Untitled - Corpo Forestale dello Stato

Edited by: Sönke Hardersen1, Franco Mason1, Franco Viola2, Dario Campedel3, Cesare Lasen4, Michele Cassol5.
1
Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale, “Bosco Fontana” di Verona
2
Università degli Studi di Padova
3
Ufficio Territoriale per la Biodiversità di Belluno
4
Feltre (Belluno)
5
Sedico (Belluno)
Scientific board: Paolo Audisio (Sapienza Università degli Studi di Roma), Marco Bologna (Università Roma Tre), Alessandro
Minelli (Università di Padova), Sandro Ruffo (Museo civico di Storia naturale di Verona), Augusto Vigna Taglianti (Sapienza
Università degli Studi di Roma).
General coordination: Franco Mason
Editing and graphic design: Mara Tisato (Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale,
“Bosco Fontana” di Verona).
Maps (Pages: 38, 313, 314, 315, 326, 336) and image editing: Monica Sommacal (Ufficio Territoriale per la Biodiversità di
Belluno).
English translations: Maria Cristina Bruno (Pages: 17-24, 27-33, 35-43, 45-57, 59-68, 79-88, 117-124, 125-128, 129-151,
153-179, 291-296, 309-321, 325-334, 335-348, 349-361, 395-402, 403-414, 437-439, 441-447, 449-459).
Revision of english texts: Valerie Matarese (Pages: 69-78, 89-100, 101-116, 181-194, 195-217, 239-251, 253-259, 261-273,
275-290, 297-308, 363-376, 377-394, 415-423, 425-435).
Additional scientific editing: Alessia Gibertoni, Chiara Morganti; Gianluca Nardi & Daniel Whitmore (Centro Nazionale per
lo Studio e la Conservazione della Biodiversità Forestale, “Bosco Fontana” di Verona).
Cover photo: Torrente Caorame, Vincheto di Celarda Nature Reserve (by Gabriele Zuppati).
Back cover photos: from left to right (by Gabriele Zuppati, Monica Sommacal, Gabriele Zuppati, Sönke Hardersen, Salvatore
Danieli).
Photos: pag. 25 (by Sönke Hardersen); pag. 323 (by Mauro De Bernardo).
Quotation-sample of single contributions:
Gatti E., 2008. Analysis of the Cerambycidae (Coleoptera) from Vincheto di Celarda Nature Reserve, pp. 129-151. In:
Hardersen S., Mason F., Viola F., Campedel D., Lasen C. & Cassol M. (eds.), Research on the natural heritage of the reserves
Vincheto di Celarda and Val Tovanella (Belluno province, Italy). Conservation of two protected areas in the context of a Life
Project. Quaderni Conservazione Habitat, 5. Arti Grafiche Fiorini, Verona.
Quotation-sample of the volume:
Hardersen S., Mason F., Viola F., Campedel D., Lasen C. & Cassol M. (eds.), 2008. Research on the natural heritage of the
reserves Vincheto di Celarda and Val Tovanella (Belluno province, Italy). Conservation of two protected areas in the context
of a LIFE Project. Quaderni Conservazione Habitat, 5. Arti Grafiche Fiorini, Verona 461 pp.
© Copyright – Ministero delle Politiche Agricole Alimentari e Forestali, Corpo Forestale dello Stato. Centro Nazionale per
lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana” di Verona.
ISBN 978-88-87082-98-2
Printed on FSC certified paper.
Publication cofinanced (50%) by the European Commission and Ministero delle Politiche Agricole Alimentari e Forestali,
Corpo Forestale dello Stato in the context of the LIFE Project LIFE04NAT/IT/000190 “Tutela dei siti NATURA 2000
gestiti dal Corpo Forestale dello Stato”.
BELLUNO
RESEARCH ON THE NATURAL HERITAGE OF VINCHETO DI CELARDA AND VAL TOVANELLA (BELLUNO PROVINCE, ITALY) – QUADERNI CONSERVAZIONE HABITAT – 5/2008: 27-33.
