Renements of some geometric inequalities 1 Mihály Bencze , Hui-Hua Wu 1 2 and Shan-He Wu 2 Str. Harmanului 6, 505600 Sacele-Négyfalu, Jud. Brasov, Romania E-mail: [email protected] 2 Department of Mathematics and Computer Science, Longyan University, Longyan Fujian 364012, P.R. China E-mail: [email protected] Abstract: In this paper, based on the improved versions of certain classical analytic inequalities, some renements of the inequalities involving the semi-perimeter,circumradius and inradius of a triangle are established. Keywords: geometric inequality; analytic inequality; renement; triangle; semi-perimeter; circumradius; inradius 2000 AMS Mathematics subject classication: 1 26D05, 26D15, 51M16 Main Results For a given triangle ABC , we assume that A, B, C denote its angles, a, b, c denote the lengths of its corresponding sides, s, R and r denote the semi-perimeter, circumradius and inradius of a triangle respectively. We will customarily use the notations of cyclic sum and cyclic product such as X Y f (a) = f (a) + f (b) + f (c), f (a) = f (a)f (b)f (b). The inequalities related to the semi-perimeter,circumradius and inradius of a triangle have been widely studied in the literature, see for example [113]. The purpose of this paper is to establish some renements of this type of geometric inequalities. To do this, we will present the improvements of certain classical analytic inequalities, these inequalities will be used as the main tool in the proof of the renements of geometric inequalities. Theorem 1. If x, y, z > 0, then r xy + yz + zx x+y+z √ (1) ≥ ≥ 3 xyz. 3 3 Proof. Using the arithmetic-geometric means inequality gives x+y+z 3 2 = ≥ = 1 2 x + y 2 + z 2 + 2xy + 2yz + 2zx 9 1 (xy + yz + zx + 2xy + 2yz + 2zx) 9 1 (xy + yz + zx) , 3 1 we hence have x+y+z ≥ 3 Application 1. In all triangle r xy + yz + zx ≥ 3 ABC r √ 3 3 xy · yz · zx √ = 3 xyz. 3 holds 3 s2 + r2 + 4Rr 2 ≥ ≥ (4sRr) 3 s 6 r(4R + r) 3 2 ≥ ≥ sr2 3 3 2 6 2 3 2 2 2 2s r 2s r s + r2 + 4Rr ≥ ≥ 6R 3R R 6 2 3 2 4R + r s ≥ ≥ s2 r 3 3 6 2 3 2R − r s + r2 − 8Rr r 4 ≥ ≥ 2 6R 48R 4R 6 2 3 4R + r s + (4R + r)2 s 4 ≥ ≥ 2 6R 48R 4R 2s 3 6 Proof. In Theorem 1 we take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (ra , rb , rc ), (sin2 A2 , sin2 B2 , sin2 C2 ), (cos2 A2 , cos2 B2 , cos2 C2 )} respectively, we have rP P qY ab a ≥ ≥ 3 a, 3 3 P P Q from 3 a = 2s ab = s2 + r2 + 4Rr, a = 4sRr, we deduce the inequality (2). 3 , rP P qY (s − a) (s − a)(s − b) ≥ ≥ 3 (s − a), 3 3 P P Q from (s−a) = 3s , (s − a)(s − b) = r(r + 4R), (s − a) = sr2 , we deduce the inequality (3). 