Spindynamicsofwatericeand theOPRofgaseouswaterdesorbedfromice T.Hama,N.Watanabe,A.Kouchi, InstituteofLowTemperatureScience,HokkaidoUniversity NuclearSpinEffectsinAstrochemistry,2-4May2017, Grenoble,France Orthoandpara water H (1)Ortho-H2Oandpara-H2Omustexistin differentrotationalstates.(Protonisafermion) O H H O H Spintemperature(Tspin):Ortho-to-para ratio(OPR) assumingthermodynamicequilibrium 3.0 O H Para-H2O (I = 0, JKaKc = 000) Ortho-to-para ratio 2.5 2.0 1.5 1.0 0.5 0.0 0 H Rotationalenergy difference 34.2K Miani andTennyson,JCP(2004).,Caccianietal.,Phys.Rev.A(2012). Rotational energy O Ortho-H2O (I = 1, JKaKc = 101) (2)Nuclearspinconversionisveryslowinthegasphase byradiationornonreactivecollisions. Spinand rotational degeneracy H H 5 10 15 20 25 30 35 40 45 50 Temperature (K) BecauseofΔErot (23.8cm−1,34.2K),para-H2O(JKa,Kc =000)enrichmentbelow50K. TheanomalousOPRsofgaseousH2Ohavebeenobservedinspace. 3.0 Ortho-to-para ratio 2.5 2.0 Comets OPR=2.0~3.0 1.5 1.0 Interstellarclouds Proto-planetarydisks OPR =0.1~3.0 0.5 0.0 0 5 10 15 20 25 30 35 40 45 50 Temperature (K) ThemeaningoftheobservedTspin remains atopicofcontinuingdebate. Lis etal.,Astron.Astrophys.521,L26 (2010).,Hogerheijde etal.,Science334,338(2011). Choi etal.,Astron.Astrophys.572,L10(2014).,Willacyetal.,SpaceSci.Rev.197,151(2015). Hypothesis:Tspin reflectstheformationtemperatureofice? Interstellarclouds/Proto-planetarydisks H2Oiceisformedthroughdustsurfacereactions, e.g.,HatomadditiontoO,O2,andOH. O H H Dust Dust 30K 30K O2 H2Oice H H2O Dust H2Oice VUV Photodesorption Ice-covereddust(<50K)istoocold forthethermaldesorption. Comets (Thermaldesorption) H2O (Tspin=30K) Whatistherealmeaningof theOPR? ↓ MeasurementsoftheOPRof H2Odesorbedfromice. TesttherelationbetweenTspin andtheiceformationtemperature: H2OicewasproducedinsituthroughthehydrogenationofsolidO2 at10K. InsituproductionofH2Oiceat10K byco-depositionofHandO2 H H O2 VUVphoton at157nm O2 H Resonance-EnhancedMultiPhoton Ionization(REMPI) Heating O2 H2Oice Substrate H2Oice Substrateat10K O2 +H→HO2, HO2 +H→H2O2, H2O2 +H→H2O+OH, OH+H→H2O, OH+H2 →H2O+H. (1) (2) (3) (4) (5) H2O(OPR?) H2Oice Substrate Surfacereactions(3)– (5)are theformationprocessesof interstellarH2Oice. VanDishoeck,Herbst,andNeufeld,Chem.Rev.113,9043(2013). Hama, andWatanabe,Chem.Rev.113,8783(2013). Experiment with RASCAL Infraredreflection–absorptionspectraat4000–800cm−1. (A) Vapor-depositedH2Oiceat10K. (B) H2Oiceproducedbyco-depositionofO2 withatomicHat10Kfor420min. Wavelength (µm) (A) Vapor-depositedH2Oiceat10K. 0.15 A 5 7 9 11 Vapor-deposited H2O ice at 10 K Absorbance unit H2Oice Substrate 3 0.10 0.05 0.00 H H O2 B O2 H H2Oice Substrate O2 0.15 O2 +H→HO2, HO2 +H→H2O2, H2O2 +H→H2O+OH, OH+H→H2O, OH+H2 →H2O+H. In situ-produced H2O ice at 10 K H2O + H2O2 Absorbance unit H2Oiceproducedby hydrogenationofO2 at10K H2O H2O2 0.10 H2O2 H2O 0.05 0.00 4000 3600 3200 2800 2400 2000 1600 1200 800 -1 Wavenumber (cm ) Detector (TOFmass+MCP) “kick-out”photodesorption: MomentumtransferfromahotHatom photodissociated fromaneighboringH2O. H2O(ice)+hν (157nm)→hotH +OH ExcessEnergy:220kJmol−1 hotH+H2O(ice) →H +H2O(gas) ΔH =45kJmol−1 