Supplementary Information Figure S1. (A–C): Three methanol blanks screened for spirolides (SPX-1 to SPX-I, see Table 1 in the main article) in the full MS scan at 10 ppm mass error tolerance. Blanks were included in a batch of sixty samples (shellfish and SPATT samples) every six samples. (A) First methanol blank; (B) Fifth methanol blank; (C) Tenth methanol blank. Carryover was discarded by checking the methanol blanks analyzed after the most concentrated level of the calibration curves, which never showed signal for PnTX-G of SPX-1 at their retention times. Peaks did not correlate with the expected relative retention time of the target analytes, but there are no standards available for PnTXs and SPXs other than PnTX-G and SPX-1. RT: 0.00 - 12.00 SM: 11G NL: 0 m/z= 692.4452-692.4590 F: FTMS + p ESI Full ms [100.00-1000.00] MS MeOH_3 100 50 0 100 4.77 NL: 5.13E2 m/z= 694.4608-694.4746 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 706.4606-706.4748 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 708.4763-708.4905 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 710.4566-710.4708 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 712.4723-712.4865 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 650.4350-650.4480 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 100 NL: 0 m/z= 652.4507-652.4637 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_3 50 0 0 2 4 6 Time (min) 8 (A) 10 12 Relative Abundance Mar. Drugs 2014, 12 S2 Figure S1. Cont. RT: 0.00 - 12.00 SM: 11G 8.20 100 NL: 8.19E3 m/z= 692.4452-692.4590 F: FTMS + p ESI Full ms [100.00-1000.00] MS MeOH_6_120728202404 50 0 100 7.12 NL: 4.52E2 m/z= 694.4608-694.4746 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 NL: 0 m/z= 706.4606-706.4748 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 NL: 0 m/z= 708.4763-708.4905 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 3.80 NL: 4.80E2 m/z= 710.4566-710.4708 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 NL: 0 m/z= 712.4723-712.4865 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 NL: 0 m/z= 650.4350-650.4480 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 100 NL: 0 m/z= 652.4507-652.4637 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_6_120728202404 50 0 0 2 4 6 Time (min) 8 (B) 10 12 Mar. Drugs 2014, 12 S3 Figure S1. Cont. RT: 0.00 - 12.01 SM: 11G NL: 0 m/z= 692.4452-692.4590 F: FTMS + p ESI Full ms [100.00-1000.00] MS MeOH_9 100 50 0 100 NL: 0 m/z= 694.4608-694.4746 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 NL: 0 m/z= 706.4606-706.4748 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 NL: 0 m/z= 708.4763-708.4905 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 4.26 NL: 4.83E2 m/z= 710.4566-710.4708 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 NL: 0 m/z= 712.4723-712.4865 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 NL: 0 m/z= 650.4350-650.4480 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 100 NL: 0 m/z= 652.4507-652.4637 F: FTMS + c ESI Full ms2 [email protected] [50.00-800.00] MS MeOH_9 50 0 0 2 4 6 Time (min) 8 (C) 10 12 Mar. Drugs 2014, 12 S4 Figure S2. Isotopic pattern simulation for PnTXG (C42H64NO7) calculated by Xcalibur® 2.07. C42H64NO7: C42 H64 N1 O7 pa Chrg 1 100 694.4677 95 90 85 80 75 70 Relative Abundance 65 60 55 50 45 695.4711 40 35 30 25 20 15 696.4744 10 5 697.4778 698.4811 699.4820 700.4854 701.4887 702.4896 0 695 696 697 m/z 694.4677 695.4711 696.4744 697.4778 696.4720 695.4740 697.4753 695.4648 696.4774 695.4719 696.4681 698.4811 698.4787 696.4753 697.4807 697.4715 697.4787 699.4820 699.4845 698.4841 698 699 m/z Intensity 618847.0 281117.8 62330.1 8988.6 8902.1 4555.2 4043.9 2285.8 2069.3 1650.1 1038.3 947.9 896.6 749.6 458.8 230.2 166.2 129.3 77.9 66.2 700 701 Relative 100.00 45.43 10.07 1.45 1.44 0.74 0.65 0.37 0.33 0.27 0.17 0.15 0.14 0.12 0.07 0.04 0.03 0.02 0.01 0.01 702 