3 rP P qY ha ha hb ≥ ≥ 3 ha , 3 3 P P Q 2 2 2 2 2 from ha = s +r2R+4Rr , ha hb = 2sR r , ha = 2sRr , we deduce the inequality (4). rP P qY ra r a rb ≥ ≥ 3 ra , 3 3 P P Q from ra = 4R + r, ra rb = s2 , ra = s2 r, we deduce the inequality (5). s r P 2C P 2A Y sin 2 sin2 B2 sin 2 A 3 ≥ sin2 ≥ 3 2 3 P Q P 2A 2 2 2 −8Rr r from sin 2 = 2R−r sin2 A2 sin2 B2 = s +r , sin2 A2 = 16R 2 , we deduce the inequality (6). 2R , 16R2 2 (2) (3) (4) (5) (6) (7) P from P cos2 A 2 Theorem 2. = If 4R+r 2R , P cos2 3 cos2 x, y, z > 0, s P ≥ cos2 B 2 cos2 C 2 B 2 cos2 3 ≥ r Y 3 s2 +(4R+r)2 Q , cos2 A2 16R2 = = cos2 A , 2 s2 16R2 , we deduce the inequality (7). then (x + y + z) Proof. A 2 A 2 1 1 1 + + x y z s ≥3 1+ 3 (x + y) (y + z) (z + x) xyz ! ≥ 9. (8) Using the arithmetic-geometric means inequality gives (x + y + z) s 3 1+ 3 1 1 1 + + x y z y z x z x y + + + + + x x y y z z y+z x+z x+y + + = 3+ x y z r y + z x + z x +y ≥ 3+33 · · x y z s ! 3 (x + y) (y + z)(z + x) = 3 1+ , xyz = (x + y) (y + z)(z + x) xyz 3+ ! ≥ 3 1 + = s 3 √ √ √ 2 xy · 2 yz · 2 zx xyz 9. The inequality (8) is proved. Application 2. In all triangle ABC holds ! r 2 2 s2 + r2 + 4Rr 3 s + r + 2Rr ≥9 ≥3 1+ 2Rr 2Rr ! r 4R + r 3 4R ≥9 ≥3 1+ r r ! r 2 2 s2 + r2 + 4Rr 3 s + r + 2Rr ≥9 ≥3 1+ 2Rr 2Rr ! r 2 2 2 (2R − r) s2 + r2 − 8Rr 3 (2R − r) (s + r − 8Rr) − 2Rr ≥3 1+ ≥9 2Rs2 2Rr2 ! r 3 2 (4R + r) s2 + (4R + r)2 3 (4R + r) + s (2R + r) ≥3 1+ ≥9 2Rs2 2Rs2 3 (9) (10) (11) (12) (13) Proof. (sin2 In Theorem 2 we take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (cos2 A2 , cos2 B2 , cos2 C2 )} respectively, we have sQ ! X X1 (a + b) 3 Q ≥ 9 ⇐⇒ (9), ( a) ≥3 1+ c a 2 B 2 C A 2 , sin 2 , sin 2 ), since P P1 ( a) a = X X ( (s − a)) Q 4Rr+r 2 +s2 , 2Rr sQ 1 ≥3 1+ s−a 3 (a+b) Q c = 2Rr+r 2 +s2 . 2Rr [(s − a) + (s − b)] Q (s − c) ! ≥ 9 ⇐⇒ (10), since P P 1 (s − a) = s, s−a = X X 1 ≥ 3(1 + ( ha ) ha 4R+r sr , sQ 3 Q [(s−a)+(s−b)] Q (s−c) = 4R r . (ha + hb ) Q ) ≥ 9 ⇐⇒ (11), hc since P X ha = s2 +r 2 +4Rr , 2R AX 1 sin2 2 sin2 P 1 ha = 1r , sQ A 2 ≥3 1+ Q (h Qa +hb ) hc s2 +r 2 +2Rr . 2Rr = (sin2 A2 + sin2 Q 2C sin 2 B 2) ! ≥ 9 ⇐⇒ (12), since P sin2 A2 P X 1 sin2 A 2 = (2R−r)(s2 +r 2 −8Rr) , 2Rr 2 AX 1 cos2 2 cos2 Q (sin2 Q sQ A 2 ≥ 3(1 + 3 2 B A 2 +sin 2 ) C 2 sin 2 = (cos2 A2 + cos2 Q cos2 A2 (2R−r)(s2 +r 2 −8Rr )−2Rr 2 . 2Rr 2 B 2) ) ≥ 9 ⇐⇒ (13), since P Theorem 3. cos2 If A 2 P 1 cos2 x, y, z > 0, A 2 = (4R+r)(s2 +(4R+r)2 ) , 2Rs2 (cos2 Q 2 A 2 +cos cos2 A 2 B 2 ) = (4R+r)3 +s2 (2R+r) . 