Hamaetal.,JCP.132,164508(2010). REMPIlaser(248-249nm) Focused(1mJ pulse-1) ↓ Ortho/Parastateselective detection H2O+ ionization 157nm Photodesorption laser Unfocused(0.1mJ pulse-1) 1013-1014 photonscm-2 pulse-1 ~1mm AmorphousH2Oice DCO,D2CO,CD 3OH Alsubstrateat10K H2O REMPI signal (arb. units) 0.4 0.2 0.0 -0.2 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 REMPIrotationalspectrumof H2Ophotodesorbed fromiceat10K B H2O desorbed from in situ-produced H2O ice at 10 K REMPI (Trot=200K,OPR=3) VUV 157nm C Simulation with Trot = Tspin = 200 K 321(o) 221(o) 221(o) 423(o) 322(p) 220(p) OPR=3 312(o), 212(o) 110(o) 212(o) Assignments: JKaKc (ortho orpara) 211(p) 1.6 1.4 D Simulation with Trot = 200 K, Tspin = 10 K OPR=0.3 1.2 212(o) 220(p) 1.0 1 (o) 10 322(p) 221(o) 0.8 211(p) 3 (o), 0.6 12 423(o) 321(o) 2 (o) 0.4 212(o) 21 0.2 0.0 -0.2 80450 80500 80550 80600 80650 124.3nm (248.6) -1 Two-photon wavenumber (cm ) H2Oice Substrate Strongerortho-H2Olinesthan para-H2Olines. Well-reproducedwithOPR=3. ↕ Para-H2Osignalsaretoostrong withOPR=0.3(10K). TheOPRisnotrelatedto 120.0nm theiceformationtemperature. (248.0) H2O REMPI signal (arb. units) 0.4 0.2 0.0 -0.2REMPIrotationalspectrumof 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 H2Othermallydesorbedfromiceat150K B H2O desorbed from in situ-produced H2O ice at 10 K REMPI (Trot=150K,OPR=3) Heat C Simulation with Trot = Tspin = 150 K 221(o) 321(o) 221(o) 423(o) 322(p) 220(p) OPR=3 312(o), 212(o) 110(o) 212(o) 211(p) 1.6 D Simulation with Trot = 150 K, Tspin = 10 K OPR=0.3 1.4 1.2 220(p) 110(o) 2 (o) 12 1.0 322(p) 221(o) 211(p) 0.8 312(o), 0.6 4 (o) 23 212(o) 321(o) 221(o) 0.4 0.2 0.0 -0.2 80450 80500 80550 80600 80650 124.3nm (248.6) H2Oice Substrate -1 Two-photon wavenumber (cm ) Strongerortho-H2Olinesthan para-H2Olines. Well-reproducedwithOPR=3. ↕ Para-H2Osignalsaretoostrong withOPR=0.3(10K). TheOPRisnotrelatedto 120.0nm theiceformationtemperature. (248.0) Largedifferenceof“rotationalstateofH2O” betweenthegasandsolidphases. Thedefinitionofspintemperature. 3.0 Spinandrotationaldegeneracy Ortho-to-para ratio 2.5 2.0 1.5 1.0 0.5 0.0 0 5 10 15 Rotationalenergyis important!! DE =34.2K. Inrotational-hinderedsystem, the“rotational”energydifference(ΔErot)becomessmall. EveninasolidAr matrix,theDErot becomessmall~20cm−1. Turgeonetal.,JPCA,121,1571(2017). Michaut etal.,Vib.Spec.3483(2004). 20 25 30 Temperature (K) 35 40 45 50 OPR-Tspin curvesinrotationalhinderedsystems Approximated(crude)OPR-Tspin curve; Rotationally hindered Free rotation DE =1,10,20,23.8cm−1 3.0 Ortho-to-para ratio 2.5 Onlyconsiderthelowesttworotationallevels. (sincewecannotknowallrotationallevels.) 2.0 1.5 1.0 0.5 0.0 0 5 10 15 20 25 30 35 Temperature (K) AstheDE valuedecreased,theOPRreaches3atlowtemperature. ® Theenergiesofortho-,andpara-H2Obecomecomparable. TheTspin curveonlyappliestoH2Ointhegasphase(freerotors). 