquatic organisms (lethal and non‐lethal endpoints) based on ECOTOX data: A (top) ‐ Distribution of the data based only on a lethality endpoint; B (bottom) ‐ Distribution of data based on a combination of lethality and other endpoints (data from Figure 2.6A included). 2‐16 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents Cumulative Percent Affected
100
A.
80
60
50
40
40
30
20
20
10
HC05=1.13 mg Borate/L
0
0
5
10
15
0
0
50
100
150
mg Borate/L
Cumulative Percent Affected
B.
100
80
60
60
40
40
20
20
HC05=1.57mg Borate/L
0
0
5
10
15
20
0
0
100
200
300
mg Borate/L
400
500
Figure 2.7. Distribution of the chronic toxicity data of borate to aquatic organisms (lethal and non‐lethal endpoints based on ECOTOX data: A (top) ‐ Distribution of data based on lethal endpoint; B (bottom) ‐ Distribution of data based on both lethal and other endpoints (data from Figure 2.7A included). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐17 Section 2  Analysis of Salinity‐Related Constituents ArecentcompilationofborondatainsupportofEuropeanUnionREACHinitiatives(dealingwiththe
Registration,Evaluation,AuthorisationandRestrictionofChemicalsubstances)comparedthe
traditionalassessment(safety)factorandSSDapproachestoinferaPredictedNoEffectConcentration
(PNEC)forboroninaquaticenvironments(Schoderboecketal.,2011)(Figures2‐8and2‐9).Their
standardapproachgeneratedaPNECof0.18mg/LandtheirSSDapproachgeneratedaPNECof0.34
mg/L.
ArelativelynewstudybySouceketal.(2011)testedboronwitheightspecies,allofwhichresultedin
typicallyhighLC50valuesforboron.pHandhardnessdidnotaffectborontoxicity,thoughchloride
providedanameliorativeeffectinstudieswiththecrustaceansCeriodaphniadubiaandHyallela
Azteca.AspectsoftheSouceketal.(2011)dataaresimilartothoseinotherstudies,wherethereare
suggestionsofsubtletoxicaffectsatlowerboronconcentrations,butsignificantincreasesinboron
concentrationdonotseemtoincreasetoxicity.Theseauthorsconcludethatthecurrentstandardfor
boroninIllinois(1mg/L)isconservative.
Figure 2‐8. Compiled acute and chronic toxicity values for boron in fish (Source: Figure 2 in Schoderboeck et al., 2011). AttherequestofCV‐SALTS,additionalreviewwasconductedtoevaluateborontoxicityforfish
speciesthatmovefreelyfromfreshwatertotheocean.Relevantstudiesofsuchsalmonidsnotcitedin
Schoderboecketal.(2011)includethefollowing:

2‐18 HamiltonandBuhl(1990):AcuteboronLC50valuesforchinooksalmonandcohosalmonfry
were>100mg/L.
Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents 
Thompsonetal.(1976):Testsconductedfor283hoursin“underyearling”cohosalmon
resultedinanLC50valueof113mg/Linfreshwaterand12.2mg/Linsaltwater.
Figure 2‐9. Available chronic toxicity values for boron in aquatic species of diverse taxonomic groups (Source: Figure 1 in Schoderboeck et al., 2011). 2.3.2 Boron Summary 

ThereisenoughtoxicitydatabyEPAstandards(i.e.,Stephanetal.,1985)toestablishaboron
criterion:

Acutetoxicitydatasuggestthataconcentrationof4mg/Lcouldbeusedtoestablishan
acutecriterion(seeFigures2.6A,B).

Chronictoxicitydatasuggeststhatachroniccriterionof1.0‐1.3mg/Lcouldbeestablished
(seeFigures2.7A,B).
However,thereremainsconsiderableuncertaintyregardinganappropriatecriterionbecauseof
thefollowingissueswiththeavailabletoxicitydata:

Thereissomedisagreementaboutthenatureofthefewlowtoxicityvaluesforboron(see
discussionabove),whichmayrequirere‐evaluationofthosedatawithrespectto
essentiality(deficiency)arguments.

Aquaticinsects,animportantpartofthebiologicalcommunity,remainunder‐studiedwith
respecttoborontoxicity.
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐19 Section 2  Analysis of Salinity‐Related Constituents 2.4 Sulfate 2.4.1 Overview Thereissufficienttoxicitydataavailable(byEPAstandards)togeneratewaterqualitycriteria/
objectivesforsulfate,butfewentitieshaveestablishedthemtodate.TheIDNR(2009)reportlargely
followstheleadofeffortsinIllinoistoestablishhardnessandchlorideadjustedsulfatecriteria,as
showninTable2‐6.Thisapproachisbasedonanextremelylimitedsetofspeciesandassuch,much
uncertaintyremainswithrespecttoitsprotectivenessofaquaticcommunities.Inparticular,available
dataforsulfatetoxicityisextremelylimitedforaquaticinsects,whichmaybemoresensitivetosulfate
thanothercommonlyusedspecies.Thelimitedavailabledatasuggeststhataquaticinsectsmaybe
moresensitivetosulfatethanchloride:

BradleyandPhillips(1977)reportahighersensitivitytosulfatethanchlorideinasalttolerant
mosquito.Thereisgrowingevidencethatthesamemaybetrueforsomemayflies.Goetschand
Palmer(1997)reportthatsodiumsulfatewas,“considerablymoretoxictoTricorythussp.,than
sodiumchloride.”Theyfurtherreiteratethat“mortalitycannotbelinkedonlytoconductivityor
totaldissolvedsolid(TDS)concentrations”,butthatthenatureofthesaltwasimportant.

Recentresearch(Kunzetal.,2013)usedreconstitutedhighTDSwaterstomimicwater
chemistriesfoundinCentralAppalachianstreamsaffectedbymountaintopcoalmining.The
datashowthatthemayflyCentroptilumtrianguliferandfreshwatermusselLampsilissiliquoidea
werehighlysensitivetoelevatedTDSdominatedbysulfatesaltswhereascommonlyusedtest
speciesCeriodaphniadubiaandHyalellaaztecawererelativelyunaffected.

Insectswillundoubtedlybethepredominantfaunalgroupusedinbiologicalassessmentsof
freshwaterhabitatsintheSanJoaquinRiverbasin.Itthereforemakessensetoconsiderthe
potentialforsulfatetobeanissueinlightoftheapparentsensitivityofinsectstosulfate.

Sulfateand/orbicarbonatearethelikelydriversofreducedmacroinvertebrate(particularly
mayflies)inWestVirginiastreamsreceivinghighTDSinputsfromsurfacecoalmining.
TheIDNR(2009)documentpointstowards“theIllinoisapproach”(IllinoisEPA,2006),whichasserts
that,“unlikemanytoxicantsthatexerttoxiceffectsoverbothshorttermandlongtermperiods(acute
andchronictoxicity),sulfatehasbeendemonstratedtoaffectonlyshorttermsurvivaloforganisms.In
otherwords,organismsthatsurvivetheinitialosmoticshockofexposurewillsurviveindefinitelyat
thatconcentration.”AnalysisofsulfatedatafromtheECOTOXdatabasesuggeststhatthislineof
reasoningisquestionable4.
Table 2‐6. Proposed Iowa sulfate criteria based on binned chloride and hardness categories. Chloride Concentration (mg/L) Hardness (mg/L as CaCO3) Cl < 5 5 ≤ Cl‐ ≤ 25 25 ≤ Cl‐ ≤ 500 H < 100 500 500 500 100 ≤ H ≤ 500 500 [‐57.478 + 5.79 (hardness) + 54.163 (chloride)] *0.65 [1276.7 + 5.508 (hardness) – 1.457 (chloride)] *0.65 H > 500 500 2,000 2,000 ‐
4Theagencywasnotcontactedforthepurposesofthisstudy;additionalfollow‐upisrecommendedifthesedataweretobe
usedforWQOdevelopment.
2‐20 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents AnanalysisoftheECOTOXdatabaseforthetoxicityofsulfateisprovidedbelow(rawdataare
providedinAppendixA,TablesA‐8andA‐9).TheECOTOXdatabasecontainedsubstantialdatafor
thetoxicityofsulfateasNaSO4.Speciessensitivitydistributionsweregeneratedbyrankingthe
toxicityvaluesandcreatingcentilessuchthatthecumulativepercentageofspeciesaffectedcouldbe
plottedagainstconcentration.AnalyzingthedatainthismannerallowsfortheestimateofanHC05–
theconcentrationofcontaminantexpectedtobeprotectiveof95%ofthespeciesinagiven
community.TheinherentassumptioninthisEPAmethodologyisthatthepopulationofspeciesina
toxicitydatasetisareasonableproxyforthepopulationofspeciesinrealecosystems.
Thefollowingfouranalyseswereconductedfromtheexistingsulfatedata:
(1) Onlyshorttermexposures(acutestudies)withlethalityendpoints(Figure.2.10A).
(2) Onlyshorttermexposures(acutestudies)withbothlethalityandnon‐lethalityendpoints(e.g.,
immobility,growth)combined(Figure2.10B).
(3) Onlylongtermexposures(chronicstudies)withlethalityendpoints(Figure2.11A).
(4) Onlylongtermexposures(chronicstudies)withbothlethalityandnon‐lethalityendpoints(e.g.,
growth,reproductiveoutput)(Figure2.11B).
ForFigures2.10and2.11,thelargerplotshowstheentiredistributionofthetoxicitydata.Thesmaller
insetsshowonlythesensitivetailofthesensitivitydistributionandthelinearregressionsusedto
estimateHC05concentrations.Noassumptionsweremadeabouttheoverallshapesofthe
distributionsaslinearfitsofthetruncateddataforcedthroughtheoriginfitthedatawell.
TheHC05foracutelethalitywascalculatedas464mgSO4/L.Theinclusionofothernon‐lethalacute
dataloweredtheHC05calculationto234mgSO4/L.TheHC05forchroniclethalitydatawasestimated
as154mgSO4/L,whereastheinclusionofotherchronicnon‐lethalendpointsloweredtheHC05
estimateslightlyto124mgSO4/L.
2.4.2 Sulfate Summary 

