1) If f (x) = 1 x + 2 , x ≠ - 2 , then the graph of f (x) lies below

PAGE 1 MATH002 MAJOR EXAM 1 TERM 142 CODE 000
1) If f (x) = 1 , x ≠ - 2 , then the graph of f -1(x) lies below the x-axis
x + 2
over the interval
A) (- ∞, 0 ) ∪ ( 1/2 , ∞)
B) (- ∞, 0 ) ∪ ( 0 , ∞) C) (- ∞, -2 ) ∪ ( -2 , ∞) D) (- ∞, -2 ) ∪ ( 0 , ∞) E) (- ∞, 0 ) ∪ ( 2 , ∞) Sec. 4.1: Prob. # 70 / P.396
2) If f -1(x) = - 6 + x , for x ≥ - 6, then
A) f (x) = x2 - 6, for x ≤ 0 B) f (x) = x2 - 6, for x ≥ 0 C) f (x) = - x2 + 6, for x ≤ 6 D) f (x) = - x2 + 6, for x ≥ 6 E) f (x) = - x2 - 6, for x ≤ 6 Sec. 4.1: Prob. # 75 / P.396
PAGE 2
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
3) If the graph of the function f (x) = a x passes through the point (-2, 16),
then f - 5 =
2
A) 32 B) 1 32
C) 8 D) 1 8
E) 64 Sec. 4.2: Prob. # 12/ P.409, Prob. # 25 / P.468,
4) Which one of the following statements is FALSE about the function f (x) = 1 + 2 - x ?
A) the range of f (x) is ( 0 , 2 ] B) the graph of f (x) is increasing on (-∞, 0 ] C) the graph of f (x) is decreasing on [ 0 , ∞) D) the line y = 1 is an asymptote to the graph of f (x) E) the domain of f (x) is (-∞ , ∞) Sec. 4.2: Prob. # 28, #29/ P.409
PAGE 3
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
5) If ( p , 0 ) is the x-intercept and ( 0 , q ) is the y-intercept of the graph of f (x) = log ( 3 - x ) , then p - q = 1/3
A) 3 B) - 1 C) 1 D) 2 E) 1/3 Sec. 4.3: Prob. # 54/ P.424, 6) If the adjacent figure represents the graph of y = log 2 (- x + a ) + b , then a + b =
A) 1 B) 5 C) 3 D) 2 E) 3/2 Sec. 4.3: Prob. # 59/ P.424
PAGE 4
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
7) If x > 0, x ≠ 1, y > 0, ln x = u and ln y = v, then the expression log x 3
x y4 simplifies to
A) 1 + 4 v 3
u
B) 3 + 4 u v
C) 1 u + 4 v 3
D) 3 u + 4 v E) 1 u + 4 v 3
3
ec. 4.4: Prob. # 94/ P.438
8) If log 2 = t, then log 800 - log 1 =
25
A) t + 4 B) t + 2 C) 5t + 4 D) 5t + 2 E) 2t + 3 Sec. 4.4: Probs. #99, #100 / P. 438
PAGE 5
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
9) If 6 x + 1 = 4 2x - 1 then , x =
A) log 24 log (8/3)
B) log 24 log (3/8)
C) log (3/2) log (8/3)
D) log 8 log (1/2)
E) log 8 log (3/8)
Sec. 4.5: Prob. # 13/ P.446
10) The solution set of the equation ln (5 - x) + ln (- 3 - x) = ln (1 - 8x) contains
A) one negative integer only B) one positive integer only C) two negative integers D) one positive and one negative integers E) no real numbers Sec 4.5: Prob. # 57 / P. 447
PAGE 6
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
11) Which one of the following angles is NOT coterminal with 50 ° ? A) 310° B) 410° C) 770° D) - 670° E) - 1030° Sec. 5.1: Exa.#5/ P.480; Prob. #106/P.483
12) If α is the complementary angle of 39° 50ʹ and β is the supplementary
angle of 14° 20ʹ , then 2α + β =
A) 266° B) 356° C) 264° D) 256° E) 265 ° Sec. 5.1: Probs. #9-10/ P.481
PAGE 7
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
13) If the angle θ is in quadrant II and csc θ = 3 , then the value of
2
10 sec θ - 8 cot θ is equal to
A) - 2 5 B) - 10 5 C) 10 5 D) 2 5 E) 2 Sec. 5.2: Exa.#9/ P.493
14) Which one of the following statements is TRUE ?
A) sin - 200° is positive.
B) If tanθ = 4 and θ is in quadrant III, then sinθ = - 4 and cosθ = - 3
3
C) The solution set for the equation sinθ + cosθ = 1 is empty.
D) If - 90°< θ < 90° , then cos θ is negative.
2
E) If 90°< θ < 180°, then csc 2θ is positive.
Sec. 5.2: Probs.#115, 116, 117, etc/ P.514 -515
PAGE 8
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
15) If cot θ = - 3 and csc θ = - 2 3 , then a possible value of θ is
3
3
A) 300°
B) 330°
C) 240°
D) 210°
E) 150°
Sec. 5.3: Prob. 132/ P.511
16) The exact value of cos - 240° + tan 675° is equal to
A) - 3/2 B) 3/2 C) 2 - 3
2
D) 3 - 2
2
E) - 1/2 Sec. 5.3: Exa.#6(a), (b) / P.505
PAGE 9
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
17) From a given point on the ground, a man finds the angle of elevation to
the top of a tree is equal to 60°. He moves back 50 ft and finds the angle
of elevation to the top of the tree is equal to 30°. The height of the tree in
foot is
A) 25 3 B) 25 3 + 25
C) 50 3 D) 50 3 - 50 E) 50 3 + 50 Sec. 5.4: Exa.#7/ P.537
18) If the arc length 16π cm subtends a central angle θ in a circle with
5
radius 4 cm, then the degree measure of the angle θ is
A) 144° B) 288° C) 72° D) 240° E) 36° Sec. 6.1: Exa.#3(b)/ P.546
PAGE 10
MATH002 MAJOR EXAM 1 TERM 142 CODE 000
19) The exact value of 6 sec 23π + tan - 17π is equal to 6
3
A) 5 3 B) - 5 3 C) 3 3 D) - 3 3 E) 10 3 3
Sec. 6.2: Probs. 14, 19/ P.564
20) The two pulleys in the figure have radii of 15 cm and 8 cm respectively.
If the larger pulley rotates 50 times in a minute, then the angular speed of
the smaller pulley in radians per second is
A) 25π 8
B) 75π 4
C) 75π 8
D) 25π 4
E) 375π 2
Sec. 6.2 Prob.#116/ P.568
Answer Key
Testname: IDAWO1_142_002
A
2) A
3) A
4) A
5) A
6) A
7) A
8) A
9) A
10) A
11) A
12) A
13) A
14) A
15) A
16) A
17) A
18) A
19) A
20) A
1)