2s2 R then 2 Proof. Q X x≤ X x2 + y 2 z ≤2 X x3 Using the arithmetic-geometric means inequality gives 4 yz . (14) X x2 + y 2 2xy 2yz 2zx + + z x y xy yz xy zx yz zx + + + + + z x z y x y r r r xy yz xy zx yz zx 2 · +2 · +2 · z x z y x y 2(y + x + z) X 2 x. ≥ z = ≥ = = On the other hand, we have y3 x4 + y 4 x3 + = ≥ yz zx xyz 1 2 2 (x + y 2 )2 x2 + y 2 ≥ , xyz z thus 2 X x2 yz ≥ X x2 + y 2 z . The Theorem 3 is proved. Application 3. In all triangle ABC holds a4 . (15) c abc Putting in the inequality (14) x = a, y = b, z = c, the inequality (15) follows immediately. 4s ≤ Proof. Theorem 4. Proof. If x, y, z > 0, X a2 + b2 ≤ 2 P then n√ √ 2 √ √ 2 o x+y+z √ 1 √ √ − 3 xyz ≥ max ( x − y)2 , y− z , z− x . 3 3 Direct computation gives x+y+z √ 1 √ √ − 3 xyz − ( x − y)2 3 3 = ≥ = thus (16) √ xy + xy √ − 3 xyz 3 √ √ 3 xyz − 3 xyz 0, z+ √ 1 √ x+y+z √ √ − 3 xyz ≥ ( x − y)2 . 3 3 The Theorem 4 is proved. Application 4. In all triangle ABC holds n√ √ √ √ √ √ o 2s √ 1 3 − 4sRr ≥ max ( a − b)2 , ( b − c)2 , ( c − a)2 3 3 5 (17) 2 √ 2 √ √ 2 √ √ √ s √ 1 3 − sr2 ≥ max s−a− s−b , s−b− s−c , s−c− s−a 3 3 r np o 2 2 p p p p p s2 + r2 + 4Rr 1 3 2s r − ≥ max ( ha − hb )2 , ( hb − hc )2 , ( hc − ha )2 6R R 3 n o 1 4R + r √ 3 2 2 2 − s2 r ≥ max (ra − rb ) , (rb − rc ) , (rc − ra ) 3 3 ( r 2 2 2 ) 2R − r r2 1 A B C A B C 3 − ≥ max sin − sin , sin − sin , sin − sin 6R 16R2 3 2 2 2 2 2 2 4R + r − 6R r 3 1 s2 ≥ max 16R2 3 ( A B cos − cos 2 2 2 2 2 ) B C C A , cos − cos , cos − cos 2 2 2 2 (18) (19) (20) (21) (22) Proof. We take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (ra , rb , rc ), (sin2 A2 , sin2 B2 , sin2 C2 ), (cos2 A2 , cos2 B2 , cos2 C2 )} in Theorem 4 respectively, and apply the following identities: P Q Q 4sRr, P a =2s, a = (s − a) =s, (s − a) = sr2 , Q P 2 2 s2 +r 2 +4Rr ha = 2sRr , 2R Q , P ha = r =4R + r, r = s2 r, P a 2 A 2R−r Qa 2 A r2 sin 2 = 2R , sin 2 = 16R 2, P Q 4R+r s2 2 A 2 A cos 2 = 2R , cos 2 = 16R2 , we obtain the desired inequalities (17)(22). Theorem 5. If x, y, z > 0, then r max {x, y, z} − min {x, y, z} ≤ Proof. 4p 2 x + y 2 + z 2 − xy − yz − zx 3 (23) Without loss of generality, we assume that x = max {x, y, z}, z = min {x, y, z}. Then, we have x2 + y 2 + z 2 − xy − yz − zx = ≥ = thus r x−z ≤ (x − y)2 + (y − z)2 + (z − x)2 2 1 (x − y + y − z)2 + (z − x)2 2 2 3(x − z)2 , 4 4p 2 x + y 2 + z 2 − xy − yz − zx. 3 The inequality (23) is proved. Application 5. In all triangle ABC holds r max {a, b, c} − min {a, b, c} ≤ 4p 2 s − 3r2 − 12Rr 3 6 (24) r max {s − a, s − b, s − c} − min {s − a, s − b, s − c} ≤ 4p 2 s − 3r2 − 12Rr 3 r s 2 4 s2 + r2 + 4Rr 6s2 r max {ha , hb , hc } − min {ha , hb , hc } ≤ − 3 2R R r q 4 2 max {ra , rb , rc } − min {ra , rb , rc } ≤ (4R + r) − 3s2 3 (26) (27) r r 4 16R2 + r2 − 3s2 + 8Rr 2 A 2 B 2 C 2 A 2 B 2 C max sin , sin , sin − min sin , sin , sin ≤ 2 2 2 2 2 2 3 16R2 r 4 2 A 2 B 2 C 2 A 2 B 2 C max cos , cos , cos , − min cos , cos , cos ≤ 2 2 2 2 2 2 3 s (25) (28) 2 (4R + r) − 3s2 16R2 (29) Proof. We take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (ra , rb , rc ), (sin2 A2 , sin2 B2 , sin2 C2 ), (cos2 A2 , cos2 B2 , cos2 C2 )} in Theorem 5 respectively, and apply the following identities: a2 + b2 + c2 − ab − bc − ca = s2 − 3r2 − 12Rr, (s − a)2 + (s − b)2 + (s − c)2 − (s − a)(s − b) − (s − b)(s − c) − (s − c)(s − a) = s2 − 3r2 − 12Rr, 2 2 2 2 h2a + h2b + h2c − ha hb − hb hc − hc ha = s +r2R+4Rr − 6sR r , 2 ra2 + rb2 + rc2 − ra rb − rb rc − rc ra = (4R + r) − 3s2 , sin4 A2 + sin4 B2 + sin4 C2 − sin2 A2 sin2 B2 − sin2 B2 sin2 cos4 A 2 + cos sin4 Theorem 6. If B 2 + cos4 C 2 x, y, z > 0, − cos2 A 2 cos2 B 2 − cos2 C 2 B 2 − sin2 cos2 C 2 − 16R2 +r 2 −3s2 +8Rr , 16R2 (4R+r)2 −3s2 2 C 2 A cos 2 cos 2 = . 16R2 C 2 sin2 A 2 = then 3 3 min (x − y)2 , (y − z)2 , (z − x)2 ≤ x2 +y 2 +z 2 −xy−yz−zx ≤ max (x − y)2 , (y − z)2 , (z − x)2 . (30) 2 2 Proof. Note that x2 + y 2 + z 2 − xy − yz − zx = (x − y)2 + (y − z)2 + (z − x)2 , 2 thus we have 3 min (x − y)2 , (y − z)2 , (z − x)2 2 ≤ x2 + y 2 + z 2 − xy − yz − zx ≤ 3 max (x − y)2 , (y − z)2 , (z − x)2 . 2 The inequality (30) is proved. Application 6. In all triangle ABC holds n o 3 2 2 2 min (a − b) , (b − c) , (c − a) 2 7 n o 2 2 2 ≤ s2 − 3r2 − 12Rr ≤ max (a − b) , (b − c) , (c − a) 3 min (ha − hb )2 ,(hb − hc )2 (hc − ha )2 2 2 2 3 s + r2 + 4Rr 6s2 r − ≤ max (ha − hb )2 ,(hb − hc )2 (hc − ha )2 ≤ 2R R 2 (31) (32) 3 min (ra − rb )2 ,(rb − rc )2 (rc − ra )2 2 3 2 ≤ (4R + r) − 3s2 ≤ max (ra − rb )2 ,(rb − rc )2 (rc − ra )2 (33) 2 ( 2 2 2 ) 3 2 A 2 B 2 B 2 C 2 C 2 A min sin − sin , sin − sin , sin − sin 2 2 2 2 2 2 2 ( 2 2 2 ) 3 16R2 + r2 − 3s2 + 8Rr 2 A 2 B 2 B 2 C 2 C 2 A ≤ max sin − sin , sin − sin , sin − sin ≤ 16R2 2 2 2 2 2 2 2 (34) ( ) 2 2 2 3 A B B C C A min cos2 − cos2 , cos2 − cos2 cos2 − cos2 2 2 2 2 2 2 2 ( 2 2 2 ) 3 (4R + r)2 − 3s2 2 A 2 B 2 B 2 C 2 C 2 A ≤ max cos − cos , cos − cos cos − cos (35) ≤ 16R2 2 2 2 2 2 2 2 Proof. The proof of inequalities (31)(35) are similar to the proof of inequalities (24)(29). Theorem 7. If x, y, z > 0, then X 3 Y X 3 2 1X 2 x + xy ≥ x2 + xy + y 2 ≥ xy 3 3 Proof. (36) By applying the arithmetic-geometric means inequality, we have Y 2 x + xy + y 2 P ≤ x2 + xy + y 2 3 !3 X 3 2 1X 2 = x + xy . 