Hydrogeological and hydrodynamic features of
the alluvial aquifer of Vincheto di Celarda Nature
Reserve
Lando TOFFOLET
ABSTRACT
This paper describes the geological and hydrogeological features of the perifluvial habitat occupied by the Vincheto di Celarda Nature Reserve.
This investigation, which was conducted as part of a LIFE Project (LIFE04NAT/IT/000190), provides a general hydrogeological/hydrodynamic
characterization of the alluvial aquifer of the area and clarifies the relationships between the aquifer and the Piave River bed.
Key words: alluvial aquifer, perifluvial habitat, water balance, groundwater drainage, aquifer, hydrogeology, hydrodynamic, permeability.
RIASSUNTO ESTESO
La Riserva Naturale Vincheto di Celarda si allunga ai margini del Piave, occupando gli ambienti fluviali senili (sottratti alla dinamica fluviale con
interventi di difesa idraulica) e i bassi terrazzi perifluviali che fiancheggiano il greto fluviale attivo.
Il sottosuolo della riserva, costituito da depositi fluviali a tessitura ghiaiosa, molto permeabili per porosità, è un importante serbatoio (acquifero
alluvionale) che ospita una falda idrica a carattere libero (falda freatica), drenata dal Fiume Piave. La falda, soggetta a fluttuazioni stagionali
correlate al regime del fiume e delle precipitazioni, satura i depositi fluviali permeabili fino al substrato impermeabile, rappresentato dai depositi
lacustri a tessitura limo-argillosa (depositi di interrimento di un lago del Pleistocene superiore).
Il monitoraggio delle oscillazioni della falda mediante una rete di piezometri, ha permesso di elaborare una carta delle isofreatiche e di chiarire,
almeno nelle linee essenziali, i rapporti di interdipendenza tra l’alveo del Piave e la falda idrica. Dall’analisi dei dati risulta che il deflusso della
falda avviene lungo direttrici tendenti al Piave (asse di drenaggio) con velocità di filtrazione suborizzontale stimabili in 2 - 2,5 metri/giorno. La
quota del pelo libero dell’acqua del Piave rappresenta il livello di base della circolazione idrica sotterranea locale e regola il deflusso della falda,
concorrendo a determinare le variazioni di livello. In particolare:
• un abbassamento dell’alveo (causato da fasi erosive in occasione di eventi di piena e/o da escavazioni in alveo per rettifiche fluviali o per
estrazione di inerti) comporta verosimilmente un aumento del gradiente idraulico e un abbassamento del livello della falda;
• un innalzamento dell’alveo (causato da fasi di sedimentazione alluvionale in occasione di eventi di piena) determina verosimilmente una
diminuzione del gradiente idraulico e un innalzamento del livello della falda.
GENERAL SETTING
Geomorphological features
The Vincheto di Celarda Nature Reserve extends
along the banks of the Piave River, where it occupies
the perifluvial area flanking the riverbed downstream
of the confluence with the Torrente Caorame. A river/stream network (Piave River, Torrente Caorame,
Rio Celarda, Rio Caoramello, canals) converges in
the Vincheto area, forming a perifluvial ecosystem
which is of important environmental value. Meadows crossed by small streams (which in places expand
to form small ponds), oxbow lakes, riparian woods,
gravel bed shrubs, krenal ponds, unstable river beds,
are some features of the habitats present in this perifluvial landscape of Celarda. The territory of the re-
serve, partly transformed by flood control operations
(embankments, debris dams) and creation of new
habitats (streams, artificial ponds), covers the old river habitats (protected from frequent fluvial impacts
by embankments) and the low, semi-stabilized (potentially exposed to floods) perifluvial terraces which
flank the active channel of the Piave River. Several
small wetlands (oxbow lakes, springs) are aligned
along this “wet corridor” and are fed by the aquifer
emerging in inactive river branches. These were in
part remodeled and widened by the active recreation
of wetland habitats (Laghetto della palude, Laghetto
della Colonia, Laghetto verde dell’isola). The “wet
corridor” extending along the Rio Celarda is also interesting; the Rio Celarda is a krenal stream which
originates from some seeps located in Fontane, where
27
LANDO TOFFOLET
the permeable landslide deposits of “Colesei” and the
fine-textured fluvial-palustrine deposits of the Villapaiera plain join.
aquifer (fed by rain water and snow), which contribute significantly to the recharge of the valley bottom
aquifer.
