OpenStax-CNX module: m39387 1 Products and factors: More on products ∗ Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the † Creative Commons Attribution License 3.0 1 More Products Khan Academy video on products of polynomials. This media object is a Flash object. Please view or download it at <http://www.youtube.com/v/fGThIRpWEE4&rel=0> Figure 1 We have seen how to multiply two binomials in "Product of Two Binomials". In this section, we learn how to multiply a binomial (expression with two terms) by a trinomial (expression with three terms). We can use the same methods we used to multiply two binomials to multiply a binomial and a trinomial. For example, multiply 2x + 1 by x2 + 2x + 1. (2x + 1) x2 + 2x + 1 = 2x x2 + 2x + 1 + 1 x2 + 2x + 1 = 2x x2 + 2x (2x) + 2x (1) + 1 x2 + 1 (2x) + 1 (1) = = 2x3 + 4x2 + 2x + x2 + 2x + 1 2x3 + 4x2 + x2 + (2x + 2x) + 1 3 = 2 2x + 5x + 4x + 1 (apply distributive law) (1) (expand the brackets) (group like terms to simplify) (simplify to get final answer) tip: If the binomial is A + B and the trinomial is C + D + E , then the very rst step is to apply the distributive law: (A + B) (C + D + E) = A (C + D + E) + B (C + D + E) If you remember this, you will never go wrong! ∗ Version 1.1: Aug 2, 2011 2:12 am -0500 † http://creativecommons.org/licenses/by/3.0/ http://cnx.org/content/m39387/1.1/ (2) OpenStax-CNX module: m39387 2 Exercise 1: Multiplication of Binomial with Trinomial (Solution on p. 3.) Exercise 2: Sum of Cubes (Solution on p. 3.) Multiply x − 1 with x2 − 2x + 1. Find the product of x + y and x2 − xy + y 2 . tip: We have seen that: (3) (x + y) x2 − xy + y 2 = x3 + y 3 This is known as a sum of cubes. 1.1 Investigation : Dierence of Cubes Show that the dierence of cubes (x3 − y 3 ) is given by the product of x − y and x2 + xy + y 2 . 1.2 Products 1. Find the products of: (a) −2y 2 − 4y + 11 (5y − 12) (c) 4y 2 + 12y + 10 −9y 2 + 8y + 2 (e) 10y 5 + 3 −2y 2 − 11y + 2 (g) (−10) 2y 2 + 8y + 3 (i) 6y 7 − 8y 2 + 7 (−4y − 3) −6y 2 − 7y − 11 (k) 8y 5 + 3y 4 + 2y 3 (5y + 10) 12y 2 + 6y + 6 (m) 4y 3 + 5y 2 − 12y (−12y − 2) 7y 2 − 9y + 12 (o) (9) 8y 2 − 2y + 3 (q) −6y 4 + 11y 2 + 3y (10y + 4) (4y − 4) (s) −11y 5 + 11y 4 + 11 9y 3 − 7y 2 − 4y + 6 Table 1 Click here for the solution1 1 http://www.fhsst.org/llz http://cnx.org/content/m39387/1.1/ (b) (−11y + 3) −10y 2 − 7y − 9 (d) 7y 2 − 6y − 8 (−2y + 2) (f) (−12y − 3) 12y 2 − 11y + 3 (h) 2y 6 + 3y 5 (−5y − 12) (j) −9y 2 + 11y + 2 8y 2 + 6y − 7 (l) (−7y + 11) (−12y + 3) (n) (7y + 3) 7y 2 + 3y + 10 (p) (−12y + 12) 4y 2 − 11y + 11 (r) −3y 6 − 6y 3 (11y − 6) (10y − 10) (t) (−3y + 8) −4y 3 + 8y 2 − 2y + 12 OpenStax-CNX module: m39387 3 Solutions to Exercises in this Module Solution to Exercise (p. 2) Step 1. We are given two expressions: a binomial, x − 1, and a trinomial, x2 − 2x + 1. We need to multiply them together. Step 2. Apply the distributive law and then simplify the resulting expression. Step 3. (x − 1) x2 − 2x + 1 = x x2 − 2x + 1 − 1 x2 − 2x + 1 = x x2 + x (−2x) + x (1) + −1 x2 − 1 (−2x) − 1 (1) (apply distributive law) = x3 − 2x2 + x − x2 + 2x − 1 (expand the brackets) = x3 + −2x2 − x2 + (x + 2x) − 1 (group like terms to simplify) = x3 − 3x2 + 3x − 1 (simplify to get final answer) (4) Step 4. The product of x − 1 and x2 − 2x + 1 is x3 − 3x2 + 3x − 1. Solution to Exercise (p. 2) Step 1. We are given two expressions: a binomial, x + y , and a trinomial, x2 − xy + y 2 . We need to multiply them together. Step 2. Apply the distributive law and then simplify the resulting expression. Step 3. (x + y) x2 − xy + y 2 = x x2 − xy + y 2 + y x2 − xy + y 2 = x x2 + x (−xy) + x y 2 + y x2 + y (−xy) + y y 2 (apply distributive law) = x3 − x2 y + xy 2 + yx2 − xy 2 + y 3 (expand the brackets) = x3 + −x2 y + yx2 + xy 2 − xy 2 + y 3 (group like terms to simplify) = x3 + y 3 (simplify to get final answer) Step 4. The product of x + y and x2 − xy + y 2 is x3 + y 3 . http://cnx.org/content/m39387/1.1/ (5)
© Copyright 2026 Paperzz