Math 241 Demo: Partial Derivatives April 10, 2009 The Geometry Load the plots package with plots : Define a function f f x, y d 4 x y cos x y 2 x, y /4 x y cos x y 2 Plot its graph, save the plot with the nameP1 plot3d f x, y , x = 0 ..1, y = 0 ..1, axes = normal, orientation = K40, 40 , style = patch ; P1 d % : 2 y 0.5 1 1.0 0.0 0.00 x 0.5 1.0 M ake plots of two planes (as parametrized surfaces), save the plots with the names P2, P3 plot3d plot3d x, 0.5, z , x = 0 ..1, z = 0 ..2.5, style = patchnogrid, color = blue, transparency = 0.4 : P2 d % : 0.5, y, z , y = 0 ..1, z = 0 ..2.5, style = patchnogrid, color = green, transparency = 0.4 : P3 d % : Display the three plots together (1.1) display P1, P2, P3 2 y 0.5 1 1.0 0.0 0.00 0.5 x 1.0 M ake plots of the curves of intersection of the surface with the planes, save them as L2, L3 L2 d intersectplot f x, y = z, y = 0.5, x = 0 ..1, y = 0 ..1, z = 0 ..2.6, thickness = 3, color = blue : L3 d intersectplot f x, y = z, x = 0.5, x = 0 ..1, y = 0 ..1, z = 0 ..2.6, thickness = 3, color = green : Display the survace and the curves of intersection display P1, L2, L3 2 1.0 y 0.5 1 0.0 0.00 x 0.5 1.0 M ake the same picture by obtaining curves of intersections as parametrized curves named S2, S3 S2 d spacecurve x, 0.5, f x, 0.5 , x = 0 ..1, color = blue, thickness = 3 : S3 d spacecurve 0.5, y, f 0.5, y , y = 0 ..1, color = green, thickness = 3 : display P1, S2, S3 2 y 0.5 1 0.0 0.00 x 1.0 0.5 1.0 The Calculus f x, y = 4 x y cos x y 2 Partial derivative, D operator D 2 f 0.5, 0.5 2.718200446 D2, 1 f (2.1) x, y 2 cos x y 2 x x sin x y 2 y 2 K 8 x 3 / 2 y 4 cos x y 2 K 16 (2.2) Partial derivative, Leibniz notation v f x, y vx 2 y cos x y 2 x K4 x y 3 sin x y 2 Section 15.4, The Tangent Plane (2.3) Recall that the tangent line approximation to the curvey = f x at the point a, f a is the function T x = f a Cf ' a $ xKa . The tangent plane approximation to the surfacez = f x, y at the point a, b, f a, b T x, y = f a, b C D1 f a, b $ x K b C D2 f is the function a, b $ y K b . For example f x, y = 4 x y cos x y 2 T x, y d f 0.5, 0.5 C D1 f x, y /f 0.5, 0.5 C D1 f 0.5, 0.5 $ x K 0.5 C D2 f 0.5, 0.5 x K 0.5 C D2 f 0.5, 0.5 $ y K 0.5 0.5, 0.5 f 0.6, 0.6 = 1.815832858 T 0.6, 0.6 = 1.810909465 The tangent plane to the surface, namedTP TP d plot3d T x, y , x = 0 ..1, y = 0 ..1, color = brown, transparency = 0.4, grid = 2, 2 : Display the surface, the two trace curves, and the tangent plane. display P1, S2, S3, TP 3.4 y 0.5 1.4 0.0 0.0 -0.6 1.0 0.5 x 1.0 T x, y = K0.6354709360 C 1.359100222 x C 2.718200446 y y K 0.5 (3.1)
© Copyright 2026 Paperzz