Geological features
Quaternary deposits. The area of the reserve is characterized by a layer of recent alluvial deposits, dominated by gravel. The alluvial deposits are 15 m thick
and lay on top of lacustrine and fluvial-lacustrine
deposits with clay-silt texture.
The stratigraphy of the area, as shown by some
surveys, is characterized by two main sedimentary
units:
• Unit 1: depth from 0 m to about -15 m fluvial
deposits with prevailing gravel texture.
• Unit 2: depth from -15 m to about -100 m lacustrine and fluvial-lacustrine deposits with prevailing clay-silt texture (deposits originated from
an Upper Pleistocene lake).
The deep stratigraphy of the area was recently investigated by Pellegrini et al. (2006) and has been
described as reported in tab. 1.
Hydrographic network
The reserve is surrounded by three rivers/streams
of different hierarchical order. The Piave River is
of higher order, the Torrente Caorame has a sub-regional importance, while the Rio Celarda is of local
importance.
Tab. 1. The deep stratigraphy of the Vincheto area according to
Pellegrini et al. (2006).
Depth (m) Stratigraphy
Origin
0 - 12
Heterometric gravel
Fluvial deposits
12 - 15
Fine gravel with sand
Fluvial deposits
15 - 21
Silty clay
Lacustrine deposits
21 - 25
Silty sand
Fluvial-lacustrine deposits
25 - 30
Silty clay
Lacustrine deposits
The Holocene alluvial deposits of the Piave - Caorame system (recent, unconsolidated sediments, little
compacted, without soil or with sections of protosoil;
and older, consolidate sediments, terraced, compacted, with alluvial soils of different thickness and
age) are composed of incoherent material with gravel
texture (heteromeric gravel and pebbles in sandy matrix). Interspersed, thin and discontinuous lenticular
layers of silt-clay are relatively common.
The rock substrate, not emerging within the reserve,
is represented by a series of thin layers of flint limestone, belonging to the Biancone Formation (Costa
et al. 1996). In the Vincheto area, this substrate is
located at an unknown depth, presumably at about a
hundred meters.
The surrounding mountains (M. Miesna, M. Telva),
which consist mainly of calcareous-selciferous substrate which is of average permeability of the Biancone Formation, represents an important carbonate
28
Piave River (in the study area)
The Piave River is a perennial river with regional
relevance, braided, with strong erosive action and
prone to flooding (Anonymous 2001; Bondesan et
al. 2004). It defines the ever-changing eastern border
of the Vincheto di Celarda Nature Reserve.
- watershed surface at Busche: 3 174 km2;
- average natural discharge: about 100 m3/s (this
discharge value refers to the situation prior to the
construction of dams and water extraction for hydroelectric power production and irrigation);
- measured mean discharge: few tens of m3/s (due
to water extraction for hydroelectric power production and irrigation);
- dominant discharge: about 700 m3/s (this discharge affects the morphology of the river banks
with a return time of approximately two years;
measured at the station ENEL-Busche);
- flood discharge: tabs. 2 & 3 list flood discharges
higher than 1 000 m3/s recorded at the Busche hydrometer between the ’60s and ’90s and the statistical forecast of the flood maximum discharge
(Qp) respectively (Anonymous 2001).
Torrente Caorame
The Torrente Caorame is a perennial stream, relevant
at the subregional scale (Feltrino district), with strong
erosive action and prone to flooding and solid transport. It defines the northern border of the reserve.