3 3 p p √ Setting a = x2 + xy + y 2 , b = y 2 + yz + z 2 , c = z 2 + zx + x2 , it is easy to verify that there is a triangle with the sides length a, b, c, according to the above substitution, the right-hand side inequality of (36) is equivalent to the well-known Pólya-Szegö inequality in a triangle [14]: 2 (abc) ≥ 4F √ 3 3 , where F denotes the area of a triangle whose sides are a, b, c. This completes the proof of Theorem 7. 8 (37) Application 7. In all triangle ABC holds Y 1 (5s2 − 3r2 − 12Rr) ≥ a2 + ab + b2 ≥ (s2 + r2 + 4Rr)3 27 (38) Y 1 (2s2 − 3r2 − 12Rr) ≥ (s − a)2 + (s − a)(s − b) + (s − b)2 ≥ (r2 + 4Rr)3 27 " #3 2 2 6 Y 1 s2 + r2 + 4Rr 6s2 r 2s r 2 − ≥ h2a + ha hb + h2b ≥ 27 2R R R (39) 3 Y 2 1 2(4R + r)2 − 3s2 ≥ ra + ra rb + rb2 ≥ s6 27 (41) (40) " #3 2 2 3 Y 2R − r 3(s2 + r2 − 8Rr) s + r2 − 8Rr 1 4 A 2 A 2 B 4 B 2 − ≥ sin + sin sin + sin ≥ 27 2R 16R2 2 2 2 2 16R2 (42) " #3 2 2 3 Y 3 s2 + (4R + r)2 1 4R + r s + (4R + r)2 4 A 2 A 2 B 4 B 2 − ≥ cos + cos cos + cos ≥ 27 2R 16R2 2 2 2 2 16R2 (43) Proof. In Theorem 7 we take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (ra , rb , rc ), (sin2 A2 , sin2 B2 , sin2 C2 ), (cos2 A2 , cos2 B2 , cos2 C2 )} respectively, we have X 3 1 X 2 X 3 Y 2 2 a + ab ≥ a + ab + b2 ≥ ab , 27 from P a = 2s, P ab = s2 + r2 + 4Rr, we deduce the inequality (38). i3 Y i3 X hX 1 h X 2 (s − a)2 + (s − a)(s − b) ≥ (s − a)2 + (s − a)(s − b) + (s − b)2 ≥ (s − a)(s − b) , 27 P P from (s − a) = s, (s − a)(s − b) = r(r + 4R), we deduce the inequality (39). 3 Y 3 X 1 X 2 X 2 ha + ha hb ≥ h2a + ha hb + h2b ≥ ha hb , 27 P P 2 s2 +r 2 +4Rr from ha = , ha hb = 2sR r , we deduce the inequality (40). 2R i3 Y 3 X 1 h X 2 X 2 ra + ra rb ≥ ra2 + ra rb + rb2 ≥ ra rb , 27 P P from ra = 4R + r, ra rb = s2 , we deduce the inequality (41). X 3 Y X 3 X 1 4 A 2 A 2 B 4 A 2 A 2 B 4 B 2 A 2 B 2 sin + sin sin ≥ sin + sin sin + sin ≥ sin sin , 27 2 2 2 2 2 2 2 2 2 from P sin2 A 2 = 2R−r 2R , P sin2 A 2 sin2 B 2 = s2 +r 2 −8Rr , 16R2 9 we deduce the inequality (42). X 3 Y X 3 2 X 1 4 A 2 A 2 B 4 A 2 A 2 B 4 B 2 A 2 B 2 cos + cos cos ≥ cos + cos cos + cos ≥ cos cos , 27 2 2 2 2 2 2 2 2 2 from P cos2 A 2 Theorem 8. = If 4R+r 2R , P cos2 x, y, z > 0, A 2 cos2 B 2 = s2 +(4R+r)2 , 16R2 we deduce the inequality (43). then X xy 2 9xyz 1 X 2 X ≤ ≤ x + xy . 2 (x + y + z) x+y 4 Proof. (44) By applying the arithmetic-geometric means inequality, we have p X xy 2 Y 3 xy 2 √ ≥3 3 x+y x+y 3xyz = Q√ 3 x+y ≥ = 1 3 3xyz P (x + y) 9xyz , 2 (x + y + z) on the other hand, we have X xy 2 1 X (x + y)2 y ≤ x+y 4 x+y X X 1 = x2 + xy . 