Snapback in well resistors Guido Notermans , Anco Heringa*, Olivier Quittard, Fabrice Blanc ESD Group, CAD Competence Centre, Philips AG Semiconductors - Zurich * Philips Research Eindhoven/ Leuven 3rd EOS/ESD/EMI Workshop, Toulouse, May 2006 outline • introduction • nwell resistor • physical description • p+-nwell-n+ diode • summary Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 2 introduction Why this investigation ? 0.35 μm 12V CMOS process HV NMOST bulk source drain gate p+ strange TLP results 1.E-09 1.E-07 1.E-05 nwell HNW C075HV ANAM AHVNMOS ISO Gate Leakage [A] 1.E-11 n+ n+ pwell 1.E-03 1.E-01 1.E+01 1.8 p-epi 1.6 1.4 Itlp [A] 1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 Vtlp [V] TLP ahvnmost_iso_gate_3u_200u (10.9) TLP hvnmost_iso_ballast1_5u_200 (9.5) TLP ahvnmost_iso_gate_2u_200u (10.8) Leak ahvnmost_iso_gate_3u_200u (10.9) Leak hvnmost_iso_ballast1_5u_200 (9.5) Leak ahvnmost_iso_gate_2u_200u (10.8) Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 3 introduction substrate source gate nwell / locos drain substrate source gate nwell / locos drain Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 4 outline • introduction • nwell resistor • physical description • p+-nwell-n+ diode • summary Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 5 nwell resistor Leakage current (nA) -1 10 0 10 101 102 103 104 105 106 107 108 40 Leakage current 30 Second Breakdown 20 Sub-Surface Breakdown 10 0 0 2 4 6 8 10 12 14 TLM Voltage (Volt) 16 18 20 4 ggNMOST with nwell nwell alone N-Well Current (mA/μm) TLM Current (mA/μm) I-V curve 3 2 1 0 0 1 2 3 4 5 6 7 8 N-Well Voltage (Volt) 9 10 11 From: Guido Notermans et al., EOS/ESD Symposium 1997 Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 6 nwell resistor Voltage drop (V) nwell voltage drop 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 C100 simulated medici C075MV oq_pc8930 C100 measurements 0 2 4 6 8 nwell length (um) voltage drop across and current density through pwell agree well with previous C100 experiments nwell current density (mA/um) nwell current density 3 2.5 2 C075MV gn_pc8930 C100 measurements C100 2D-sim Medici 1.5 1 0.5 0 0 2 4 6 8 nwell length (um) Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 7 nwell resistor Second Breakdown Current (mA/μm) Second Breakdown Current (mA/μm) Design rule for nwells 25 20 Reference; no n-well 15 25 C = 1.1 μm; D varied; A = 1.2 μm D = 1.4 μm; C varied; A = 1.8 μm 20 a b 15 Reference; no n-well 10 5 0 0 1 2 3 4 5 6 7 locos-to-gate length C+D (μm) 8 10 5 0 0 1 2 3 4 5 6 contact-to-nwell length A (μm) 7 8 From: Guido Notermans et al., EOS/ESD Symposium 1997 Ballast resistor rule on both sides of the nwell Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 8 outline • introduction • nwell resistor • physical description • p+-nwell-n+ diode • summary Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 9 physical picture 1D nwell simulation using Silvaco software nnwell = 4. 1017 cm-3 unipolar device: no holes Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 10 physical picture Vext = 0 V Jdiff Vext = + VA Jdrift Jdiff Jdiff EF Ec Jdrift Jdiff VA Ei Ev n+ n+ nwell J ≈ J drift ,e = qne ⋅ μ e E n+ n+ (Ohm) J drift ,e = qne ⋅ v ⇒ qne v sat dE q = − (n − p − N D + N A ) dx ε nwell for large E (Poisson) Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 11 physical picture carrier concentration carrier concentration e net charge e h E-field Potential h I-V curve Snapback Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 12 physical picture nwell top view 5 Qualitative filamentation model electric field impact generation localized high E-field more