ThereisenoughtoxicitydatabyEPAstandards(i.e.,Stephanetal.,1985)toestablishasulfate
criterion:

Existingacutetoxicitydataforsulfatecouldbeusedtosupportanacutecriterionof234mg
SO4/L(seeFigures2.10A,B).

Existingchronictoxicitydataforsulfatecouldbeusedtosupportachroniccriterionof124
mgSO4/L(seeFigures2.11A,B).
However,thereremainsconsiderableuncertaintyregardinganappropriatecriterionbecauseof
thefollowingissueswiththeavailabletoxicitydata:

Thelackofavailableaquaticinsectdataforsulfateraisesconsiderableuncertaintyaboutthe
protectivenessofthesepotentialobjectivestoresidentcentralvalleyaquaticcommunities.

Thehardnessandchlorideeffectsonsulfatetoxicityneedtobeexaminedingreaterdetail.
Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐21 Section 2  Analysis of Salinity‐Related Constituents A.
80
60
cumulative % affected
Cumulative % Affected
100
40
20
60
40
20
HC05 = 464mg SO4/L
0
0
0
10000
2000
4000
6000
20000
30000
mg SO4/L
100
B.
80
60
60
cumulative % affected
Cumulative % Affected
0
40
20
40
20
HC05 = 234 mg SO4/L
0
0
0
0
5000
10000
1000
15000
mg SO4/L
2000
20000
3000
25000
Figure 2.10. Distribution of the acute toxicity data of sulfate to aquatic organisms (lethal and non‐lethal endpoints) based on ECOTOX data: A (top) ‐ Distribution of the data based only on a lethality endpoint; B (bottom) ‐ Distribution of data based on a combination of lethality and other endpoints (data from Figure 2.10A included). 2‐22 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 2  Analysis of Salinity‐Related Constituents Cumulative % Affected
A.
100
80
60
60
40
40
20
20
HC05 = 154 mg SO4/L
0
0
0
0
500
5000
1000
1500
2000
10000
15000
mg SO4/L
Cumulative % Affected
B.
100
80
80
60
60
40
40
20
20
HC05 = 124 mg/L SO4
0
0
0
0
500
5000
1000
1500
10000
2000
15000
mg SO4/L
Figure 2.11. Distribution of the chronic toxicity data of sulfate to aquatic organisms (lethal and non‐lethal endpoints based on ECOTOX data: A (top) ‐ Distribution of data based on lethal endpoint; B (bottom) ‐ Distribution of data based on both lethal and other endpoints (data from Figure 2.11A included). Version 2 Final Aquatic Life Report_Vers2_010614.docx 2‐23 Section 2  Analysis of Salinity‐Related Constituents 2.5 Other Salinity‐Related Constituents Documentsprovidedforreviewwerelimitedwithrespecttothetoxicityofothermajorions(Na,Ca,
Mg,K,CO3,HCO3andhardness.InthecaseofNa,themostcommonlyusedsaltfortoxicitytestinghas
beenNaCl,withtoxicitygenerallybeingascribedtotheClionratherthantheNaion.EvansandFrick
(2001)providelimiteddataforotherchloridesalts(CaCl2,MgCl2,KCl),butingeneral,thesesalts
remainrelativelyunder‐studiedrelativetothesaltssummarizedabove.Carbonate,bicarbonateand
hardnesstoxicityremainpoorlyunderstood.Considerableuncertaintyremainsregardingtherelative
toxicityoftheanionsvs.cationsinsaltexposures.
2‐24 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 3 Applicability of Findings to the Central Valley 3.1 Applicability of Toxicity Data to Central Valley Fauna Theextrapolationoftoxicityvaluesfromahandfuloflaboratorytestedspeciestovaluesintendedto
protectaquaticcommunitiesinnaturehasahighdegreeofuncertaintyassociatedwithit.Arguments
thatsuchapproachesareprotectivecitetheuseofsafetyfactorsandconservativethresholds
(extrapolationtoprotect95%ofspecies).Argumentsthatsuchapproachesmaynotbeprotective
pointtowardsthefactthataquaticcommunitiestendtobedominatedbyinsects,yettoxicitydatasets
aredominatedbycrustaceansandfish.Regardless,theapplicationoftoxicityvaluestosetwater
qualitycriteriaisthenormintheU.S.andCanada,andlocalfaunaarerarelygivenspecial
considerationunlesstheyhavespecialeconomic,conservationorculturalvalue.
Theremaybecompellingreasonstoquestionwhetherthefaunafromagivenregionaredifferentially
adaptedtoparticularsalinities.Forexample,onecouldarguethattaxaevolvedinlowTDS
environments(e.g.CentralAppalachianheadwaterstreams,SierraNevadastreams)maybemore
sensitivetoelevatedTDSthanspeciesthatevolvedinhighernaturalsalinities(e.g.,Westslopeofthe
CentralValley).Whiledirectevidenceforthisconceptislacking,itisimportanttoconsiderthestatus
ofthefaunaintendedtobeprotectedbythedevelopmentofWQOshere.
ThewholesaleconversionoftheCentralValleytoagricultural(andurban)landusesandthe
developmentofwatersupplyandwaterconveyancesystemshasessentiallyrenderedstreamsinthis
entireregionofthestateassignificantlyaltered(degraded)fromnaturalorreferenceconditions.Ode
etal.(personalcommunication)reportthatonlyoneCentralValleyreferencestreamcurrentlyexists
inCalifornia’sSurfaceWaterAmbientMonitoringProgram(SWAMP)databaseofreferencestreams,
andthisstreamislikelybetterclassifiedasaSierraNevadafoothillsstreamthanavalleyfloorstream
(Dr.RaphaelMazor,SouthernCaliforniaCoastalWaterResearchProject[SCCWRP]personal
communication,4/29/2013).Thus,theregionalspeciespoolintheCentralValleyfloorexistsinhighly
degradedstreamsandlikelyrepresentsagenerallymoretolerant/facultativefauna.Itislikelythat
TDSsensitivefauna,ifanywereoriginallypresent,havealreadybeenexcludedfromstreamswith
elevatedTDSintheCentralValley.
3.2 Toxicity of Chloride, Boron and Sulfate in Relation to Water Chemistry Concentrations in the Central Valley 3.2.1 Interpretation of Resident Biological Communities in the Central Valley Thelackofstreamsinreference(ornearreference)conditionprovidesamajorchallengeto
practitionersofbiologicalassessmentfortheStateofCalifornia,becausescoringtoolsforstreamsare
reliantonsuitablesuitesofreferencestreamstoadequatelyassessecologicalconditionsatagiven
site.WhatthismeanspracticallyfortheCentralValley,isthatbiologicalmonitoringeffortswill(at
leastintheshortterm)notbeabletoincorporatethenewlydevelopedscoringtoolsassociatedwith
theemergingbiologicalobjectivesthatmaybeimplementedintheremainderofthestate.Thisdoes
notmeanthatmonitoringofbiologicalcommunitiesintheCentralValleyisnotfeasible.Theworkof
LelandandFend(1998)(summarizedbelow)providesanexampleofawell‐executedmonitoring
Version 2
Final Aquatic Life Report_Vers2_010614.docx 3‐1 Section 3  Applicability of Findings to Central Valley study.Whatisimportanttoconsiderhowever,isthatbiologicalcommunitiesareresponsivetohabitat
andotherwaterchemistry(e.g.,pesticidesandnutrients)thatmayco‐occurwithelevatednaturalor
anthropogenicTDS.Biomonitoringeffortsbythemselvescannotadequatelyascribecause(s)of
ecologicalimpairment.Thus,anyTDS/salinityobjectivesthatareeventuallyestablishedwillinitially
beextremelydifficulttolinkdirectlytochangesinbiologicalassemblages.However,shouldactivities
associatedwiththeimplementationofTDS/salinityobjectivessuccessfullyreduceTDSconcentrations
insiteswithhistoricallyelevatedTDSconcentrations,increasesinbiodiversitymeasuresmaybe
evidentovertime.
AstudybyLelandandFend(1998)titled“BenthicinvertebratedistributionsintheSanJoaquinRiver,
California,inrelationtophysicalandchemicalfactors”hasseveralrelevantpiecesofinformationthat
shouldbeconsideredbyCV‐SALTSasdiscussedbelow.