703 Mar. Drugs 2014, 12 S5 Figure S3. Contour Plotof LC-MS precursor scan for m/z164.2 (CE 45 V) with a Triple Quadrupole QTRAP 3200®. Sample of mussel from Alfacs Bay (May 2012) with 60 μg/kg free PnTXG. The characteristic pattern with diagonal lines is evident in the figure, which could be consistent with an acylation of PnTXG with fatty acids; although PnTXG esters described in literature [1] were formed by longer chains with m/z values between m/z 904 (C14:0) and m/z 1034. (C24:5). The low concentration of these compounds constrained their characterization by MS2. Contour Plot of 130126_pre ion.wiff, Sample 1, (0.012 min to 11.998 min) Max. 3.6e4 cps. 0.0% - 100.0% No Data 1060 1040 1020 1000 980 960 940 920 m /z , a m u 900 880 860 840 820 800 780 760 740 720 700 680 660 640 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 Time, min 9.0 9.5 10.0 10.5 11.0 11.5 Mar. Drugs 2014, 12 S6 Table S1. Assigned mass errors (Δ in ppm) to the molecular formula and theoretical m/z, and ion intensities on the precursor ion (A) and the first three isotopes (A + m) of PnTX-G (n = 2 for 19 and 1.9 ng/mL; n = 1 for 190 and 0.2 ng/mL). Mass errors larger than 5 ppm are in bold, also the intensities associated with the analysis that yielded these high mass errors. When intensity were below 1E4, mass accuracy dropped below 5 ppm. Concentration—PnTX-G (ng/mL) 190 19 1.9 Δ (ppm) 0.2 (m/z 694.4677) −0.1 −0.4 −0.1 0.4 (m/z 695.4711) −0.1 −0.5 −1.2 −20.6 (m/z 696.4744) 0.1 −0.1 −1.4 −22.7 (m/z 697.4778) 0.7 1.1 −50.5 15.2 Isotopes—PnTX-G (m/z) A (Prec ion) C42H64NO7 A+1 13 C42 CH64NO7 A+2 C4213C2H64NO7 A+3 13 C42 C3H64NO7 Intensity Counts A (Prec ion) C42H64NO7 A+1 13 C42 CH64NO7 A+2 13 C42 C2H64NO7 A+3 C4213C3H64NO7 (m/z 694.4677) 1.56 × 107 1.95 × 106 2.17 × 105 1.74 × 104 (m/z 695.4711) 7.24 ×·106 8.88 ×·105 1.01 ×·105 9.36 ×·103 (m/z 696.4744) 1.80 ×·106 2.18 ×·105 1.57 ×·104 8.10 ×·102 (m/z 697.4778) 3.13 ×·105 2.81 ×·104 6.74 ×·103 7.24 ×·102 Table S2. Differences in (%) in intensity ratios between the isotopes (A + m) and the precursor ion (A) compared to the simulated isotopic pattern for PnTX-G (n = 2 for 19 and 1.9 ng/mL; n = 1 for 190 and 0.2 ng/mL). For low concentrations (1.9 and 0.2 ng/mL PnTX-G) the difference between the simulated isotopic ratios and the measured isotopic ratios is very evident (over 35%). Isotopes–PnTXG (m/z) A + 1/A (Prec ion) A + 2/A (Prec ion) A + 3/A (Prec ion) Concentration—PnTX-G (ng/mL) 190 19 1.9 0.2 −2 0 −2 −19 −15 −11 38 54 −39 0 −175 −187 Mar. Drugs 2014, 12 S7 Table S3. Isotopic pattern analysis in sample MUS120523. Assigned mass errors (in ppm) to the molecular formula and theoretical m/z, and ion intensities on the precursor ion (A) and the first three isotopes (A + m) of PnTX-G. Differences in (%) in intensity ratios between the isotopes (A + m) and the precursor ion (A) compared to the simulated isotopic pattern for PnTX-G. Only A + 1 could be measured with appropriate mass accuracy, and its relative intensity compared to the precursor ion (A) similar to the simulated relative intensity berween A + 1 and A (12.5% difference). A + 2 could not be measured accurately and A + 3 was not found. Isotopes—PnTXG (m/z) A (Prec ion) C42H64NO7 A+1 C4213CH64NO7 A+2 13 C42 C2H64NO7 A+3 13 C42 C3H64NO7 m/z Found Sample MUS120523 Intensity Mass Error Counts (ppm) % Diff. Int. Ratios (m/z 694.4677) 694.4669 1.63 ×·105 1.15 (m/z 695.4711) 695.4702 6.46 ×·104 1.29 12.5 (m/z 696.4744) 696.4883 2.11 ×·104 −19.96 −28.7 (m/z 697.4778) Not found Not found Not found Not found Reference 1. McCarron, P.; Rourke, W.; Hardstaff, W.; Pooley, B.; Quilliam, M. Identification of pinnatoxins and discovery of their fatty acid ester metabolites in mussels (Mytilus edulis) from eastern Canada. J. Agric. Food Chem. 2012, 60, 1437–1446. © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
© Copyright 2026 Paperzz