4 This completes the proof of Theorem 8. Application 8. In all triangle ABC holds 9Rr ≤ X ab2 1 ≤ (3s2 − r2 − 4Rr) a+b 4 X (s − a) (s − b)2 9r2 1 ≤ ≤ (s2 − r2 − 4Rr) 2 c 4 " # 2 X ha h2 9s2 r2 1 s2 + r2 + 4Rr 2s2 r b ≤ ≤ − s2 + r2 + 4Rr ha + hb 4 2R R X ra r 2 9s2 r 1 b ≤ ≤ (4R + r)2 − s2 2 (4R + r) ra + rb 4 " # 2 X sin2 A sin4 B 1 9r2 2R − r s2 + r2 − 8Rr 2 2 ≤ ≤ − 4 2R 16R2 16R(2R − r) sin2 A2 + sin2 B2 " # 2 X cos2 A cos4 B 9s2 1 4R + r s2 + (4R + r)2 2 2 ≤ ≤ − 16R(4R + r) 4 2R 16R2 cos2 A2 + cos2 B2 10 (45) (46) (47) (48) (49) (50) Proof. In Theorem 8 we take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c), (ha , hb , hc ), (ra , rb , rc ), (sin2 A2 , sin2 B2 , sin2 C2 ), (cos2 A2 , cos2 B2 , cos2 C2 )} respectively, we have Q X ab2 9 a 1 X 2 X P ≤ ≤ ( a + ab), 2 a a+b 4 P P Q from a = 2s, ab = s2 + r2 + 4Rr, a = 4sRr, we deduce the inequality (45). Q X (s − a)(s − b)2 X 9 (s − a) 1 X P ≤ ≤ ( (s − a)2 + (s − a)(s − b)), 2 (s − a) c 4 P P Q from (s − a) = s, (s − a)(s − b) = r(r + 4R), (s − a) = sr2 , we deduce the inequality (46). Q X ha h2 9 ha 1 X 2 X b P ≤ ≤ ha + h a hb , 2 ha ha + hb 4 P Q P 2 2 2 2 2 from ha = s +r2R+4Rr , ha hb = 2sR r , ha = 2sRr , we deduce the inequality (47). Q X ra r 2 9 ra 1 X 2 X b P ≤ ≤ ra + ra rb , 2 ra r a + rb 4 P P Q 2 2 from ra = 4R + r, ra rb = s , ra = s r, we deduce the inequality (48). Q X sin2 A sin4 B 9 sin2 A2 1 X 4A X 2A 2 B 2 2 sin + sin sin , ≤ P 2A ≤ 4 2 2 2 2 sin 2 sin2 A2 + sin2 B2 P 2A P 2A Q 2 2 −8Rr r2 sin 2 sin2 B2 = s +r , sin2 A2 = 16R from sin 2 = 2R−r 2 , we deduce the inequality (49). 2R , 16R2 Q X cos2 A cos4 B X 9 cos2 A2 1 X 4 A 2 A 2 B 2 2 ≤ cos + cos cos , ≤ P 4 2 2 2 cos2 A2 + cos2 B2 2 cos2 A2 2 2 Q P P s2 from cos2 A2 = 4R+r cos2 A2 cos2 B2 = s +(4R+r) , cos2 A2 = 16R 2 , we deduce the inequality (50). 2R , 16R2 Theorem 9. Let E (m) = ( P xm ) P 1 xm (m = 1, 2, . . .), then for x, y, z > 0 the following inequality holds E (m + 1) ≥ E (m) ≥ · · · ≥ E (1) ≥ 9. Proof. By using power means inequality and Cauchy-Schwarz inequality [15], we deduce that E (m + 1) = X xm+1 X 1 xm+1 X i m+1 1 m+1 = (xm ) m ( m) m x X m+1 m+1 m X m+1 1 m 1− m+1 m 1− m m ≥ 3 x 3 m x X X 1 1 X X 1 m1 = xm xm xm 9 xm X X 1 ≥ xm xm = E(m), hX 11 (51) and E(1) = X X 1 x ≥ 9. x The Theorem 9 is proved. Application 9. ABC holds 2 s2 − r2 − 4Rr s2 + r2 + 4Rr − 16s2 Rr In all triangle 8s2 R2 r2 2 s2 − 2r2 − 8Rr (4R + r) − 2s2 Proof. ≥ s2 + r2 + 4Rr ≥ 9, 2Rr 4R + r ≥ ≥ 9. s2 r2 r Putting m = 2 in Theorem 9 gives 1 1 1 1 1 1 2 2 2 + + ≥ 9. + 2 + 2 ≥ (x + y + z) x +y +z x2 y z x y z (52) (53) (54) In the inequality (54) we take (x, y, z) ∈ {(a, b, c), (s − a, s − b, s − c)}, respectively, it follows that X X 1 