Salinityhasimportantgeographicsignatures:
SamplesweretakenalongtheSanJoaquinRiverandtributaries(Figure3‐1).Sampleswere
collectedeveryotherweekforoneyear,andmonthlyforanadditional16months.Valuesare
depthintegratedacrosstherivercrosssections,andthusmorerobustthansinglegrabsamples.
Resultsofchemicalanalysis(Table3‐1)showthatthetributariesfeedingtheSanJoaquinRiver
fromtheeast(StanislausRiver,TuolumneRiver,MercedRiver)haveasignificantdilutingeffect
onmainstemchemistry.Incontrast,MudSloughandSaltSlough(northeasterlyflowing
tributaries)contributehighlyelevatedsaltconcentrationstotheSanJoaquinRiver.Tributaries
feedingtheSanJoaquinRiverfromthewestwerenotmeasured,butcanbeassumedtobehigher
innaturallyoccurringsalinitiesbasedontheunderlyinggeologiesinthatregion.

3‐2 Biologicalcommunitiesrespondtosalinitygradients

Salinitywasidentifiedasaprimarydeterminantofspeciesassemblages,andisdominatedby
sulfate/bicarbonate.Itremainsuncertainwhethersulfate,bicarbonate,combinedionic
interactionsorgeneralionicimbalanceistheprimarydriverofspeciesresponses.

Substrate(sandgrainsize)wasalsoanimportantdeterminantofinvertebrateassemblages.
ThisisimportantbecausethelackofreferencesystemsintheCentralValleycoupledwith
heterogeneityofsubstratesizesseriouslylimitstheabilitytobiomonitoreffectively.Leland
andFend(1998)usedstandardizedsubstratestoteaseapartwaterchemistryvs.substrate
effects.Whileanappropriatetechnicalapproach,myconcernhereisthatthedevelopmentof
salinityguidelinesforaquaticlifeusescannotatthistimebeeffectivelytiedtoanymeaningful
biologicalmonitoringeffortsunlesstheuseofstandardizedsubstratesareroutinely
employed.

Table3ofLelandandFend(1998)listsspecies‐specificTDSoptimafor73speciesbasedon
thedensitiesofindividualtaxacollectedasafunctionofsalinity.Atolerancescoreisalso
providedanddefinedasonestandarddeviation(variance)aroundtheoptimalvalue.Inmany
cases,thevariancesarerelativelysmall,suggestingthespeciesperformanceisstrongly
affectedbysalinity.Specieswithwidervarianceswouldappeartohaveabroaderrangeof
“comfortable”salinities.Figure3‐2belowshowsacumulativerankingofspeciesbasedon
boththereportedoptimaandtwostandarddeviationsfromtheiroptima(LelandandFend,
1998)usingtheequation:CumulativePercentile=(100*Rank)/(n+1).
Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 3  Applicability of Findings to Central Valley Figure 3‐1. Sampling locations for water chemistry measurements reported from the San Joaquin River and tributaries from Leland and Fend (1998) (Data reported in Table 3‐1). Table 3‐1. Major ion concentrations in the San Joaquin River and tributaries from Leland and Fend (1998). Total TDS values from Table 1 of that publication; remaining values were converted from mequiv/L units. Central Valley Waterbody San Joaquin River (River Km) (see Figure 3‐1) Ion Stanislaus River Tuolumne River Merced River Mud Slough Salt Slough 116 125 159 185 202 213 Ca 22-34
24-46
36-54
32-60
36-86
19-68
8-12
4-15
9-16
60-142
54-112
Mg 10-17
9-22
16-29
16-30
15-49
7-30
3-5
2-7
3-5
42-70
24-60
Na 44-78
41-108
78-163
80-170
76-253
34-170
3-6
3-16
10-22
252-437
124-321
Cl 49-106
53-135
85-191
89-191
103-312
22-191
2-5
8-15
8-20
248-425
152-389
SO4 53-91
57-110
105-187
101-207
101-331
20-269
3-8
6-9
10-14
394-672
172-442
HCO3 67-104
73-128
98-152
73-128
104-183
79-159
33-52
28-79
40-73
140-238
128-195
Total TDS 250-350
270-540
420-690
420-740
410-970
200-620
54-78
55-140
74-140
1300-1700
650-1200
Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐3 Section 3  Applicability of Findings to Central Valley Figure 3‐2. Cumulative percentiles for optima and variances (two standard deviations) for San Joaquin Valley invertebrates reported from Leland and Fend (1998). KeyfeaturesoftherelationshipshowninFigure3‐2include:

Approximately50%ofthetaxafromthisdatasethavesalinityoptimaof<400mg/L.

Thesamplingcoverageandintensitywaslikelynotpowerfulenoughtousethesedataontheir
owntomakeregulatorydecisionsbecausethesamplingwasnotrandomly/statistically
determined.
Atafirstapproximation,thesedatawouldappearsimilartothedatausedbyEPAtocreatefield‐based
SSDsinAppalachianstreamsaffectedbysurfacecoalmining(seeSection2).However,certain
conditionsassociatedwiththeCAMexampledonotholdtrueforCalifornia’sCentralValley:

TheCAMsituationisuniqueinthattheaffectedhabitatsrangefromheadwaterstorelatively
loworderstreamswithlittleprevioushistoryofimpairmentandanamplepoolofsuitable
referencestreamsavailableforcomparativepurposes.CentralValleystreamshavenosuch
appropriatereferenceconditionsfromwhichtodeveloparegionalscale,field‐basedcriterion.

TheCAMexamplereliesupontheideathattherearesignaturewaterchemistrychanges
(elevatedsulfateandbicarbonate)exclusivelyassociatedwithmininglanduses,andthatthere
arenonaturalsourcesofelevatedTDStoconfoundtheanalysis.Further,theCAMsituationand
associatedEPAbenchmarkimpliesthatTDSrelatedtoxicityisderivedfromtheserelatively
predictablewaterchemistrychanges.However,theremaybeflawsinthisassumption.Inthe
CentralValley,thenaturallyhigherconductivitiesofWestslopetributariescanbeconfounded
withtheelevatedconductivitiesassociatedwithirrigationpractices,resultinginamixtureof
naturalandanthropogenicsourcesofelevatedTDS.
3‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 3  Applicability of Findings to Central Valley 
TheCAMexampleissetamidabackdropofrelativelyhighwaterquality,andtherelativelackof
otherproximalstressorsthatmayaffectbiologicalcommunities.IntheCentralValley,both
physicalhabitatalterations(sediments)andotherwaterchemistryissues(e.g.,pesticides,
nutrients,temperature,selenium)precludetheabilityofbioassessmenttoolstoelucidateor
assigncausesofbiologicalimpairmenttostrictlyTDSrelatedissues(thoughLelandandFend
[1998]devisedwaystocontrolforphysicalhabitatdifferencesamongsites,andnotethat,
“EphemeropteransintheSanJoaquinRiverrarelyoccurredatsalinities>1,000mg/LTDS”).
Thus,thedevelopmentofbioticsurveyapproachestoinferTDSeffectsinstreamsappears
possiblewithsomeeffort,butisunlikelytobesuccessfulatthispointwithoutadditional
researcheffort.