- Watershed surface: 97 km2
- Dominant discharge: about 4-5 m3/s
- Flood discharge (return time 50 years): approximately 350-400 m3/s.
Rio Celarda
The Rio Celarda is a krenal stream (a stream which
is groundwater-fed) characterized by almost constant
discharge. It originates from some seeps located in
Fontane, at the joining of the permeable landslide
deposits of “Colesei” and the fine-textured fluvialpalustrine deposits of the Villapaiera plain.
HYDROGEOLOGICAL AND HYDRODYNAMIC FEATURES OF THE ALLUVIAL AQUIFER OF VINCHETO DI CELARDA NATURE RESERVE
Tab. 2. Flood discharges higher than 1 000 m3/s recorded at the
Busche hydrometer between the ’60s and ’90s.
Year
Maximum discharge (m3/s)
1965
2 064
1966
3 850
1972
1 500
1976
1 456
1978
1 419
1980
1 565
1981
1 000
1987
1 073
1993
1 753
2005-November 2006). The piezometric measurements were taken by the personnel of the
Corpo Forestale dello Stato following the schedule reported in tab. 4.
- Development of a hydrogeological map representing the isophreatic levels.
Tab. 4. The number of piezometric measurements taken from
November 2005-November 2006. The complete set of measurements recorded during the monitoring phase are deposited at the
Ufficio Territoriale per la Biodiversità di Belluno.
Month
Tab. 3. Statistical forecast of the flood maximum discharge (Qp)
and return time (RT), estimated with the Gurmel, GEV and MG
method/model.
RT (years)
Qp m3/s
(Gurmel)
Qp m3/s
(GEV)
Qp m3/s
(MG)
50
2 854
3 180
3 459
100
3 256
4 002
3 874
200
3 657
4 987
4 274
Number of measurements
November 2005
7
December 2005
12
January 2006
10
March 2006
12
April 2006
10
May 2006
8
October 2006
2
November 2006
8
RESULTS AND DISCUSSION
MATERIALS AND METHODS
During the LIFE Project (LIFE04NAT/IT/000190)
the following methods were used.
- Literature search: acquisition, selection and organization of the existing stratigraphic, hydrogeological and geothematic data. Several studies
were conducted in the Feltre area, which however
concentrated on geology (Costa et al. 1996 ; Pellegrini 2000) and/or geomorphological evolution
(Gortani 1953; Venzo 1977; Pellegrini & Surian
1994; Surian 1996; Pellegrini 2000; Pellegrini et
al. 2005, 2006). Literature data on the hydrogeology of the alluvial aquifers of Val Belluna are
scarce.
- Field investigations and surveys. The numerous
surveys conducted in 2006-2007 allowed to: (a)
give a detailed description of the geomorphological features of the reserve and adjacent areas, (b)
monitor the wetlands most sensitive to oscillations of the aquifer level (Laghetto verde dell’isola,
Laghetto dell’Airone).
- Installation of a piezometer network: fifteen piezometers (fig. 1) were installed in the reserve
in 2005 (plus 5 more in the Laghetto verde
dell’isola) in order to systematically monitor the
depth of the aquifer for one year (November
Hydrogeological characterization of the alluvial
aquifer
The ecological conditions of the reserve depend on
a delicate hydrogeological balance, and are therefore
particularly sensitive to variations in precipitation,
river and stream discharge (especially of the Piave
River and Torrente Caorame) and the aquifer level.
The recent hydrogeological history (due also to the
recent hydraulic interventions on the right bank of
the Piave River) seems to be characterized by a structural lowering of the aquifer level, which leads, in the
critical periods (low-flow regime) to the progressive
drying of some wetland of the northern part of the
reserve. The southern part, on the contrary, seems to
maintain its wetland features.
