Atmospheric Dynamics MAQ32806 Chapter 6 Quasigeostrophic Analysis Exercise 6.1 2 u = 42 m/s u = 0 m/s Exercise 6.1 cont’d a. Use Holton (3.32): = − = − 3 −2 × 7.292 × 10 × sin 30 1000 = 42 − 0 × ln 300 287.05 = −8.86 × 10! K/m b. 15 − 45 N ≅ 30 × 111 × 10 m ∆ = 30 × 111 × 10 × −8.86 × 10! = 29.5K ln 1000 300 Exercise 6.1 c. <∆T> ≈ 25 K 4 T = -5 K T = -30 K Exercise 6.2 a. ∆ZJan = 5060 m and Use Holton (1.31): 5 ∆ZJul = 5480 m + yields ) * + ) = ln = ln * +, +, JAN: 5060 × 9.81 1000 = ln = 249.5K 287 500 JUL: = 5480 × 9.81 1000 ln = 270.2K 287 500 ∆<T>=270.2 - 249.5 = 20.7 K b. TJAN = -20°C TJUL = 0°C hence ∆<T> = 20 K Exercise 6.3 6 a. Use the definition of potential temperature +1 0= + ln 0 = ln + yields ln 0 1 1 ln +1 − ln + = − 78 78 + + 78 + ... (1) Gas law: +9 = → = +9 yields 9 + 9 = + + + ... (2) Substitute (2) in (1): ln 0 1 9 + 9 1 = + − + + 78 + = Hence from (3): But: 9=− Φ + 25 34 ; = −9 in (4): 1 1 9 1 1 9 1 + − = + 1− + 9 + 78 + 9 + 78 + ln 0 9 9 =− − 1− + + 78 + ... (4) ... (3) Exercise 6.3 cont’d ;=− 7 9 9 − 1− + 78 + 9=− Hence from (4): ,Φ + −1 ;= 78 +, b. Use (1): ; = −9 ln 0 1 1 − = −9 + + = 78 + > 1 , 1 =− − = + 78 + 78 +, − Φ 1 + + Φ + QED Exercise 6.4 8 QG vorticity equation: ?@ = −@ ?@ + − C@ ? + − D ∙ F A B @ In this case: −1.7 × 10 = −@ ?@ + − CG@ ?@ + − 2 × 7.292 × 10 × sin 38 D ∙ F 12 × 3600 B > > Hence: D ∙ H = 4.38 × 10! I Exercise 6.5 9 First, let’s prepare some ingredients: Φ M+ = H cos cos N B − 7A B + Φ = − J @ = − 1 Φ =J ,Φ M+ = − NH cos sin N B − 7A B , + ,Φ =0 , 1 Φ M+ C@ = = H cos cos N B − 7A B + 1 ,Φ ,Φ M+ ?@ = + = −NH cos sin N B − 7A B , , + Now use the QG vorticity equation: ?@ ?@ ?@ P + @ + C@ + C@ O = A B + and fill in our ingredients: Exercise 6.5 cont’d (−N7) −NH cos M+ M+ cos N B − 7A + J −N , H cos cos N B − 7A + + + M+ P +0 + OH cos cos N B − 7A = + + Hence: Integrate: P 1 M+ = H cos cos N B − 7A N , 7 − J + O + + + H P= M M+ N 7 − J + O sin cos N B − 7A + , 10 Exercise 6.6 11 QG thermodynamic energy equation: Φ Φ − + FS ∙ T − = σP + + A In this case: − 1 P= + @ ; A B Φ − + VΦ M Φ M+ =− + N H sin sin N B − 7A + V+ + + Φ M M+ − = − H7 sin cos N B − 7A A + + + Φ M M+ − = H sin cos N B − 7A + + + B From problem 6.5: @ = − 1 Φ =J Exercise 6.6 cont’d 12 Substitute in QG expression for ω: Yields: HM P= ;+ P= 1 + @ ; A B M+ J − 7 sin cos N B − 7A + b. From Problem 6.5: P= Hence: + H M N , 7 − J + O sin HM ;+ Results in: 7 − J = − J−7 = O , , M N, + ;+ , + H M M+ cos N B − 7A + N, 7 − J + O − Φ +
© Copyright 2025 Paperzz