Anothermajordifferenceisthathereweusetwostandarddeviationsfromtheoptimalscore,
whereasEPAessentiallyusedextirpationsalinities(salinitiesatwhichtaxafailedtobe
effectivelypresentinsamples).Itisunclearhowtheapplicationofvariances(e.g.,oneortwo
timesthestandarddeviation)tooptimascoreswouldrelatetoanextirpationconcentrationfor
eachtaxon.Moreover,EPA’sanalysiswasfarmorerobustwithrespecttosamplingintensity
andincludedasubstantialreferencepopulation.
Forthisstudyalistof72taxaforthesingleCentralValleyreferencesite(DeerCreek)wasobtained
fromtheCaliforniareferencedatabase,wheremosttaxaareidentifiedtothegenuslevel.Thissiteis
likelybetterthoughtofas“Sierrafoothillsitethanavalleyfloorsite” (R.Mazor,SCCWRP,personal
communication).Ofthese72taxaoccurringinthereferencesite,only25appearintheLelandand
Fend(1998)SanJoaquinstudyarea.Whileitisnotpossibletodeterminewhyarelativelysmall
numberofreferencetaxaoccurredintheSanJoaquinstudy,itisperhapsinstructivethatthemean
salinityoptimareportedbyLelandandFendforthesetaxaintheSanJoaquinstudyareawas336
mg/LTDS.ThissuggeststhatthetaxapresentinbothreferenceandSanJoaquinsiteshadarelatively
highsalinitytolerance.
3.2.2 Water Chemistry in the Central Valley TheanalysisofwaterchemistryintheCentralValleywithrespecttoTDSorothersalinity‐related
constituentswasnotpartofthescopeofworkforthisreview.However,toassessthe
feasibility/attainabilityofanyfutureWQOs,itwouldbeusefultoassesssomeofthespatialaspectsof
salinityrelatedconstituentsintheCentralValleyaswellasthemagnitudesofdifferentconstituents.
AttemptstosummarizeexistingCaliforniaEnvironmentalDataExchangeNetwork(CEDEN)datawere
hamperedbyalackofdocumentationregardingthenatureofthesamplesreported.Specifically,it
couldnotbeadequatelydeterminedifmanyreportedvaluesforsalinity‐relatedconstituentswere
total(unfiltered)ordissolved(filtered)values.Thisgreatlyreducedtheavailabledataset.Table3‐2
summarizesobservedwaterqualityconcentrationsofdissolvedsulfate,dissolvedchloride,dissolved
boron,andTDSaspercentilesoftheavailabledatasetfortheCentralValley.Withtheexceptionof
TDS,itisnotablethatthemajorityofdissolveddataforsalinity‐relatedconstituentsisfromSierra
NevadafoothilllocationsratherthanfromtheflooroftheCentralValley(Figures3‐3,3‐4,3‐5and3‐
6forTDS,chloride,sulfateandboron,respectively).Basedontheselimiteddataitdifficulttomake
anyusefulfindingsregardingtypicalwaterqualityintheCentralValleyfortheseconstituents.Asa
resultitisnotpossibletoreliablyassessthefeasibilityofattainingpotentialWQOsforthese
constituentsatthistime.
Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐5 Section 3  Applicability of Findings to Central Valley Table 3‐2. Water quality characteristics of salinity‐related constituents in the Central Valley in terms of percentiles Statistic 3‐6 Dissolved Sulfate (mg/L) Dissolved Chloride (mg/L) Dissolved Boron (mg/L) TDS (mg/L) N
186
222
35
4711
10%
0.585
0.351
0.0266
39
25%
1.285
0.6625
0.041
85
50%
3.04
2.65
0.135
220
75%
9.68
9.2775
0.225
580
90%
19.95
42.58
0.902
1,100
95%
32.325
63.455
1.083
1,700
Note: Percentiles calculated from all available CEDEN database (provided courtesy of Melissa Turner, Michael L. Johnson, LLC) Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 3  Applicability of Findings to Central Valley Figure 3‐3. Sample locations of Central Valley TDS data summarized in Table 3‐2. Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐7 Section 3  Applicability of Findings to Central Valley Figure 3‐4. Sample locations of Central Valley dissolved chloride data summarized in Table 3‐2. 3‐8 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 3  Applicability of Findings to Central Valley Figure 3‐5. Sample locations of Central Valley dissolved sulfate data summarized in Table 3‐2. Final Aquatic Life Report_Vers2_010614.docx Version 2 3‐9 Section 3  Applicability of Findings to Central Valley Figure 3‐6. Sample locations of Central Valley dissolved boron data summarized in Table 3‐2. 3‐10 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 4 Conclusions and Recommendations 4.1 Conclusions 4.1.1 Salinity‐related Toxicity 
ToxicityofcomplexTDSmatricesisconsiderablymorevariable(andlesspredictable)thanthe
toxicityofsimplesalts.Thisvariabilitymaystemfromionicinteractionsandionicbalance
issuesaswellascomplexphysiologicalresponsesofaquaticorganismstothesedifferent
mixtures.Thuswhileampletoxicitydataexistforsimplesalts,therewillremainconsiderable
uncertaintyintheapplicationofthesevaluesasthebasisfordevelopingWQOs.

Thereissufficientdata(byEPAstandards)forthetoxicityofindividualions(chloride,boron,
andsulfate)toproduceWQOsbasedontoxicity.However,anysuchWQOswillcontaina
significantamountofuncertaintyforthefollowingreasons:

Methodsforinferringtheionsresponsiblefortoxicityincomplexmixturesarenotwell
developedatthistime;

Interactionsamongionsandtheireffectsontoxicityremainpoorlyunderstood;

ItremainsunclearwhetherthetoxicityofTDSmixturesresultsfromindividualions
causingtoxicityorwhetherionsincombinationelicittoxicity;and

Thepredominantspeciesfoundinfreshwaterecosystemsareusuallyinsects,andthese
speciesarelargelyabsentfrommosttoxicitydatabases.
4.1.2 Water Chemistry in the Central Valley 
Thereappearstobealargedifferencebetweennaturalsalinitiesinstreamsflowingfromthe
eastandwestslopesoftheCentralValley.

Otherwaterchemistryissues(i.e.,pesticides,nutrients)likelyplayalargeroleinspecies
compositionbutwerenotconsideredhere;therefore,itisnotpossibletoestablishwithany
certaintythedegreetowhichsalinityisafactorinestablishmentofaquaticcommunitiesinthe
CentralValley.
4.1.3 Central Valley Biota and Biological Monitoring 
Thelackofstreamsinreference(ornearreference)conditionssuggeststhattheregional
speciespooliscomprisedoflargelytolerant/facultativespecies.

Thelackofstreamsinreference(ornearreference)conditionsgreatlyhindersbiomonitoring
approachesthatcouldbeusedtoassessthesuccess/failureofanyadoptedsalinity‐related
WQOsunlesstrends(changesinspeciescomposition/biodiversityovertime)atagivensiteare
thebasisofassessment.
Version 2
Final Aquatic Life Report_Vers2_010614.docx 4‐1 Section 4  Conclusions and Recommendations 4.2 Regulatory Options Giventhefindingsofthisstudy,therearethreegeneralapproaches/optionsforgenerating
salinity/TDSrelatedWQOsfortheprotectionofaquaticlifeintheCentralValleybasedon(a)toxicity;
(b)chemistry;and(c)biology(Figure4‐1).
Figure 4‐1. General approaches for generating salinity/TDS related WQOs for the protection of aquatic life in the Central Valley. 4.2.1 Water Quality Objectives Based on Toxicity Toxicitydatasetsforchloride,boronandsulfatecouldbeusedtogenerateWQOs(Figure4‐2);
however,itisimportanttorecognizethatthereareanumberoffactorsthatmayneedtobe
consideredifthesedatasetswereusedtodevelopWQOs.ForexampletheCanadianGuidelineswhich
providethebasisfortheChloridevaluesinTable4‐1identifyhowtheseguidelinesshouldbe
interpreted5.Table4‐1listsacuteandchronicHC05estimatesbasedonexistingtoxicitydatasets.
5FromCCME(2011)‐GuidanceontheUseofGuidelines:Theseguidelinesforthechlorideionareonlyintendedtoprotect
againstdirecttoxiceffectsofchloride,basedonstudiesusingNaClandCaCl2salts.Theguidelineshouldbeusedasascreening
andmanagementtooltoensurethatchloridedoesnotleadtothedegradationoftheaquaticenvironment…Theshort‐term
benchmarkconcentration[acute]andlong‐term[chronic]CWQGforchloridearesettoprovideprotectionforshort‐andlong‐
termexposureperiods,respectively.Theyarebasedongenericenvironmentalfateandbehaviourandtoxicitydata.Thelong‐
termwaterqualityguidelineisaconservativevaluebelowwhichallformsofaquaticlife,duringalllifestagesandinall
Canadianaquaticsystems,shouldbeprotected–withoneexception.Asnotedearlier,theCWQGmaynotbeprotectiveofthe
early(glochidia)life‐stage[of]certainspeciesof…endangeredandspecialconcernfreshwatermussels…Becausetheguideline
isnotcorrectedforanytoxicitymodifyingfactors(e.g.,hardness),itisagenericvaluethatdoesnottakeintoaccountanysite‐
specificfactors.Moreover,sincetheguidelineismostlybasedontoxicitytestsusingnaïve(i.e.,non‐tolerant)laboratory
organisms,theguidelinemaybeover‐protectiveforareaswithanaturally‐elevatedconcentrationofchlorideandassociated
adaptedecologicalcommunity(CCME,2007).Thus,ifanexceedenceoftheguidelineisobserved(duetoanthropogenically‐
enrichedwaterorbecauseofelevatednaturalbackgroundconcentrations),itdoesnotnecessarilysuggestthattoxiceffects
willbeobserved,butratherindicatestheneedtodeterminewhetherornotthereisapotentialforadverseenvironmental
effects…Ingeneral,CWQGsarenumericalconcentrationsornarrativestatementsthatarerecommendedaslevelsthatshould
resultinnegligibleriskofadverseeffectstoaquaticbiota.Asrecommendations,theCWQGsarenotlegallyenforceablelimits,
thoughtheymayformthescientificbasisforlegislation,regulationand/ormanagementattheprovincial,territorial,or
municipallevel.CWQGsmayalsobeusedasbenchmarksortargetsintheassessmentandremediationofcontaminatedsites,
astoolstoevaluatetheeffectivenessofpoint‐sourcecontrols,oras“alertlevels”toidentifypotentialrisks.
4‐2 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 4  Conclusions and Recommendations Table 4‐1. HC05 estimates for the acute and chronic toxicity of major ions.
Constituent Chloride
Boron
1 2 Sulfate2 1
2
Acute (mg/L) Chronic (mg/L) 640 120 4 1.13 234 124 Based on Canadian Guidelines (CCME, 2011) Based on use of ECOTOX data and EPA standard methods (Stephan et al., 1985) AdvantagesofadoptingWQOsbasedonavailabletoxicitydatainclude:

Approachistransparentandobjective;itusesreadilyavailabledatafacilitatingcommunication
withstakeholders

ApproachisbasedonEPA‐establishedmethodologies
PrimarydisadvantagesofadoptingWQOsbasedonavailabletoxicitydatainclude:

Dataareforsimplematrices(sodiumsaltsofthegivenions)anddonotrepresentthecomplex
mixturesofionsfoundinnaturalsurfacewaters

MixturetoxicityofmajorionsinCentralValleywatersremainspoorlyunderstood

DatasetsusedtogeneratetheseHC05estimatesarepoorwithrespecttoaquaticinsectdata.
Sinceinsectswillpredominatethespeciespoolintheecosystemsinquestion,major
uncertaintyexistswithrespecttoprotectiveness.
Figure 4‐2. Options for developing WQOs based on toxicity. Final Aquatic Life Report_Vers2_010614.docx Version 2 4‐3 Section 4  Conclusions and Recommendations 4.2.2 Water Quality Objectives Based on Chemistry WQOsbasedonallowabledeviationsfromnaturalsalinities(theSouthAfricanapproach,seeSection
2.1.3)couldbedeveloped.Suchanapproachcouldtakeintoconsiderationthebroadrangeofnatural
salinitiespresentintheCentralValleysourcewaters,andapplyanallowabledegreeofchange
(salinityincrease)onageographic(eastvs.westslopeoriginatingwaters;valleyfloororiginating
waters)oronacasebycasebasis(amoresite‐specificapproach).Itishighlyrecommendedthata
statisticallybased,spatiallyexplicitevaluationofavailablewaterchemistrydatabeperformedto
betterunderstandbothnaturaldistributionsofsalinitiesinsourcewatersandanthropogenicchanges
tothosechemistriesonageographicbasis,regardlessofwhetherornotWQOsarebasedonwater
chemistry.
ShouldWQOsbedevelopedbasedondeviationsfrom“natural”conditions,theallowabledegreeof
salinitychangewouldbepolicydecision.SuchanapproachcouldbeappliedtototalTDS/salinity/EC
ortoindividualconstituents.Theadvantagesofthisapproacharethatitwouldremovethesituation
whereaone‐size‐fits‐allWQOcouldrendernaturallylowerTDSsitesasunder‐protected,whereas
naturallyhighTDSsitescouldneverreachattainablestatus.Themajordifficultyassociatedwiththis
approachisthedeterminationofwhatshouldbethenaturalsalinitiesoflargerriversystems
(segmentscontaininginputsfromseveralsourcesofsalinity).TheAZNapproachoftailoringlocal
criteriatotheperceivedconservationvaluecouldalsobeconsideredhere(seeSection2.1.3).
4.2.3 Water Quality Objectives Based on Biology Thelackofsuitablereferencesystemsrendersthisoptionverydifficulttodevelop,muchlessdefend.
Additionally,thesoftsubstratesofmanyCentralValleystreams(andtheheterogeneityassociated
withparticlesizes)practicallyaffectstheabilitytoeffectivelycomparesamplesfromsitetosite.
LelandandFend(1998)wereabletogetaroundthisissuebyusingartificialsubstrates.However,as
notedabove,thistypeofdataisnotnormallycollected.
4.2.4 Hybrid Approaches for Setting Water Quality Objectives Ahybridapproachcouldborrowthe“triggervalue”conceptfromtheAZNApproach(Figure4‐3).
ExceedanceofatotalTDS/salinity/EC“triggervalue”couldprompttheneedforfurtherchemical
analysistoquantifytheconcentrationsofindividualmajorionsand/orwholeeffluenttypetoxicity
testing.Onlywhereaconcernwasidentifiedforaparticularion,e.g.,chlorideorsulfate,woulditbe
necessarytoconsiderimplementationofacontrolmeasure.
4‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 4  Conclusions and Recommendations Figure 4‐3. A hybrid approach combining a total TDS/salinity/EC trigger value with WQOs for individual ions. 4.3 Final Thoughts ThisreportprovidespotentialdirectionsthatcouldbetakenforthedevelopmentofWQOsforthe
protectionofaquaticlifeforTDS/salinityrelatedconstituentsintheCentralValley.Thereareseveral
reasonswhyexplicitrecommendationsforWQOswerenotmadehere.First,(andobviously),there
areconsiderablescientific/technicaluncertaintiesthatarehighlightedthroughoutthisreport.In
addition,thereisagenerallackofdissolvedwaterchemistrydatainmuchoftheCentralValleyfloor.
Thatsaid,therewillalwaysbescientificuncertainty,andthisaloneshouldnotnecessarilybeabasis
forinaction.Basedonbothfieldandtoxicitystudiesoutlinedhere,thereisthepotentialforsalinityto
becausingecologicalimpairmentinatleastsomestreamsegmentsintheCentralValley.Inthose
situations,settingsomeregulatorylimitsonTDS/salinitycomponentsfortheprotectionofaquaticlife
wouldmakesense.However,thereremainsasurprisinglyincompletepictureofTDSrelated
chemistryonthegroundintheCentralValley.Beforeanynewregulatorytoolsareconsidered(e.g.,
otherthantheuseofthenarrativeWQOs),thereshouldbeastrongunderstandingofbothspatialand
temporalchemistrydynamicsintheCentralValley,suchthattheattainabilityofanyfutureagreed
uponnumericWQOsarewellunderstood,asthesecouldhaveregulatoryandeconomicconsequences
Additionally,thereshouldbesomearticulation(ideallybasedonstakeholderconsensus)regarding
theconservationgoalsforaquaticlifeintheCentralValley.Thedegreetowhichthewholeecosystem
Final Aquatic Life Report_Vers2_010614.docx Version 2 4‐5 Section 4  Conclusions and Recommendations hasbeenmodifiedplacestheecologywelloutsideofanyhistoricorcomparableecosystem.This
renderswadablestreamsintheCentralValleyoutsideofthecurrentcapacitytoadequately
biomonitorusingtraditionalreferenceapproaches.Iftherearespecies/ecosystemprocessesthatare
identifiedasofparticularimportance/conservationvalue,thisshouldbearticulated.
Giventheuncertaintiesanddatagapsdescribedabove,itisnotrecommendedthatWQOsforaquatic
lifebeestablishedatthistime.However,iftheCentralValleyWaterBoardweretoimplementprojects
toresolvethesedatagapsanduncertainties,thenitisrecommendedthatthefollowingactivitiesbe
carriedout:

Generatearobustassessmentofwaterchemistry(dissolved)onthevalleyfloor(thisincludes
bothspatialandseasonalcoverage).

Determinetheextenttowhichelevatedsaltsarisefromnatural(seeps,springsandstreams
drainingsaltbearinggeology)vs.anthropogenicsources(irrigationdrainwater).

Ifsalinityisdeemedtocomefromprimarilyanthropogenicactivities,considerimplementing
toxicitybasedobjectivesafterperformingananalysisofattainability.