X X 1 a2 ≥ a ≥ 9, (55) a2 a X X X X 1 1 (s − a)2 ≥ (s − a) ≥ 9. (56) (s − a)2 (s − a) In inequalities (55) and (56), we apply the following identities: 2 (s2 − r2 − 4Rr) s2 + r2 + 4Rr − 16s2 Rr X X 1 ( a2 )( )= , a2 8s2 R2 r2 X X1 s2 + r2 + 4Rr ( a)( )= , a 2Rr 2 (s2 − 2r2 − 4Rr) (4R + r) − 2s2 X X 1 )= , ( (s − a)2 )( (s − a)2 s2 r2 X X 1 4R + r ( (s − a))( )= , (s − a) r giving the desired inequalities (52) and (53). Acknowledgments. University of China. The research was supported by the Science and Technology Project of Longyan 12 References [1] O. Bottema, R. Z. Djordjevi¢, R. R. Jani¢, D. S. Mitrinovi¢ and P. M. Vasi¢, Geometric Inequalities, Wolters-Noordho, Groningen, 1969. [2] D. S. Mitrinovi¢, J. E. Pe£ari¢ and V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht, Netherlands, 1989. [3] D. S. Mitrinovi¢, J. E. Pe£ari¢, V. Volenec and J. Chen, Addenda to the Monograph: Recent Advances in Geometric Inequalities (I), J. Ningbo Univ., 4 (2) (1991),79145. [4] J. Sándor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Monographs, Victoria Univ., 2005 [Available online at URL: http://rgmia.vu.edu.au/monographs]. [5] J. C. Kuang, Applied Inequalities, third ed., Shandong Science and Technology Press, Jinan, China, 2004 (in Chinese). [6] X. Z. Yang, Research in Inequality, Tibet People's Publishing House, Lasha, China, 2000 (in Chinese). [7] Y. D. Wu. The best constant for a geometric inequality, J. Inequal. Pure Appl. Math., Article 111, pp.117 (electronic). 6 (4) (2005), [8] J. L. Díaz-Barrero, Some cyclical inequalities for the triangle, J. Inequal. Pure Appl. Math., 6 (1) (2005), Article 20, pp.111 (electronic). [9] Y.N. Aliyev, The best constant for an algebraic inequality, J. Inequal. Pure Appl. Math., Article 79, pp.113 (electronic). 8 (2) (2007), [10] R. A. Satnoiau, General power inequalities between the sides and the circumscribed and inscribed radii related to the fundamental triangle inequality. Math. Inequal. Appl., 5 (4) (2002), 745751. [11] R. A. Satnoiau, Rened geometric inequalities between two or more triangles obtained by dedublation. Math. Inequal. Appl., 7 (2) (2004), 289298. [12] R. A. Satnoiau, A universal method for establishing geometric inequalities in a triangle. Amer. Math. Monthly, 108 (2001), 360364. [13] R. B. Nelsen, Euler's triangle inequality via proofs without words, Math. Mag., 81 (1) (2008), 5861. [14] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, II, Leipzig, 1925. [15] D. S. Mitrinovi¢ and P. M. Vasi¢, Analytic Inequalities, Springer-Verlag, New York, 1970. 13
© Copyright 2026 Paperzz