local impact generation more local current more localized E-field ... filamentation formation y x 0 5 impact generation y x 0 5 at high enough current thermal damage current density y nwell is dangerous x 0 0 100 Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 13 outline • introduction • nwell resistor • physical description • p+-nwell-n+ diode • summary Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 14 p+-nwell-n+ diode well resistors are everywhere ! LV p-diode HV n-diode Anode Cathode Lp Ln STI Pplus Pplus Source Thick oxide 1.3 NWell PWell SiProt Pplus Nplus Gate Drain 0.6 STI LB2 Nplus NWell SiProt STI Anode 0.8um Ln L p Nplus PWell Cathode HVNMOST Anode Cathode 0.8um Pplus NWell Nplus NWell Nplus PWell HPWell P-/P+ substrate NWell P-/P+ substrate 12μm reverse 3.4 LS HNWell LG 0.7 (LB1- 0.7) >2um LB1 reverse P-/P+ substrate reverse Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 15 reverse p+-nwell-n+ diode Reverse biased p+-nwell diode; Simulation -2 10 n+ -7 A 10 n + A nwell nwell p+ p+ p+-nwell breakdown and n+-nwell breakdown Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 16 reverse p+-nwell-n+ diode Comparison with measurements Cathode Anode 0.8um STI Nplus NWell n+-nwell Cathode 0.8um Pplus NWell Nplus NWell P-/P+ substrate breakdown p+-nwell breakdown (≈11 V) impact generation at p+-nwell ⇒ no damage impact generation at n+-nwell ⇒ thermal damage Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 17 forward p+-nwell-n+ diode What about forward a biased diode ? HVNMOST Source Thick oxide 1.3 SiProt Pplus Nplus Gate Drain 0.6 LB2 forward SiProt STI Nplus PWell NWell 3.4 LS HNWell LG 0.7 (LB1- 0.7) >2um LB1 P-/P+ substrate Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 18 forward p+-nwell-n+ diode Forward biased p+-nwell diode; Simulation Vext = 0 V Jdiff Vext = -VA Jdrift Jdiff Jdiff Jdrift Jdiff Ec Ei Ec Ei -VA Ev EF Jdiff n+ p+ nwell J ≈ J diff ,e + J diff ,h = qDn J diff ,e ≈ J diff ,h dne dn + qDh h dx dx n+ Jdrift nwell Ev EF Jdiff p+ No velocity saturation No high E-field Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 19 forward p+-nwell-n+ diode carrier concentration E-field Potential No impact generation No snapback Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 20 outline • introduction • nwell resistor • physical description • p+-nwell-n+ diode • summary Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 21 summary What can we do about n-wells? • Use a higher doped well J’sat(mA/μm) ≈ 3.75x10-18nwell(cm-3) 25 20 Reference; no n-well 15 10 5 0 0 1 2 3 4 5 6 contact-to-nwell length A (μm) 7 8 Second Breakdown Current (mA/μm) Second Breakdown Current (mA/μm) • Use sufficient spreading resistance 25 C = 1.1 μm; D varied; A = 1.2 μm D = 1.4 μm; C varied; A = 1.8 μm 20 a b 15 Reference; no n-well 10 5 0 0 1 2 3 4 5 6 7 locos-to-gate length C+D (μm) 8 • Devise smart injector regions, to allow current conduction by diffusion (well-known example ggNMOST) Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 22 summary Well resistors are everywhere! Be very careful when using well resistors under high current conditions ! Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 23 2D simulation n+ pwell nwell n+ p+ HNW p-epi COLD 2D simulation: (HV) NMOST IV curve excellent agreement with measurements Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 25 2D simulation n+ pwell nwell n+ p+ 10-12A HNW p-epi COLD 2D simulation shows: (HV) NMOST parasitic NPN has kicked in, but apparently localization in the nwell destroys it. Philips Semiconductors, May 18-19, 2006, 3rd EOS/ESD/EMI Workshop, Toulouse 10-2A 26
© Copyright 2026 Paperzz