Articulatewhichbiologicalcommunities/speciesareprioritiesforprotectionandhowsalinity
basedobjectiveswouldbeapplied.
4‐6 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 5 References AustralianandNewZealandEnvironmentandConservationCouncil(ANZECC)andAgricultureand
ResourceManagementCouncilofAustraliaandNewZealand(ARMCANZ).2000.AustralianandNew
ZealandGuidelinesforFreshandMarineWaterQuality.Volume1:TheGuidelines.ANZECCand
AMCANZ.October2000.
Birge,W.J.andJ.A.Black.1977.Sensitivityofvertebrateembryostoboroncompounds,April1977Final
Report.EPA‐560/1‐76‐008.U.S.EnvironmentalProtectionAgency,OfficeofToxicSubstances.
Washington,DC.66p.
Black,J.A.,J.B.Barnum,andW.J.Birge.1993.Anintegratedassessmentofthebiologicaleffectsofboron
totherainbowtrout.Chemosphere26:1383‐1413.
Bradley,T.J.andJ.E.Phillips.1977.Regulationofrectalsecretioninsaline‐watermosquitoLarvaeliving
inwatersofdiverseioniccomposition.JournalofExperimentalBiology66:83‐96.
Bright,D.A.andJ.Addison.2002.DerivationofMatrixSoilStandardsforSaltundertheBritishColumbia
ContaminatedSitesRegulation.ReporttotheBritishColumbiaMinistryofWater,LandandAir
Protection,MinistryofTransportationandHighways,BritishColumbiaBuildingsCorporation,andthe
CanadianAssociationofPetroleumProducers.June2002.
Bringolf,R.B.2010.EmailtoM.Nowierski,June14.Calculationof<EC50effectconcentrationsfromdata
presentedinBringolfetal.,2007.
Bringolf,R.B.,W.G.Cope,C.B.Eads,P.R.Lazaro,M.C.Barnhart,andD.Shea.2007.AcuteandChronic
ToxicityofTechnicalgradePesticidestoGlochidiaandJuvenilesofFreshwaterMussels(Unionidae).
EnvironmentalToxicologyandChemistry26:2086‐2093.
CanadianCouncilofMinistersoftheEnvironment(CCME).2011.Canadianwaterqualityguidelinesfor
theprotectionofaquaticlife:Chloride.In:Canadianenvironmentalqualityguidelines,1999.Canadian
CouncilofMinistersoftheEnvironment,Winnipeg.
CentralValleyRegionalWaterQualityControlBoard.1999.Boron:ALiteratureSummaryfor
DevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQualityControlBoard,
January1999.
CentralValleyRegionalWaterQualityControlBoard.2000.Salinity:ALiteratureSummaryfor
DevelopingWaterQualityObjectives(Draft).CentralValleyRegionalWaterQualityControlBoard,
January2000.
Degreave,G.M.,J.D.Cooney,B.H.Marsh,T.L.Pollock,andN.G.Reichenbach.1992.Variabilityinthe
performanceofthe7‐dCeriodaphniadubiasurvivalandreproductiontest:anintra‐andinter‐
laboratorycomparison.EnvironmentalToxicologyandChemistry11:851‐866.
Version 2
Final Aquatic Life Report_Vers2_010614.docx 5‐1 Section 5  References DepartmentofInterior(DOI).1998.Guidelinesfortheinterpretationofbiologicaleffectsofselected
constituentsinbiota,waterandsediment.Boron.DepartmentofInterior,NationalIrrigationWater
QualityProgram,InformationReportNo.3.November1998.
DepartmentofInterior(DOI).1998.Guidelinesfortheinterpretationofbiologicaleffectsofselected
constituentsinbiota,waterandsediment.Salinity.DepartmentofInterior,NationalIrrigationWater
QualityProgram,InformationReportNo.3.November1998.
DepartmentofWaterAffairsandForestry.1996.SouthAfricanWaterQualityGuidelines(second
edition).Volume7:AquaticEcosystems.SHolmes(ed.).CSIREnvironmentalServices.
Diamond,J.M.,E.L.Winchester,D.G.Mackler,andD.Gruber.1992.UseofthemayflyStenonema
modestum(Heptageniidae)insubacutetoxicityassessments.EnvironmentalToxicologyandChemistry
11:415‐425.
Eckert,C.D.1998.Boronstimulatesembryonictroutgrowth.JournalofNutrition128:2488‐2493.
Elphick,J.R.F.,K.D.BerghandH.C.Bailey.2011.Chronictoxicityofchloridetofreshwaterspecies:effects
ofhardnessandimplicationsforwaterqualityguidelines.EnvironmentalToxicologyandChemistry30:
239‐246.
EPA.1988.Ambientaquaticlifecriteriaforchloride‐1988.EPA440/5‐88‐001.U.S.Environmental
ProtectionAgency,Duluth,Minnesota.
EPAEcotoxicologydatabase(ECOTOX).http://cfpub.epa.gov/ecotox/).
EPA.2011.Finalpublication:Afield‐basedaquaticlifebenchmarkforconductivityinCentral
Appalachianstreams.EPA/600/R‐10/023F,U.S.EPA,OfficeofResearchandDevelopment,Cincinnati,
OH.March2011.
Evans,M.andC.Frick.2001.Theeffectsofroadsaltsonaquaticecosystems.NWRIContributionSeries
No.02‐308,NationalWaterResearchInstituteandUniversityofSaskatchewan,Saskatoon,SK,Canada.
Gillis,P.L.2011.Assessingthetoxicityofsodiumchloridetotheglochidiaoffreshwatermussels:
Implicationsforsalinizationofsurfacewaters.EnvironmentalPollution159:1702‐1708.
Goetsh,P.A.andC.G.Palmer.1997.SalinitytoleranceofselectedmacroinvertebratesoftheSabieRiver,
KrugerNationalPark,SouthAfrica.ArchivesofEnvironmentalContaminationandToxicology32:32‐
41.
Goodfellow,W.L.,L.W.Ausley,D.T.Burton,D.L.Denton,P.B.Dorn,D.R.Grothe,M.A.Heber,T.J.
Norberg‐King,andJ.H.Rodgers,Jr.2000.Majoriontoxicityineffluents:Areviewwithpermitting
recommendations.EnvironmentalToxicologyandChemistry19:175‐182.
GreatLakesEnvironmentalCenter(GLEC)andIllinoisNaturalHistorySurvey(INHS).2008.Acute
toxicityofchloridetoselectfreshwaterinvertebrates.PreparedfortheU.S.EPA.EPAContractNumber:
68‐C‐04‐006.October28,2008.
Hamilton,S.J.andK.J.Buhl.1990.Acutetoxicityofboron,molybdenumandseleniumtofryofchinook
salmonandcohosalmon.ArchivesofEnvironmentalContaminationandToxicology19:366‐373.
5‐2 Version 2
Final Aquatic Life Report_Vers2_010614.docx Section 5  References Hem,J.D.1985.Studyandinterpretationsofthechemicalcharacteristicsofnaturalwater,thirdedition.
U.S.GeologicalSurveyWaterSupplyPaper2254.
Howe,P.D.1998.Areviewofboroneffectsintheenvironment.BiologicalTraceElementsResearch66:
153‐166.
Hughes,J.S.,1973.AcutetoxicityofthirtychemicalstoStripedBass(Moronesaxatilis).Louisiana
WildlifeandFisheriesCommission(A:2012).
IllinoisEnvironmentalProtectionAgency.2006.Preliminarytechnicaljustificationforchangingwater
qualitystandardsforsulfates,totaldissolvedsolidsandmixingzones.IllinoisEnvironmentalProtection
Agency.April2006.
IowaDepartmentofNaturalResources(IDNR).2009.WaterQualityStandardsReview:Chloride,
SulfateandTotalDissolvedSolids.IowaDepartmentofNaturalResources,February9,2009.
Karraker,N.E.andJ.P.Gibbs.2011.Roadde‐icingsaltirreversiblydisruptsosmoregulationof
salamandereggclutches.EnvironmentalPollution159:833‐835.
Khangarot,B.S.,andP.K.Ray.1989.Investigationofcorrelationbetweenphysicochemicalpropertiesof
metalsandtheirtoxicitytothewaterfleaDaphniamagnaStraus.EcotoxicologyandEnvironmental
Safety18:109‐120.
Khangarot,B.S.1991.Toxicityofmetalstoafreshwatertubificidworm,Tubifextubifex(Muller).Bulletin
ofEnvironmentalContaminationandToxicology46:906‐912.
Kunz,J.L.,J.M.Conley,D.B.Buchwalter,T.J.Norberg‐King,N.E.Kemble,N.WangandC.G.Ingersoll.
2013.Useofreconstitutedwaterstoevaluateeffectsofelevatedmajorionsassociatedwithmountaintop
coalminingonfreshwaterinvertebrates.EnvironmentalToxicologyandChemistry32:2826‐2835.
Leland,H.V.andS.V.Fend.1998.BenthicinvertebratedistributionsintheSanJoaquinRiver,California,
inrelationtophysicalandchemicalfactors.CanadianJournalofFisheriesandAquaticSciences55:
1051‐1067.
Linsley,R.K.andJ.B.Franzini.1979.Waterresourceengineering.McGrawHill.Singapore.
Loewengart,G.2001.ToxicityofborontoRainbowTrout:Aweight‐of‐the‐evidenceassessment.
EnvironmentalToxicologyandChemistry20:796‐803.
