Sala Stampa - UNICAL Martedì 24 Novembre 2015 ORE 10:00 www.algencal.it PRESENTAZIONE DEI RISULTATI “Progetto di un sistema energetico avanzato completo basato sulla coltura massiva di microalghe in foto-bioreattori trasparenti per la produzione, in condizioni di competitività ed eco-sostenibilità, di energia da fonte rinnovabile e di altri prodotti” Prof. Giuseppe Torzillo, Torzillo, ISE CNR Photosynthesis Efficiency based on solar light 6CO2 + 6 H2O + 6 (9.4 moles Photons (quanta)) = C6 H12 O6 + 6O2 2808 KJ/ mole of hexose = 23.8 % (of PAR) PE = 209 KJ x 9.4 (mole photons) x 6 23.8 X 0.45 = 10.7% of Solar light 1) 2808 KJ (Energy content of a mole of hexose) 2) 209 KJ is the average energy content of a mole of photons of visible light 3) 9.4 mole of photons (quanta) are required to reduce 1 mole of CO2 (ref. D. Walker) 4) Time 6 because it is necessary to reduce 6 moles of CO2 to form a mole of hexose 5) Time 0.45 because the PAR is approximately 45% of visible light Maximum biomass output per Ha and square meter 1) Assuming an average global daily irradiance of 17.8 MJ/m2/day (average value for 360 days, e.g. in Italy Florence) 2) 17,8 MJ/day x 360 days= 6408 MJ/m2/year 3) Assuming the caloric of combustion of biomass to be 22 MJ/Kg 4) 6408 MJ/m2/year x 0.107 = 31 kg/m2/year 22 MJ/Kg 5) 31 kg m-2 year-1 x10.000 m2 =310 ton/Ha/year 31 kg/m2/year = 31.000 g/m2/year; 31.000 g/m2/year/ 360 days = 86 g/m2/day 6) 86 g/m2/day (Maximum theoretical yield per square meter per day) After Tredici, 2010 PHOTOSYNTHESIS (ETR) VS LIGHT IRRADIANCE CURVE ETR = ∆F/F′m x PFD x 0.5 x a* Chlorella sorokiniana Acclimated to high light Acclimated to low light Source: CNR-ISE Laboratory But it depends on the species ! Es.= 900 µmol m-2 s-1L/D (50%50%) = 450 µmol m-2 s-1 450/3 = 150 µmol m-2 s-1 CNR- SCANDICCI (FIRENZE) ANNI 1979-1982 Concentrazione cellulare (0.6-1.2 g/l) PRODUCTIVITY OF SPIRULINA CULTURES ACHIEVED IN TUBULAR PHOTOBIOREACTORS MADE WITH TUBES OF VARIOUR DIAMETERS. (Data from ISE-FI) Tube diameter (mm) 140 131 74 50 Litre/m (tube length) 15.4 13.3 4.3 1.96 Litre/m2 Areal (tube Ө biomass surface) (g dry wt/m2) 110 102 58 39 60 60 60 60 Surfaceto Volume Ratio (S/V) (m-1) Optimal biomass Conc. (g/litre) Net Vol. Prod. (g/l/d) Yield g/m2/d ∼9 0.55 ∼10 0.6 ∼17 1.0 ∼25 1.5 0.200 22 0.220 22.4 0.350 20.3 0.500 19.5 25 0.49 19.6 60 ∼50 3.5 1.500 29.4 . Punti risolti: 1) Il polimero utilizzato per la costruzione dei tubi 1) Turbolenza della coltura e forte riduzione del Mixing time (ottimizzazione del disegno). 2) Ottimizzazione del rifornimento di CO2 3) Difesa delle colture da potenziali inquinanti Tubo nuovo 1 anno pulito 2 anni ripulito 1 anno sporco 2 anni sporco 1 /l M 0, 25 g/ lm .7 +0 ic Fe ,2 7g rt M ez zo k3 gS g/ O l2 4. 7 2. H 10 2O .7 +1 g/ lg m ic Fe rt . l2 2. 10 1g /l 22 .1 0. 1g 7+ / Produttività (mg/l/h) 30 25 20 15 10 5 0 THE MARKET Partial list of sine qua non conditions to be respected to establish a successful microalgal industry 1) Well identified marketable specific products 2) Appropriate microalgal organism fit to the task 3) Healthy culture resilient to contamination 4) Low cost growth conditions 5) Efficient production process, competitive with synthetic production 6) Proper choice of the site where the climatic conditions (light and temperature) are optimal for the growth of the organism to be produced. These conditions are today achieved only with three microalgae species: Spirulina, Dunaliella, Chlorella . Why? 1) Because they grown in very selective media, as a result cultures are protected from contamination 2) This makes it possible to grow them in relatively cheap culture systems (open ponds). 3) The product is usually addressed to health food market and consumed “as it is”, thus eluding the competition with chemical industry which cannot match the nutritional value and the attractiveness of natural products. Current market prices of the biomass of the most important microalgae Production scale The biomass of algae is currently available on the market in three forms Potential microalgal biomass applications Thanks to Vitor Verdelho (Pt) FOOD APPLICATIONS in cookies Protein supplements Energy bars Spirulina as a colorant (Phycocyanin) in beverages (Chlorella) Ornamental fish Pets and race animals Farming animals DHA in eggs Proposte per future progetti 1) Topic identifier: BG:01-2016 ; Deadline 17-02-2016 ; Large scale algae biomass integrated biorefineries (contribution from EU up to 11 milioni Euro). 2) Interreg ADRION (Il bando dovrebbe uscire a breve) 3) COST ACTION EUALGAE ( European Network for algal-bioproducts ). Coordinator Cristina Gonzales (Spain, IMDEA) (Italian Member Committee , and WG1 leader, G. Torzillo) Arthrospira platensis (ex Spirulina platensis) The End CNR-ISE Scandicci, Firenze. Chlorella sorokiniana Arthrospira fusiformis FLORENCE 2014 Torzillo et al. Biomass, 1986 Torzillo et al., Biotechnol Bioeng (1992) Daily time courses of ambient and culture temperatures in Spirulina cultures grown outdoors in photobioreactors made with Plexiglass tubes of different diameters. 50 August, 7th Temperature (°C) 45 Cooling 40 35 30 25 20 Ambient 15 i.d. 74 mm i.d. 131 mm 10 5 0 2 4 6 8 10 12 14 16 Time of day (h) 18 20 22 24 Daily time courses of ambient and culture temperatures in Spirulina cultures grown outdoors in photobioreactors made with Plexiglass tubes of different diameters. 40 October 10th Temperature (°C) 35 30 25 20 Ambient 15 i.d. 74 mm i.d. 131mm 10 5 0 2 4 6 8 10 12 14 Time of day (h) 16 18 20 22 24 Light (PFD) conversion efficiency Maximum Photosynthetic Efficiency (10%) Actual Photosynthetic Efficiency (1%) Mixing of the culture is necessary to: 1) Ensure that all the cells are exposed to light; 2) Maintain nutrient supply throughout the reactor; 3) Promote oxygen degassing of the culture. 4) Reduce the risk of pollution of culture by other algae/cyanobacteria particularly those sticking on the tube walls Ideal microalga for energy production High yield under high light Large cells with thin membrane Insensitive to O2 concentration O2 Cells can form flocs Cells able to grow and produce lipids (H2) at the same time Robust cells: resistant to infections Oil excreted outside cells (After Wijffels and Barbosa, Science 2010) GRAZIE PER L’ATTENZIONE Chlorella sorokiniana (Green algae) Spirulina platensis (Cyanobacteria)
© Copyright 2026 Paperzz