1. LOCAL WATER BALANCE AND EFFECTIVE INFILTRATION
The local water balance P=ETR+R+EI (P=precipitation, ETR=evapo-transpiration, R=surficial runoff/
overland flow, EI=effective infiltration) was calculated
with the Turc method (Turc 1954) and the Kennessey
method (Kennessey 1930) (these are approximate/
empirical methods for the calculation of evapotranspiration and surficial runoff, respectively)
- Rainfall and temperature data (annual means for
29
LANDO TOFFOLET
1996-2006, data ARPAV) (pers. com.)
Precipitations P: 1 466 mm
Annual mean temperature T: 10.1 °C
- Evapotranspiration ETR (Turc method)
ETR = P / (0.9 + P2 / L2)1/2
L = 300 + 15 T + 0.05 T3 = 300 + 15 x 10.1 +
0.05 x 10.13 = 503.02
ETR = 1 466 / [0.9 + (1 466 / 500)2] = 478 mm
- Effective rainfall PE
PE = P - ETR = 1 466 - 478 = 988 m
- Surficial runoff/overland flow R (Kennessey
method)
The Kennessey method (Kennessey 1930) allows estimating the runoff coefficient (C) as a function of
three physiographic factors: acclivity (Ca), vegetation
cover (Cv) and soil permeability (Cp).
C = Ca + Cv + Cp
Acclivity < 3.5 %: Ca = 0.01
Vegetation cover stabilized meadows: Cv = 0.07
Soil permeability high: Cp = 0.03
Runoff coefficient (C): C = 0.11 (11 %)
R = 0.11 x PE = 0.11 x 988 = 108 mm
- Effective infiltration IE
IE = PE - R = 988 – 108 = 880 mm
The effective infiltration IE renews the groundwater
and recharges the aquifer.
2. THE
ALLUVIAL AQUIFER OF THE
ing gravel texture
- thickness: about 15 m
- Permeability: high
- mean K = about 10-1 cm/s
Unit 2: about 15-100 m lacustrine and fluvial-lacustrine deposits with silt-clay texture
- Estimated thickness: 80 m
- Permeability: very low/negligible
- K = about 10-6-10-7 cm/s
Unit 2 represents the impermeable substrate underneath the aquifer.
The rocky substrate is represented by flint limestone
with decimetric stratification (Biancone Formation),
with medium permeability due to fracturing, probably hosting a deep, pressured aquifer.
Aquifer depth
During winter low flow with consequent lowering of
the aquifer depth (January 2006) was observed while
during spring high flow with rising of the aquifer
depth (May 2006) were recorded. The following tables (tabs. 5-7) list the most significant data on aquifer
depth and flow regime, as recorded during the monitoring period (November 2005-November 2006).
Approximate determination of filtering rate
The aquifer filtering rate was calculated/estimated
(tab. 8) according to the Darcy Law (Darcy 1856).
Darcy Law V = K x i / ne
The resulting aquifer filtering rate (laminar sub-horizontal runoff ) is around 2–2.5 m/day.
PIAVE - CAORAME
SYSTEM
Characteristics of the alluvial aquifer
The subsoil of the reserve is composed of highly
permeable alluvial deposits of gravel texture, 15 m
thick. The alluvial mattress is occupied by an unconfined aquifer, which fills the alluvial deposits to the
depth of the impermeable layer (lacustrine deposits
with silt-clay textures).
Direct (runoff curve) and indirect (granulometric
analysis) analyses of the upper layers (3-5 m depth) of
the fluvial deposits conducted in adjacent sites, provided mean permeability coefficient values between 1
-2
and 10 cm/sec. The mean value of the permeability
-3
-1
coefficient K is K = 10 m/sec (K = 10 cm/sec).
Ground permeability
The ground is constituted of two hydrogeological
units. The hydrogeological characteristics are approximately the following:
Unit 1: about 0-15 m fluvial deposits with prevail30
Tab. 5. Data on aquifer depth: middle flow regime (mean aquifer
depth). Survey: 23 November 2005.
