GENERAL ⎜ ARTICLE Black-Body Radiation G S Ranganath T o w a r d s th e e n d o f th e n in e te e n th c e n tu ry , it b e c a m e c le a r th a t w ith in th e fra m e w o rk o f c la ssic a l p h y s ic s, it w a s n o t p o ss ib le to u n d e r sta n d th e p h e n o m e n o n o f B la c k -B o d y R a d ia tio n . In 1 9 0 0 M a x P la n c k c a m e u p w ith a th e o r y th a t a t o n e str o k e a c c o u n te d su c c e ssfu lly fo r a ll its o b se r v e d fe a tu r e s. T h is th e o r y h a s b e e n p r e se n te d a g a in st a b a c k d r o p o f th e m a jo r d isc o v e r ie s th a t le d to it. In tr o d u c tio n O n 2 7 th A p ril 1 9 0 0 L o rd K elv in g av e a lectu re a t th e R oy a l In stitu tio n o f G rea t B rita in o n `N in eteen th-C en tu ry C lou ds over the D yn am icalT heory of H eat an d L ight'. T h e tw o clo u d s th a t h e referred to w ere th e B la ck -B o d y S p ectru m a n d th e resu lt o f th e M ich elso n { M o rley ex p erim en t. H e sa id th a t th e `b ea u ty a n d clea rn ess o f th eo ry ' w a s ov ersh a d ow ed b y th ese `tw o clo u d s'. It is n ow a p a rt o f h isto ry h ow th e stu d y o f th e ¯ rst led to th e b irth o f Q u a n tu m M ech a n ics a n d th a t o f th e seco n d resu lted in th e d ev elo p m en t o f th e T h eo ry o f R ela tiv ity. T h u s B la ck -B o d y R a d ia tio n o ccu p ies a cen tra l p o sitio n in th e h isto ry o f m o d ern p h y sics. W e sh a ll lo o k a t th e ea rly a ttem p ts to u n d ersta n d it a n d a lso M a x P la n ck 's n o n cla ssica l th eo ry o f th e b la ck -b o d y ra d ia tio n . A n a ttem p t h a s b een m a d e to p resen t th e su b ject in its h isto rica l p ersp ectiv e. E a r ly S tu d ie s o n R a d ia tio n N a tu re o f T h e r m a l R a d ia tio n W e k n ow th a t h ea t tra n sfer ta k es p la ce th ro u g h th e p ro cesses o f co n d u ctio n , co n v ectio n a n d ra d ia tio n . T h e RESONANCE ⎜ February 2008 G S Ranganath was formerly at the Raman Research Institute, Bangalore. He is fan of Alexandre Dumas, Conan Doyle and Bernard Shaw. He is interested in classical Karnatak Music. Keywords Black-body radiation, thermal radiation, heat, electromagnetic radiation, Stefan’s Law, Stefan– Boltzmann Law, Wien’s Law, Rayleigh–Jeans Law, blackbody spectrum, ultraviolet catastrophe, zero point energy, photon. 115 GENERAL ⎜ ARTICLE The famous British astronomer William Herschel, the discoverer of the planet Uranus, was probably the first to demonstrate that heat is a form of light beyond the red end of the visible spectrum. Heat is an electromagnetic radiation with a wavelength ranging from 1 to 100 micro meters or microns i.e. larger than 0.7 microns corresponding to the red end of the visible spectrum. 116 ¯ rst tw o p ro cesses ca n ta k e p la ce o n ly in a m ed iu m . T h e p ro cess o f ra d ia tio n d o es n o t n eed a m ed iu m . It is th ro u g h th is p ro cess th a t h ea t fro m th e S u n rea ch es th e E a rth . T h e fa m o u s B ritish a stro n o m er W illia m H ersch el, th e d iscov erer o f th e p la n et U ra n u s, w a s p ro b a b ly th e ¯ rst to d em o n stra te th a t h ea t is a fo rm o f lig h t b ey o n d th e red en d o f th e v isib le sp ectru m . In a n ex p erim en t ca rried o u t in 1 8 0 0 , h e sta ck ed u p a n a rray o f th erm o m eters b eh in d a p rism w h en th e su n lig h t w a s in cid en t o n th e o th er sid e o f it. T h ere w ere th erm o m eters cov erin g n o t o n ly th e v isib le p a rt o f th e sp ectru m b u t a lso b ey o n d . A fter