AP Calculus BC Name: ___________________ 1. 2. 3. Power Series and Euler’s Identity 4-13-16 Using e ix = cosx + i sin x , verify. a. 1 cosx sin y = [cos(x + y) + cos(x − y)] 2 b. d cosx = −sin x dx c. sin 2x = 2sin x cosx d. sin(−x) = −sin x e. sin 2 x + cos2 x = 1 Evaluate. a. ln(3 − 4i) b. ln(−2 + 2i) c. ln(4i) d. ln(−π) Derive a power series for each function below. Write at least three terms for each series and then write the series in sigma notation, if possible. a. f (x) = x 4 sin 2x b. f (x) = cos(x −1)3 c. f (x) = e x d. f (x) = ∫ t 2 tan−1 t 3dt e. f (x) = 1 x −1 f. f (x) = 3 x g. f (x) = 3x x + 2x − 2 h. f (x) = 6 x +2 i. Expand f (x) = cosx as a Taylor Series about x = 3 x 0 4 2 π . 2
© Copyright 2026 Paperzz