Piezometer
Aquifer depth (m)
Aquifer elevation (m)
1
2.91
217.38
2
1.12
218.88
3
1.08
220.31
4
1.42
220.21
5
1.49
219.98
6
2.43
218.71
7
1.82
220.96
8
1.63
219.66
9
2.67
220.84
10
1.42
222.50
11
1.32
225.07
12
4.36
222.95
13
3.43
222.91
14
4.82
226.14
15
3.03
225.79
HYDROGEOLOGICAL AND HYDRODYNAMIC FEATURES OF THE ALLUVIAL AQUIFER OF VINCHETO DI CELARDA NATURE RESERVE
Tab. 6. Data on aquifer depth: flood regime (minimum aquifer
depth), Survey: 10 May 2006.
Piezometer
Aquifer depth (m)
Aquifer elevation (m)
1
2.73
217.56
2
1.08
218.92
3
0.75
220.64
4
1.12
220.51
5
1.62
219.85
6
2.03
219.11
7
1.55
221.23
8
1.07
220.22
9
2.22
221.29
10
1.33
222.59
11
1.18
225.21
12
4.20
223.11
13
3.72
222.62
14
4.94
226.02
15
2.07
226.75
Tab. 7. Data on aquifer depth: low flow regime (maximum aquifer depth), Survey: 14 January 2006.
Piezometer
Aquifer depth (m)
Aquifer elevation (m)
1
3.00
217.29
2
1.21
218.79
3
1.24
220.15
4
1.61
220.02
5
1.67
219.80
6
2.58
218.56
7
2.05
220.73
8
1.88
219.41
9
2.94
220.57
10
1.45
222.47
11
1.68
224.71
12
Mud
(222.85)
13
3.70
222.64
14
Mud
(226.00)
15
Mud
(225.40)
Tab. 8. Calculation/estimation of the aquifer filtering rate according to the Darcy Law.
Permeability Coefficient
K
Hydraulic gradient
i = Δh/L (*)
(**)
Effective Porosity
ne
Filtering rate
V = k x i / ne
(*)
m/s
10-3
--
5 x 10-3
--
0.2
m/day
2 – 2.5
Average slope of the water table in the area of the reserve. The value
is based on the map of isophreatic levels (fig.1).
(**)
Average value of ne for deposits with gravel texture.
Interactions between the aquifer and the Piave
River bed
The aquifer level oscillations, as monitored by the
piezometer network, allowed drawing an isophreatic
map (see fig.1) and clarifying, at least in their essential features, the existing relationships between the
Piave River system and the aquifer. From the analysis
of the isophreatic map it appears that:
- the aquifer flows towards the Piave (to the SouthEast);
- the Piave River is the drainage axis of the aquifer;
- the difference in height of the phreatic surface is
about 8 m within the Reserve;
- the mean hydraulic gradient is around 0.5 %;
- the aquifer sub-horizontal filtration rate can be
estimated at 2 – 2.5 m/day.
The Piave River represents the lowest of the local
groundwater levels. Its level influences the aquifer
flow and contributes to determine the variations of
the water table. In particular:
- lowering of the riverbed (caused by erosive phases
during floods and /or excavations for river straightening) causes an increase of the hydraulic gradient
and a lowering of the aquifer level (which is the
present condition);
- rising of the riverbed (caused by alluvial sedimentation during floods) causes a decrease of the hydraulic gradient and a rising of the aquifer level.
Aquifer recharge
The subsoil of the reserve which consists of fluvial deposits with gravel texture and which is highly permeable, constitutes an important reservoir (floods) and
hosts an unconfined aquifer which discharges via the
Piave River. The aquifer level fluctuates during the
seasons, according to the water level of the river and
the amount of precipitation; water fills the porous
fluvial deposits down to the impermeable layer created by the lacustrine deposits with silt-clay texture.
The main factors affecting aquifer recharge are:
- effective infiltration, related to direct precipitations (the effective infiltration, evaluate indicatively with the Turc and Kennessey methods is EI
= 880 mm/year);
- discharge of carbonate aquifers from the surrounding mountains (M. Miesna, M. Telva);
- a probable infiltration of the Torrente Caorame,
occurring downstream of Nemeggio gorge.