a few h o u rs o f ex p o su re ea ch th erm o m eter a ro u n d a n d b ey o n d th e red reg io n in d ica ted a rise in tem p era tu re. T o h is su rp rise h e fo u n d th a t a s h e m ov ed aw ay fro m th e red en d in to th e in v isib le (in fra red ) reg io n , th e tem p era tu re g ra d u a lly in crea sed . H e p u b lish ed th ree p a p ers o n th is su b ject in th e P hilosophical T ran saction s of the R oyal S ociety o f L o n d o n . In h is seco n d p a p er h e co n clu d ed th a t h ea t a n d lig h t w ere a p a rt o f th e sa m e sp ectru m . It b eca m e clea r fro m la ter stu d ies th a t h ea t is a n electro m a g n etic ra d ia tio n w ith a w av elen g th ra n g in g fro m 1 to 1 0 0 m icro m eters o r m icro n s i.e., la rg er th a n 0 .7 m icro n s co rresp o n d in g to th e red en d o f th e v isib le sp ectru m . L a ter in v estig a tio n s esta b lish ed th a t th e S u n em its ra d ia tio n n o t o n ly in th e v isib le a n d th e in fra red reg io n s b u t a lso in th e u ltrav io let reg io n . B la c k -B o d y R a d ia tio n T o q u a n tify su ch a sp ectru m , w e h av e to m ea su re th e a m o u n t o f ra d ia tio n en erg y a p p ea rin g a t d i® eren t w av elen g th s. F o r th is w e n eed a d etectin g m a teria l th a t a b so rb s th e ra d ia tio n a t a ll w av elen g th s co m p letely. G u stav R o b ert K irch h o ® , a G erm a n p h y sicist a n d m a th em a ticia n , in terested h im self in th is p ro b lem . H is stu d ies in 1 8 6 0 led h im to lo o k a t th e p ro p erties o f su ch a m a teria l w h ich h e term ed a s a p erfect a b so rb er. H e p o in ted o u t th a t w h en su ch a m a teria l is h ea ted , it w ill RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE em it ra d ia tio n s o f a ll w av elen g th s i.e. it w ill b e a p erfect em itter. S u ch a b o d y is referred to a s a b la ck b o d y. A m a teria l th a t a p p ea rs b la ck b eh av es v ery n ea rly lik e a b la ck b o d y. B u t h ow to g et a tru e b la ck b o d y ? T h e a n sw er to th is q u estio n w a s p rov id ed b y W ilh elm W ien a n d O tto L u m m er in 1 8 9 5 . T h ey sh ow ed th a t a h o llow b o d y w h o se w a lls a re a t th e sa m e tem p era tu re b eh av es lik e a b la ck b o d y. T h ey p o in ted o u t th a t it w ill b e a p erfect em itter em ittin g th ro u g h a tin y h o le in its su rfa ce, ra d ia tio n s o f a ll w a v elen gth s. F u rth er, a n y ra d ia tio n en terin g su ch a cav ity w ill u n d erg o in ¯ n itely m a n y re° ectio n s in sid e a n d w ill lo se en erg y a t ev ery re° ectio n . T h u s n o in cid en t ra d ia tio n w ill em erg e o u t o f th e tin y h o le. In o th er w o rd s, it is a lso a p erfect a b so rb er. T h u s su ch a cav ity, w h ich ca n b e ea sily co n stru cted , is a lm o st a p erfect b la ck b o d y. T h e a m o u n t o f ra d ia tio n em itted b y a b la ck b o d y ca n b e m ea su red u sin g a b o lo m eter, a th erm o p ile o r a ra d io m eter. How to get a true black body? The answer to this question was provided by Wilhelm Wien and Otto Lummer in 1895. S te fa n 's L a w S cien tists h a d stu d ied ra d ia tion ev en b efo re th e co n cep t o f a b la ck b o d y h a d em erg ed . F o r ex a m p le, th e F ren ch p h y sicist P ierre L o u is D u lo n g a n d th e F ren ch m a th em a ticia n A l¶e x is T h ¶e rμe se P etit h a d p u b lish ed w ay b a ck in 1 8 1 7 resu lts fro m w h a t th ey co n sid ered to b e p u rely ra d ia tio n h ea t tra n sfer b etw een a sp h erica l b u lb a n d a