Aim #3: How do we multiply polynomials? Do Now: Simplify: a. x(2x + 4) b. Multiplying Polynomials Method 1: Geometric Model Multiply: (3x + 1)(2x - 5) 2 (2x - 3x + 7)(4x - 3) Method 2: Distribution Multiply: (3x + 1)(2x - 5) 2 (2x - 3x + 7)(4x - 3) HW #2 Solutions: pg 24-25 #3-5, 14-19, 23-25 pg 218 #1-25 odd 3) B 2 14) x 17) 1 4 x 23) 42 x 6 4) B 9 9 15) x y 4 18) x 2 y 3 24) -3x a 5) C 5 16) 36x 2 3 5 19) a) x (x ) = x 2 2 b) -4 = -16 while (-4) = 16 25) 1 7 w 10 3 3 5 1) 10x 3) -20a 5) -6a b c 4b + 5n 5 7 8 9) -a 11) -48a b 13) 32x 3 2 5t + 2 15 6 17) -3x y 19) -100m 21) 216x y 3 4 8 25) 6a m r 2 7) x 4a 15) -14y 14 19 23) 1 a b 18 Determine the following products: 2 a) (3x + 4x + 2)(2x + 3) 2 2 b) (2x + 10x + 1)(x + x + 1) 3 2 c) (x - 1)(x + 6x - 5) d) (3x - 5) 2 f) (x + 4)(x - 2y)(3x + 6) g) (2x + y) 3 e) (5x + 2)(5x - 2) 2 4 h. (3x + x - 1)(x - 2x + 1) 2 i. (2x + 3x + 1) 2 j. Sammy wrote a polynomial using only one variable, x, of degree 3. Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy and Myisha's polynomials. Explain. Sum it up! • Is the product of two polynomials always going to produce anotherpolynomial? • Is the square of a polynomial always going to produce anotherpolynomial? • Which method did you find easier when multiplying polynomials? (Geometric or Distributive)
© Copyright 2026 Paperzz