Recharge is fast, due to the high permeability of the
covering material (unconfined aquifer in fluvial deposits, permeable by porosity).
31
LANDO TOFFOLET
Fig. 1. Location of piezometers and isophreatic map.
32
HYDROGEOLOGICAL AND HYDRODYNAMIC FEATURES OF THE ALLUVIAL AQUIFER OF VINCHETO DI CELARDA NATURE RESERVE
REFERENCES
Anonymous, 2001. Piano di Bacino del Fiume Piave - Progetto del Piano stralcio per la sicurezza idraulica del medio e basso corso del
Piave. Autorità di Bacino dei fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione, 145 pp.
Bondesan A., Caniato G., Vallerani F. & Zanetti M., 2004. Il Piave. Cierre Edizioni, Verona, 496 pp.
Caivano A.M., 2003. Rischio idraulico e idrogeologico. EPC Libri, Roma, 270 pp.
Castany G., 1985. Idrogeologia. Principi e metodi. Flaccovio Editore, Palermo, 239 pp.
Costa V., Doglioni C., Grandesso P., Masetti D., Pellegrini G.B. & Tracanella E., 1996. Note illustrative del foglio geologico (063) Belluno
della Carta geologica d’Italia alla scala 1:50.000. Istituto Poligrafico Zecca dello Stato, Roma.
Darcy H., 1856. Les fontaines publiques de la ville de Dijon. Dalmont, Paris, 647 pp. (Original work not consulted, cited from Castany
(1985)).
Gortani M., 1953. Un lago glaciale della valle del Piave a monte di Quero. Memorie. Accademia delle Scienze di Bologna, 10: 125–130.
Kennessey B., 1930. Lefolyasi téniezok és retenciok. Vizugy, Koziemények, Hungary. (Original work not consulted, cited from Caivano
(2003)).
Pellegrini G.B. & Surian N., 1994. Late Pleistocene geomorphological evolution in the Vallone Bellunese, Southern Alps (Italy). Geografia
Fisica e Dinamica del Quaternario, 17: 67–72.
Pellegrini G.B. (ed.), 2000. Note illustrative della Carta geomorfologica del F. 063 “Belluno” alla scala 1:50.000. Servizio Geologico
d’Italia - Regione del Veneto, Firenze, 141 pp.
Pellegrini G.B., Albanese D., Bertoldi R., & Surian N., 2005. La deglaciazione alpina nel Vallone Bellunese, Alpi Meridionali Orientali.
Supplemento Geografia Fisica e Dinamica del Quaternario, 7: 271–280.
Pellegrini G.B., Surian N., Albanese D., Degli Alessandrini A. & Zambrano R., 2006. Le grandi frane di Marziai e dei Collesei di Anzù e
loro effetti sull’evoluzione geomorfologica e paleoidrografica della Valle del Piave nel Canale di Quero (Prealpi Venete). Studi Trentini
Scienze Naturali, Acta Geologica, 81 (2004): 87–104.
Surian N., 1996. The terraces of the Piave River in the Vallone Bellunese (Eastern Alps, Italy). Geografia Fisica e Dinamica del Quaternario, 19: 119–127.
Turc L., 1954. Calcul du bilan de l’eau: évaluation en function des précipitation et des températures. International Association of scientific
Hydrology, 37(3): 88–200. (Original work not consulted, cited from Castany (1985)).
Venzo S., 1977. I depositi quaternari e del Neogene superiore nella bassa valle del Piave da Quero al Montello e del Paleopiave nella valle
del Soligo (Treviso). Memorie degli Istituti di Geologia e Mineralogia dell’Università di Padova, 30: 1–64.
Address
LANDO TOFFOLET
Via Giuseppe Verdi, 11 • I-32036 Sedico (BL)
33