sp h erica l ch a m b er. V a rio u s g a ses ¯ lled th e g a p b etw een th e tw o a n d th ey h a d m ea su red th e ra te o f ch a n g e o f tem p era tu re o f th e b u lb ov er a ra n g e o f p ressu res. T h ey ex tra p o la ted th eir resu lts to zero p ressu re h o p in g th a t o n ly th e ra d ia tiv e p ro cess rem a in ed . T h ey co n clu d ed fro m th eir stu d ies th a t th e to ta l en erg y E em itted p er u n it a rea p er seco n d is rela ted to a b so lu te tem p era tu re T o f th e b o d y. T h ey ev en g o t a n em p irica l rela tio n sh ip b etw een E a n d T . In 1 8 7 9 , th e A u stria n p h y sicist J o sef S tefa n rea ssessed th is w o rk o f D u lo n g a n d P etit. S tefa n fro m h is ex p eri- RESONANCE ⎜ February 2008 Scientists had studied radiation even before the concept of a black body had emerged. 117 GENERAL ⎜ ARTICLE Using his own law Josef Stefan arrived at the important result that Sun is at a temperature of about 6,000 K. m en ts o n g a ses h a d sh ow n th a t th e th erm a l co n d u ctiv ity o f g a ses w a s n o t p ressu re d ep en d en t. H en ce, D u lo n g a n d P etit, b y th eir ex tra p o latio n to zero p ressu re h a d elim in a ted co n v ectio n b u t n ot co n d u ctio n . T h erefo re, S tefa n co rrected fo r th is a n d ca lcu la ted th e p u re ra d ia tio n co m p o n en t o f h ea t tra n sfer b etw een th e b u lb a n d th e ch a m b er. H e d iscov ered th a t a rela tio n o f th e ty p e E = ¾T 4 m a tch ed b etter th e ex p erim en ta l resu lts o f D u lo n g a n d P etit. T h u s w a s b o rn h is fa m o u s law . T h e co n sta n t o f p ro p o rtio n a lity ¾ is ca lled th e S tefa n C o n sta n t. T h is law w a s in d eed a v ery im p o rta n t d iscov ery. U n fo rtu n a tely it d id n o t a ttra ct th e a tten tio n o f m a n y p h y sicists till L u m m er to o k n o tice o f it. In 1 8 8 9 , L u m m er, a lo n g w ith E rn st P rin g sh eim a n d F erd in a n d K u rlb a u m ex p erim en ta lly m ea su red th e a m o u n t o f ra d ia tio n em itted b y a cav ity a n d su cceed ed in su b sta n tia tin g S tefa n 's law . T h ey g o t th e fo llow in g va lu e fo r S tefa n 's co n sta n t: ¾ = 5 :7 0 £ 1 0 ¡ 5 erg cm We can also apply Stefan’s law to work out the temperature of the Earth. 118 ¡2 sec ¡1 d eg ¡4 (1 0 ¡8 W m ¡2 K ¡4 ): S tefa n h im self in d ica ted th e im p o rta n ce o f h is law . B y th a t tim e, th e a m o u n t o f so la r ra d ia tio n th a t rea ch es th e E a rth , h a d b een m ea su red a n d w a s fo u n d to b e 1 3 6 0 W / sq m . F ro m a stro n o m ica l o b serva tio n s, th e E a rth { S u n d ista n ce a n d th e S u n 's d ia m eter w ere k n ow n . W ith a ll th is d a ta ava ila b le to h im , a n d a ssu m in g th e S u n to b e a b la ck b o d y, S tefa n co u ld ea sily ca lcu la te its E . T h en u sin g h is ow n law h e a rriv ed a t th e im p o rta n t resu lt th a t S u n is a t a tem p era tu re o f a b o u t 6 ,0 0 0 K . T h is w a s in d eed a sig n i¯ ca n t resu lt sin ce u n til th en n o o n e w a s su re o f th e S u n 's tem p era tu re. T em p era tu res a n y w h ere b etw een 2 ,0 0 0 K a n d 1 0 ,0 0 0 K w ere b ein g q u o ted b y p h y sicists. W e ca n a lso a p p ly S tefa n 's law to w o rk o u t th e tem p era tu re o f th e E a rth . W e k n ow th e a m o u n t o f so la r ra d ia tio n rea ch in g th e E a rth . A b o u t 3 0 % o f th is in co m in g ra d ia tio n is re° ected b a ck in to sp a ce b y th e RESONANCE ⎜ February 2008 GENERAL ARTICLE E a rth a n d th e rest h ea ts u p