McKee,J.E.andH.W.Wolf.1963.Waterqualitycriteria,2ndedition.Publication3‐A.CaliforniaState
WaterQualityControlBoard,Sacramento,CA.USA.
Mount,D.R.,D.D.Gulley,J.R.Hockett,T.D.Garrison,andJ.M.Evans.1997.Statisticalmodelstopredict
thetoxicityofmajorionstoCeriodaphniadubia,DaphniamagnaandPimephalespromelas(Fathead
Minnows).EnvironmentalToxicologyandChemistry16:2009‐2019.
Nagpal,N.K.,D.A.Levy,andD.D.MacDonald.2003.Waterquality:Ambientwaterqualityguidelinesfor
chloride‐overviewreport.MinistryofEnvironment,BritishColumbia,Canada.
Pimentel,R.andR.V.Bulkley.1983.Influenceofwaterhardnessonfluoridetoxicitytorainbowtrout.
EnvironmentalToxicologyandChemistry2:381–386.
Final Aquatic Life Report_Vers2_010614.docx Version 2 5‐3 Section 5  References Rowe,R.I.,C.Bouzan,S.Nabili,andC.D.Eckert.1998.Theresponseoftroutandzebrafishembryosto
lowandhighboronconcentrationsisU‐shaped.BiologicalTraceElementsResearch66:237‐259.
Saiki,M.K.,M.R.Jennings,andR.H.Wiedemeyer.1992.Toxicityofagriculturalsubsurfacedrainwater
fromtheSanJoaquinValley,California,tojuvenileChinooksalmonandstripedbass.Transactionsofthe
AmericanFisheriesSociety121:78‐93.
Schoderboeck,L.,S.Muhlegger,A.Losert,C.Gausterer,andR.Hornek.2011.Effectsassessment:Boron
compoundsintheaquaticenvironment.Chemosphere82:483‐487.
Soucek,D.J.2007.Comparisonofhardness‐andchloride‐regulatedacuteeffectsofsodiumsulfateontwo
freshwatercrustaceans.EnvironmentalToxicologyandChemistry26:773‐779.
Soucek,D.J.,A.Dickinson,andB.T.Koch.2011.Acuteandchronictoxicityofborontoavarietyof
freshwaterorganisms.EnvironmentalToxicologyandChemistry30:1906‐1914.
SoucekD.J.andA.J.Kennedy.2005.Effectsofhardness,chloride,andacclimationontheacutetoxicityof
sulfatetofreshwaterinvertebrates.EnvironmentalToxicologyandChemistry24:1204‐1210.
StateWaterResourcesControlBoard(StateWaterBoard).1987.Regulationofagriculturaldrainageto
theSanJoaquinRiver.TheTechnicalCommitteeReportMainReportStateWaterBoardOrderNoW.Q
85‐1SanJoaquinRiverBasinSacramento.
StephanC.E.,D.I.Mount,D.J.Hansen,J.H.Gentile,G.A.Chapman,andW.A.Brungs.1985.Guidelinesfor
derivingnumericalnationalwaterqualitycriteriafortheprotectionofaquaticorganismsandtheiruses.
U.S.EPA,OfficeofResearchandDevelopment,Washington,DC.
StroudWaterResearchCenter.2010.ExpertReportontheProposedRulemakingbythePennsylvania
EnvironmentalQualityBoardforAmbientWaterQualityCriterionChloride(Cl).StroudWaterResearch
Center,Avondale,Pennsylvania.StroudReport#2010004.June14,2010.
Thompson,J.A.J.andJ.C.Davis.1976.Toxicity,uptakeandsurveystudiesofboroninthemarine
environment.WaterResearch10:869‐875.
U.S.BureauofReclamation.1993.Drainagemanual:Aguidetointegratingplant,soilandwater
relationshipsfordrainageofirrigatedlands.U.S.BureauofReclamation,Denver,Colorado.Water
ResourcesTechnicalPublication.
U.S.DepartmentofAgriculture.1954.Improvementofsalineandalkalisoils.U.S.SalinityLaboratory
Staff(AgriculturalHandbookNo60).
Weber‐Scannell,P.K.andL.K.Duffy.2007.Effectsoftotaldissolvedsolidsonaquaticorganisms:A
reviewofliteratureandrecommendationforsalmonidspecies.AmericanJournalofEnvironmental
Sciences3:1‐6.
Wetzel,R.G.1983.Limnology.SecondEdition.SaundersCollegePublishing.NY.767p.
Wurtz,C.B.,andC.H.Bridges.1961.Preliminaryresultsfrommacroinvertebratebioassays.Proceedings
ofthePennsylvaniaAcademyofSciences35:51‐56.
5‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A Data Tables Version 2
Final Aquatic Life Report_Vers2_010614.docx A‐1 Appendix A  Data Tables Table A‐1 ‐ Predicted cumulative percentage of species affected by chronic exposures to chloride (from Evans and Frick, 2001). Cumulative % of Species Affected Mean Chloride
Concentration (mg/L) Lower Confidence
Limit (mg/L) Upper Confidence Limit (mg/L) 5 213 136
290 10 238 162
314 25 329 260
397 50 563 505
622 75 964 882
1,045 90 1,341 1,254
1,428 A‐2 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A  Data Tables Table A‐2 ‐ Four‐day LC50 values of various taxa exposed to sodium chloride (adapted from Table 7‐5 in Evans and Frick, 2001 and Table B.6 in Bright and Addison, 2002) (References in table not provided in this document – see original references). Species Common Name 96 h LC50
(mg Cl/L) References Tubifex tubifex Tubificid worm 1,204 Khangarot, 1995 Ceriodaphnia dubia Cladoceran 1,400 Cowgill and Milazzo, 1990 Daphnia pulex Cladoceran 1,470 Birge et al., 1985 Ceriodaphnia dubia Cladoceran 1,596 WI SLOH, 1995 Daphnia magna Cladoceran 1,853 Anderson, 1948 Daphnia magna Cladoceran 2,390 Arambasic et al., 1995 Physa gyrina Snail 2,480 Birge et al., 1985 Lirceus fontanels Isopod 2,970 Birge et al., 1985 Cirrhinius mrigalo Indian carp fry 3,021 Gosh and Pal, 1969 Labeo rohoto Indian carp fry 3,021 Gosh and Pal, 1969 Catla catla Indian carp fry 3,021 Gosh and Pal, 1969 Daphnia magna Cladoceran 3,658 Cowgill and Milazzo, 1990 Cricotopus trifascia Chironomid 3,795 Hamilton et al., 1975 Chironomus attenatus Chironomid 4,026 Thorton and Sauer, 1972 Hydroptila angusta Caddisfly 4,039 Hamilton et al., 1975 Daphnia magna Cladoceran 4,071 WI SLOH, 1995 Limnephilus stigma Caddisfly 4,255 Sutcliffe, 1961 Anaobolia nervosa Caddisfly 4,255 Sutcliffe, 1961 Carassius auratus Goldfish 4,453 Adelman et al., 1976 Pimephales promelas Fathead minnow 4,600 WI SLOH, 1995 Pimephales promelas Fathead minnow 4,640 Adelman et al., 1976 Lepomis macrochirus Bluegill 5,840 Birge et al., 1985 Culex sp. Mosquito 6,222 Dowden and Bennett, 1965 Pimephales promelas Fathead minnow 6,570 Birge et al., 1985 Lepomis macrochirus Bluegill 7,864 Trama, 1954 Gambusia affinis Mosquito fish 10, 616 Wallen et al., 1957 Anguilla rostrata American eel 10,900 Hinton and Eversole, 1978 Anguilla rostrata American eel 13,085 Hinton and Eversole, 1978 Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐3 Appendix A  Data Tables Table A‐3 ‐ Results of chronic toxicity tests (> 7 day duration) conducted on freshwater organisms exposed to sodium chloride (adapted from Table 7‐6 in Evans and Frick, 2001 and Table B.6 in Bright and Addison, 2002) (References in table not provided in this document – see original references). LC50/EC50
Measured
Species Common Name (mg Cl/L) Endpoint References Ceriodaphnia dubia Cladoceran 735 brood size Degreave et al., 1985 Pimephales promelas Fathead minnow 874 survival Beak, 1999 Ceriodaphnia dubia Cladoceran 1,068 brood size Cowgill and Milazzo, 1990 Oncorhynchus mykiss Rainbow trout 1,456 survival Beak, 1999 Nitschia linearis Diatom 1,475 cell numbers Gonzales‐Moreno et al., 1997 Xenopus leavis Frog 1,524 survival Beak, 1999 Oncorhynchus mykiss Rainbow trout 1,595 survival Beak, 1999 Daphnia magna Cladoceran 2,451 brood size Cowgill and Milazzo, 1990 Pimephales promelas Larvae 3,029 growth Beak, 1999 Lemna minor Duckweed 3,150 population Buckley et al., 1996 Myriophyllum spicatum Eurasian Watermilfoil 4,291 population Stanley, 1974 Myriophyllum spicatum Eurasian Watermilfoil 4,681 growth Stanley, 1974 A‐4 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A  Data Tables Table A‐4 – Chloride toxicity endpoint data from Canadian Water Quality Guidelines for the Protection of Aquatic Life (2011) (References in table not provided in this document – see original reference). Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐5 Appendix A  Data Tables A‐6 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A  Data Tables Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐7 Appendix A  Data Tables Table A‐5 – Chloride toxicity values from Tables 2 and 3, IDNR (2009). A‐8 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A  Data Tables Table A‐6. Acute toxicity data for borate (ECOTOX). Table A. Acute borate LC50 toxicity data