40 45 50 Inice,H2Ohasahighbarrier(6700K)torotation, becauseofhydrogen-bondnetwork. Wittebort etal.,JACS.110,5668(1988). Bothortho- andpara-H2Oarenolongerfreerotors. Thequenched DE value:10−13cm−1 (10−13K) (Thesameenergylevel!!) Buntkowskyetal.,Z.Phys.Chem.222,1049(2008). Ortho- andpara-H2Oareenergeticallycomparableat10K instronglyrotational-hinderedsystems(ice). H2O in ice Gaseous H2O DErot : 23.8 cm-1 DErot : H 10-13 cm-1 H O H O H Ortho H O Para H NuclearspinconversionofH2O NSC:ortho-para statemixingbymagneticperturbation(e.g.,paramagneticO2). Protonhasamagneticmoment(10-26 JT-1) Intermolecularproton–protondipolarinteractioncaninduceNSC. NSCofwater(■)andmethane(△)inanAr matrix: Enhancedbyintermolecularproton-protondipolarinteraction. 10−7 to10−6 cm−1 (10−30J) (IntermsofNMR,10kHz) Rapid conversion!! O H H O H H Increaseofconcentration at4.2K Fillionetal.,EASPub.Ser.,(2012).,FukutaniandSugimoto,Prog.Surf.Sci.,(2013). Asaresultofrotationalquenching, fastnuclearspinconversionofH2Ocanoccurinice Inice,eachprotonfeelsmagneticfieldscreatedbyallprotonsinice. ↓ Ortho- andpara-statesarestronglymixed: Intermolecularprotonmagneticinteraction>> rotationalenergydifference(DErot). 10−7 to10−6 cm−1 >>10−13cm−1 H O Conversiontimescale:0.1ms!! H Para-H2O H O H Ortho-H2O Limbach etal.2006, Chem.Phys.Chem.,7,551. Buntkowsky etal.2008, Z.Phys.Chem.,222,1049. TheOPRofH2Oiniceisindynamicequilibriumatthestatisticalvalueof3. (ThespinstateofH2Oissuperpositionofortho- andpara-H2O) H O H H O H H O H H Ortho-H2O 23.8 cm-1 DErot : H 10-13 cm-1 H H (2)Fastcontinuous ortho-para interconversion Gaseous H2O DErot : O H Para-H2O (1) Comparableenergyofortho- andpara-H2O byrotationalquenching H2O in ice O O H Ortho H O Para O H H H O H H TheoriginoftheanomalousOPRsofinterstellarH2Oisstillanopenquestion. Nuclear-spineffectsingas-chemistryarekey. (1)NSCviaion-moleculereactions,e.g.,H+ orH3O+. Ortho-H2O(JKa,Kc =101)+H+ → Para-H2O(JKa,Kc =000) +H+ Ortho-H2O (JKa,Kc =101) +H3O+ → H3O++Para-H2O (JKa,Kc =000) Thesetworeactionscanbeendothermicatlowtemp.because∆Erot =34.2K. Mightleadtopara-enrichmentofH2O. (2)Gas-formationprocesses. OH+ +H2 →H2O+ + H H2O+ +H2 →H3O+ + H H3O+ + e →H2O+ H SinceH2 canbepara-enrichedininterstellarclouds, theH2Oproductsmightbealsopara-enriched. H2O+,H3O+ havealsonuclear-spinisomers. Nuclear-spineffectsshouldbeconsidered. Accuratestate-to-stateratecoefficientsatlowtemperatureareunknown… Gas-phaseconverion: Nuclear-spinselectionrules: Liqueetal.,Int.Rev.Phys.Chem.33,125(2014). Gerlich etal.,Proc.R.Soc.A.364,3007(2006). Summary (1)H2O desorbedfromiceat10K shows astatisticalOPRof3, evenwhentheiceisproducedinsituat10K. (2)Reinterpretationofpreviousobservationsisnecessary. (3)Importanceofthegas-phasechemistry. (a) NSCviaion-moleculereactions,e.g.,H+ orH3O+. (b) Gas-formationprocesses. Hama, and Watanabe,Chem.Rev.113,8783(2013). Hama,Kouchi,Watanabe,Science 351,65-67 (2016). Financialsupports: JSPS(grant24224012), MEXT(grant25108002). AnotherexplanationfornuclearspinstateofH2Oinice:NMR Waterice:adiamagneticinsulator(Nomacroscopicnuclearmagnetization). ↓ Thedirectionoftheprotonspinangularmomentumisdistributeduniformlyinice. (Nonetmagneticmoment). Eachprotonfeels magneticfieldscreatedbyallprotonsinice,while Proton-protondipolarinteractions <<thermalenergy H H 10−30 J(10 kHz) << 10−22 J(10 K) H H H H H H H H H H H H H H WhenanH2Omoleculeisdesorbedfromtheiceintothegasphase, itisrestoredas“acoupledhomonuclear