7-3 Multiply a Polynomial by a Monomial Name Date Use the Laws of Exponents to multiply monomials algebraically. Multiply: (5a4b5)(⫺7ab2) (5a4b5)(⫺7ab2) ⫽ (5)(⫺7)(a4 • a)(b5 • b2) Multiply the coefficients and multiply the variables. ⫽ (⫺35a4 1b5 2) Apply the Law of Exponents for Multiplication. ⫽ ⫺35a5b7 Simplify. Remember: Laws of Exponents Product of Powers: am • an ⫽ amn Power of a Power: (am)n ⫽ am(n) Simplify: (⫺5x2y6)3 Power of a Product: (ab)m ⫽ ambm (⫺5x2y6)3 ⫽ (⫺5)3(x2)3(y6)3 Write out the factors of the power. ⫽ (⫺125)x2 • 3y6 • 3 ⫽ ⫺125 x6y18 Apply the Law of Exponents for Power of a Product. Simplify. Simplify: 4c2d 5 (⫺6c3d 2 ⫹ 5c4d 2) 4c2d 5 (⫺6c3d 2) ⫹ 4c2d 5 (5c4d 2) Apply the Distributive Property. 2 3 5 2 2 4(⫺6)(c • c )(d • d ) ⫹ 4(5)(c • c4)(d 5 • d 2) Apply the Commutative and Associative Properties. ⫺24(c23)(d 5 2) ⫹ 20(c2 4)(d 5 2) Apply the Law of Exponents for Multiplication. ⫺24c5d 7 ⫹ 20c6d 7 Simplify. Simplify each expression. 2. (9c6d 4)(3c4d 9) 1. (4a3b7)(8a2b5) (4)(8)(a3 • a2)(b7 • b5) 32a32b7 5 32a5b12 ( Copyright © by William H. Sadlier, Inc. All rights reserved. 1 ) 5. (9f 5g10)3 ⫺ 3 f 5g4 ( (729f 15g30) 7. 6x4y6 ⫺ (12x2y)2(3y4) ( ) 8. 9d 3e8 ⫺ (3de2)2(7de4) (144x4y2)(3y4) 9d3e8 6x4y6 432x4y6 426x4y6 13. ⫺4a3b3 (⫺3a2b2 ⫺ 2ab3) 12a32b32 8a31b33 12a5b5 8a4b6 ) 12. 5x3y4(⫺4x4y ⫹ 7x2y7) 3a2b2(2a3b4) 3a2b2(4ab2) 6(a2 3b2 4) 12(a2 1b2 2) 6a5b6 12a3b4 (4a3b3)(2ab3) ( 15v8w7 (64v9w6)(2vw5) 15v8w7 128v10w11 11. 3a2b2(⫺2a3b4 + 4ab2) 23g6h4 (81g8h12)(4gh6) 23g6h4 324g9h18 ) 1 t14u28 (512t6u18) 16 32t14 6u28 18 32t 20u46 9. ⫺15v8w7 ⫺ (4v3w2)3(2vw5) (9d2e4)(7de4) 9d3e8 – 63d3e8 54d3e8 10. ⫺23g6h4 ⫺ (3g2h3)4(4gh6) 1 6. ⫺ 4 t7u14 2(8t 2u6)3 2 1 f 10g8 9 81f 1510g308 81f 25g38 (12)(5)(m9 • m6)(n8 • n12) 60m9 6n8 12 60m15n20 4a3b3(3a2b2) (2)(7)(x8 • x10)(y5 • y2) 14x8 10y5 2 14x18y7 (9)(3)(c6 • c4)(d4 • d9) 27c64d4 9 27c10d13 4. (12m9n8)(⫺5m6n12) 6x4y6 3. (⫺2x8y5)(7x10y2) 5x3y4(4x4y) 5x3y4(7x2y7) 20(x3 4y4 1) 35(x3 2y47) 20x7y5 35x5y11 14. 7m2n3 (⫺5m2n3 ⫺ 9m3n4) Lesson 7-3, pages 182–183. 7m2n3(5m2n3) 7m2n3(9m3n4) 35m2 2n3 3 63m2 3n34 35m4n6 63m5n7 Chapter 7 173 For More Practice Go To: Simplify. 15. 5d 2f 4(3d 5f 2 ⫺ 5d 2f 3 ⫹ 7df 5) 16. 3x3y5(9x6y4 ⫺ 4x2y4 ⫹ 3xy6) 5d 2 f 4 (3d 5f 2) 5d 2 f 4 (5d 2 f 3) 5d 2 f 4 (7df 5) 15(d 2 5)( f 4 2) (25)(d 2 2)(f 4 3) 35(d 2 1)(f 4 5) 15d 7f 6 25d 4f 7 35d 3f 9 17. 2.4a7b2(1.3a5b ⫹ 2.5a3b2 ⫹ 0.4a2) 18. 3.2c8d4(0.9c6d ⫹ 1.5c4d3 ⫹ 0.2d 5) 2.4a7b2(1.3a5b) 2.4a7b2(2.5a3b2) 2.4a7b2(0.4a2) 3.12(a7 5)(b2 1) 6(a7 3)(b22) 0.96(a7 2)(b2) 3.12a12b3 6a10b4 0.96a9b2 1 ( 1 ) ( 20. 3 rs2 15r2s2 ⫹ 12rs ⫹ 4 s) ⫹ 8r2s3 ⫺ 2 rs3 ) 1 1 2 1 1 rs (15r 2s2) rs2(12rs) rs2 s 3 3 3 4 1 3 1 3 4 2 3 2 3 5r s 4r s rs 8r s rs3 12 2 5 3 3 4 2 3 5r s 12r s rs 12 1 1 2 1 1 x y(20xy) x2y(8x) x2y y 2 2 2 2 1 2 2 3 3 2 3 10x y 4x y x y 3x3y2 x2y2 4 4 1 2 2 3 2 3 13x y 4x y x y 2 ( ) ) ( 3.2c8d4(0.9c6d) 3.2c8d4(1.5c4d3) 3.2c8d4(0.2d 5) 2.88(c8 6)(d4 1) 4.8(c8 4)(d4 3) 0.64(c8)(d4 5) 2.88c14d5 4.8c12d 7 0.64c8d 9 ) 3 19. 2 x2y 20xy ⫹ 8x ⫹ 2 y ⫹ 3x3y2 ⫺ 4 x2y2 ( 3x3y5(9x6y4) 3x3y5(4x2y4) 3x3y5(3xy6) 27(x3 6)(y5 4) (12)(x3 2)(y5 4) 9(x3 1)(y5 6) 27x9y9 12x5y9 9x4y11 1 ( 1 ( 1 ) ( ) ) ( ( ) Solve. Show your work. 21. Write a polynomial in simplest form to express the shaded area. x 3x 5x ⫹ 2y 7x (5x 2y)(3x) (3x 3y)(x) 15x2 6xy (3x2 3xy) 12x2 9xy 23. Simplify. (x3a)b(x7ab) ⫹ (xa)5a(x2a) 2 (x3ab )(x7ab ) (x5a )(x2a) 2 (x3ab 7ab) (x5a 2a) 2 2a 10ab 5a x x Chapter 7 (9x2)2 (7x)2; (92)(x2• 2) (72)(x1• 2) 81x4 49x2 Copyright © by William H. Sadlier, Inc. All rights reserved. 9x 2 3x ⫺ 3y 174 22. Write a polynomial in simplest form to express the shaded area in terms of .
© Copyright 2026 Paperzz