Genus Limanda Carassius Americamysis Menidia Ictalurus Daphnia Xyrauchen Rasbora Cyprinodon Ptychocheilus Gila Lepomis Catostomus Oncorhynchus Xenopus Chironomus Spirostomum Gambusia Common Name Flounder Ray‐finned Fish Opossum Shrimp Silverside Fish Channel Catfish Water Flea Sucker Fish Minnow Sheepshead Minnow Pike Minnow Chub Fish Bluegill Fish Sucker Fish Silver Salmon African Clawed Frogs Midge Ciliate Protist Western Mosquitofish Mean Concentration (mg/L) 78.43 121.75 130.01 160.92 169.25 196.20 204.00 231.67 245.56 302.00 310.67 321.75 421.75 934.96 978.11 1,376.00 5,348.00 9,650.00 Table B. Acute borate data – Non‐LC50 data
Genus Entosiphon Tetrahymena Chilomonas Dugesia Anacystis Pseudokirchneriella Chironomus Kuhlia Lemna Dreissena Ceriodaphnia Simocephalus Uronema Anthocidaris Colpidium Rasbora Americamysis Menidia Xyrauchen Xenopus Daphnia Ptychocheilus Spirostomum Danio Cypris Poecilia Oncorhynchus Pimephales Tubifex Anguilla Gammarus Final Aquatic Life Report_Vers2_010614.docx Common Name Protist Flagellates Ciliated Protozoan Algae Flatworm Algae Green Algae Midge Flagtail Fish Duckweed Zebra Mussel Water Flea Water Flea Algae Sea Urchin Ciliate Minnow Opossum Shrimp Silverside Fish Sucker Fish African Clawed Frogs Water Flea Pike Minnow Ciliate Protist Zebra Fish Ostracod Molly Fish Silver Salmon Fathead Minnow Sludge Worm Freshwater Eel Scud Version 2 Mean Concentration (mg/L) 1.00 1.00 8.30 10.00 11.25 15.40 20.00 20.00 20.34 50.00 79.16 80.75 109.00 127.00 182.97 196.67 199.72 251.43 288.00 296.88 336.99 360.00 558.00 568.84 2,022.50 4,333.33 5,000.00 5,275.00 6,000.00 6,083.33 10,000.00 A‐9 Appendix A  Data Tables Table A‐7. Chronic toxicity data for borate (ECOTOX). Table A. Chronic borate LC50 toxicity data Genus Hyalella Elodea Myriophyllum Ranunculus Daphnia Carassius Oncorhynchus Micropterus Ictalurus Common Name Scud Waterweed Eurasian Watermilfoil Buttercup Plant Water Flea Ray‐finned Fish Silver Salmon Largemouth Bass Channel Catfish Mean Concentration (mg/L) 3.04 5.00 5.00 10.00 52.70 61.25 76.94 92.00 100.75 Table B. Chronic borate data – Non‐LC50 data Genus Scenedesmus Ranunculus Elodea Chlorella Lemna Micropterus Ceriodaphnia Daphnia Ambystoma Bufo Lithobates Anacystis Myriophyllum Xenopus Oncorhynchus Phragmites Typha Common Name Green Algae Buttercup Plant Waterweed Green Algae Duckweed Largemouth Bass Water Flea Water Flea Salamander Toad Bullfrog Algae Eurasian Watermilfoil African Clawed Frogs Silver Salmon Common Reed Grass Common Cattail A‐10 Mean Concentration (mg/L) 0.58 1.50 1.80 5.60 8.50 12.17 15.70 22.99 49.50 49.50 49.50 73.00 98.43 150.00 161.60 430.00 430.00 Version 2
Final Aquatic Life Report_Vers2_010614.docx Appendix A  Data Tables Table A‐8. Acute toxicity data for sulfate (ECOTOX). Table A. Acute sulfate LC50 toxicity data Genus Morone Tricorythus Nitzschia Hyalella Sphaerium Ceriodaphnia Lampsilis Daphnia Lymnaea Pimephales Lepomis Culex Chironomus Gambusia Poecilia Americamysis Cyprinodon Menidia Common Name Striped Bass Mayfly Diatom Scud Grooved Fingernail Clam Water Flea Lamp‐Mussel Water Flea Pond Snail Fathead Minnow Bluegill Fish Mosquito Midge Western Mosquitofish Sailfin Molly Fish Opossum Shrimp Sheepshead Minnow Inland Silverside Fish Mean Concentration (mg/L) 600.44 660.00 1,900.00 2,204.03 2,402.86 2,541.56 2,882.30 4,498.54 4,938.50 6,985.16 11,271.25 12,390.00 14,134.00 17,000.00 18,018.00 18,659.94 19,502.80 28,507.43 Table B. Acute sulfate data – Non‐LC50 data Genus Artemia Ophryotrocha Notropis Gammarus Bulinus Lymnaea Brachionus Dreissena Corbicula Hyalella Americamysis Navicula Morone Pseudokirchneriella Pimephales Ceriodaphnia Oncorhynchus Cyprinidae Daphnia Biomphalaria Polycelis Chimarra Tricorythus Chironomus Cyprinodon Ictalurus Lepomis Micropterus Menidia Common Name Brine Shrimp Polychaete Shiner Fish Scud Snail Pond Snail Rotifer Zebra Mussel Asiatic Clam Scud Opossum Shrimp Diatom Striped Bass Green Algae Fathead Minnow Water Flea Silver Salmon Minnow Water Flea Freshwater Snail Planarian Caddisfly Mayfly Midge Sheepshead Minnow Channel Catfish Bluegill Fish Largemouth Bass Inland Silverside Fish Mean Concentration (mg/L) 6.60 6.60 100.00 299.75 850.00 950.00 1,267.75 1,420.40 1,500.00 1,544.89 1,800.00 1,900.00 2,237.50 2,258.41 2,359.95 2,408.35 3,942.72 4,500.00 4,915.50 5,133.33 6,817.92 7,340.00 7,340.00 11,682.00 19,613.46 20,000.00 20,000.00 20,000.00 20,538.98 Final Aquatic Life Report_Vers2_010614.docx Version 2 A‐11 Appendix A  Data Tables Table A‐9. Chronic toxicity data for sulfate (ECOTOX). Table A. Chronic sulfate LC50 toxicity data Genus Calla Equisetum Glyceria Juncus Menyanthes Potamogeton Thelypteris Fontinalis Pseudacris Corbicula Hyalella Ceriodaphnia Myriophyllum Caridina Pseudokirchneriella Oncorhynchus Rana Ictalurus Americamysis Lepomis Micropterus Common Name Water Arum Water Horsetail Reed Mannagrass Rush Buck‐bean Pondweed Eastern Marsh Fern Common Water Moss Pacific Chorus Frog Asiatic Clam Scud Water Flea Eurasian Watermilfoil Common Water Shrimp Green Algae Silver Salmon Bullfrog Channel Catfish Opossum Shrimp Bluegill Fish Largemouth Bass Mean Concentration (mg/L) 284.08 284.08 284.08 284.08 284.08 284.08 284.08 920.25 1,498.19 1,500.00 1,565.00 1,586.83 2,341.00 2,341.43 3,000.00 3,208.81 4,261.20 9,166.67 9,236.15 10,000.00 13,800.00 Table B. Chronic sulfate data – all lethal and non‐lethal data Genus Calla Equisetum Glyceria Juncus Menyanthes Potamogeton Thelypteris Anabaena Chlorella Dunaliella Platymonas Porphyridium Tetraselmis Fontinalis Pseudacris Corbicula Hyalella Ceriodaphnia Myriophyllum Caridina Pseudokirchneriella Oncorhynchus Rana Ictalurus Americamysis Lepomis Micropterus Common Name Water Arum Water Horsetail Reed Mannagrass Rush Buck‐bean Pondweed Eastern Marsh Fern Blue‐Green Algae Green Algae Green Algae Green Flagellate Red Algae Prasinophyte Common Water Moss Pacific Chorus Frog Asiatic Clam Scud Water Flea Eurasian Watermilfoil Common Water Shrimp Green Algae Silver Salmon Bullfrog Channel Catfish Opossum Shrimp Bluegill Fish Largemouth Bass Mean Concentration (mg/L) 284.08 284.08 284.08 284.08 284.08 284.08 284.08 390.00 850.00 850.00 850.00 850.00 850.00 920.25 1,430.24 1,500.00 1,565.00 1,586.83 2,341.00 2,798.75 3,000.00 3,657.83 4,261.20 9,166.67 9,236.15 10,000.00 13,800.00 A‐12 Version 2
Final Aquatic Life Report_Vers2_010614.docx