spin-1/2pair”,ortho (I=1),orPara(I=0). ↓ SincethedesorbedH2Omoleculeshavesufficientenergy, (>34.2K,ΔErot inthegasphase), theOPRcanbestatistical. Abragam:PrinciplesofNuclearMagnetism(1961). Levitt:SpinDynamics:BasicsofNuclearMagneticResonance(2008). Rotationalspectrum Detector Trot andTtrans aredifferent. ¯ Notinthermodynamicequilibrium. ¯ Nolocalheating(non-equilibriumprocess) + H O 2 ¯ “kick-out”Ionization H2O(ice)+hn à hot H+OH hot H+H2O(ice)à H+H2O(gas) REMPIlaser 157nm 2mm Photodissociation icefilm Au AnderssonandvanDishoeck,A.& A.491,907(2008). Trot=350K 80500 80600 80700 -1 Wavenumber / cm Laser-delayspectrum Ttrans=1800K Photodesorption mechanism “kick-out”:AnH2Omoleculeisdesorbedwithoutintramolecular bonddissociation bythemomentumtransferfromanenergeticHatomphotodissociated fromaneighboringH2O. H2O(ice)+hν →hotH+OH, hotH+H2O(ice)→H+H2O Andersson,andvanDishoeck,Astron.Astrophys.,491,907(2008). kick-out:D2Odesorptionfrom“D2O+H2Slayeredice”by193nmirradiation. H2S(ice)+193nm→hotH+SH hotH+D2O(ice)à H+D2O(gas) !! NoD2Ofollowing193 nmirradiationof pureD2Oice(noabsorption). 1.0 m/z =20 ¯ D2 O 0.5 0.5 0.0 D2O signal intensity / arb. unit D2O signal intensity / arb.units 1.0 0 2 4 6 8 10 12 time-of-flight / us No D2O desorption 193nm 14 0.0 × 0 2 4 6 8 10 12 Time of flight / µs 14 D2O desorption 193nm D2O Neat D2O ice H2S D2O Experiment(MyPhDwork):Hamaetal.,JCP.132,164508(2010). ResonanceEnhancedMulti-PhotonIonization(REMPI)spectroscopy Ordinaryphotoionization techniquescannot distinguishortho/para H2O(m/z =18) Onephoton Multiphoton ionization 2+1REMPI ionization In2+1REMPIofH2O,2-photonabsorptionexcitespopulation fromthegroundX 1A1 (v=0,JKa,Kc)statetotheintermediateC 1B1(v’=0, J’Ka’,Kc’)state. Theabsorptionofonefurtherphotontransferspopulationintotheionizationcontinuum. SincetheREMPItransitionisrotationally(i.e.,OPR)resolved, wecangettherotationalandspintemperatureofdesorbedH2O. PhysicalChemistryResearchLabCourseATUBraunschweig,InstituteofPhysicalandTheoreticalChemistrySS2014 G.Meijer,J.J.ter Meulen,P.Andresen,andA.Bath,TheJournalofChemicalPhysics85,6914(1986). ParamagneticcatalyticeffectsontheNSCofH2Oduringphotodesorption. REMPIspectraofphotodesorbed H2Ofrom H2O/O2(1:1)mixediceat10K. Strongerortho-H2Olines thanpara-H2Olines. Reproducedbythesimulationwith Trot=Tspin =200K. Althoughtheelectronmagneticmomentis about−658timeslargerthantheproton magneticmoment,thetimescalefor photodesorption (femto-s)ismuchshorter thanthatforNSCthroughmagnetic interactions(micro-sec). + H2O signal intensities / arb. units 2+1REMPIspectrumofH2OviatheC 1B1(v=0)←X 1A1 (v=0)transition. (J’Ka’,Kc’←JKa,Kc)arerotationalassignments. 1.50 (a) Gaseous H2 O at room temperature 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 1.50 101 -220 212 -313 1.25 (b) Simulations 202 -321 2 -2 3 -3 02 21 03 22 1.00 000 -221 0.75 212 -211 313 -312 0.50 0.25 0.00 -0.25 248.10 248.20 248.30 248.40 248.50 Wavelength / nm JKaKc (ortho orpara) Trot =Tspin =300K Gray;difference Trot =Tspin =300K Trot =300K,Tspin =30K Trot =300K,Tspin =20K Trot =300K,Tspin =15K Trot =300K,Tspin =8K 248.60
© Copyright 2025 Paperzz