th e E a rth . S o o n th e E a rth sta rts em ittin g ra d ia tio n a s a b la ck b o d y. It rea ch es a stea d y sta te w h en it sta rts em ittin g a s m u ch a s it receiv es. It is ea sy to w o rk o u t th is p ro b lem a n d a rriv e a t th e E a rth 's tem p era tu re. It tu rn s o u t to b e a b o u t 2 5 5 K o r ¡ 1 8 ±C . In fa ct th is is clo se to th e tem p era tu re th a t sa tellites h av e m ea su red o u tsid e th e E a rth 's a tm o sp h ere. We can also apply Stefan’s law to work out the temperature of the Earth. B la c k -B o d y S p ec tru m W e h av e so fa r d iscu ssed th e to ta l ra d ia tio n em itted b y th e b la ck b o d y. It is im p o rta n t to k n ow h ow th e ra d ia n t en erg y is d istrib u ted a m o n g st th e d i® eren t w av elen g th s in its sp ectru m . L u m m er a n d P rin g sh eim a d d ressed th is p ro b lem . A s a resu lt o f th eir la b o rio u s a n d p a in sta k in g w o rk , th e g en era l n a tu re o f th e b la ck -b o d y sp ectru m b eca m e clea r. F igu re 1 sh ow s so m e ty p ica l cu rv es th a t rep resen t th e sp ectru m a t d i® eren t tem p era tu res T o f th e b la ck b o d y. E a ch cu rv e g iv es u = u (¸ ), th e en erg y p er u n it v o lu m e (en erg y d en sity ), a t d i® eren t w av elen g th s ¸ , in u n it w av elen g th in terva l (d ¸ = u n ity ). N o tice th ree im p o rta n t fea tu res: Figure 1. Black-body spectrum. RESONANCE February 2008 119 GENERAL ⎜ ARTICLE Boltzmann took a bold step in applying thermodynamics to radiation. 1 . T h e sp ectru m is co n tin u o u s. It h a s a ll th e w av elen g th s ¸ , fro m 0 to 1 . 2 . It h a s a p ea k a t a p a rticu la r w av elen g th . 3 . T h e p ea k h eig h t in crea ses a n d sh ifts to sh o rter w av elen g th s a s th e tem p era tu re o f th e b la ck b o d y in crea ses. N o te: T h e v isib le p a rt o f th e sp ectru m ex ten d s fro m 4 0 0 n m to 7 0 0 n m . T h e r m o d y n a m ic D e sc r ip tio n o f R a d ia tio n S te fa n { B o ltz m a n n L a w It is g rea t to k n ow th a t th e b la ck -b o d y ra d ia tio n o b ey s S tefa n 's law . B u t to g et th is law fro m th e scien ce o f h ea t o r th erm a l p h y sics is g rea ter still. T h is b eca m e th e n ex t b ig ch a llen g e fo r p h y sicists. In th is g a m e, L u d w ig B o ltzm a n n , a stu d en t o f S tefa n , b ro k e n ew g ro u n d in 1 8 8 4 . T ill th en p h y sicists h a d a p p lied th erm o d y n a m ics o n ly to m a teria l o b jects. B o ltzm a n n to o k a b o ld step in a p p ly in g th erm o d y n a m ics to ra d ia tio n . T h e p ressu re P o f th e electro m a g n etic ra d ia tio n in term s o f its to ta l en erg y d en sity U ca n b e ca lcu la ted . It tu rn s o u t th a t P = Boltzmann conceived a Carnot ‘Ether Engine’ with radiation as the working substance and driven purely by pressure of radiation. 120 μ ¶ 1 U: 3 S o , B o ltzm a n n co n ceiv ed a C a rn o t `E th er E n g in e' w ith ra d ia tio n a s th e w o rk in g su b sta n ce a n d d riv en p u rely b y p ressu re o f ra d ia tio n . T h is en g in e w a s a ssu m ed to h av e p erfectly re° ectin g w a lls. T h e so u rce a n d receiv er w ere ta k en to b e b la ck b o d ies. D u rin g th e iso th erm a l ex p a n sio n , th e h ea t (en erg y ) a b so rb ed is d Q = (U d V + P d V ). W o rk d o n e in th e C a rn o t cy cle is d W = d P d V . T h u s th e e± cien cy o f th is en g in e is ´ = dW dU = : dQ 4U F o r a C a rn o t en g in e th is sh o u ld b e eq u a l to d T = T . It is a n ea sy m a tter th en to sh ow th a t th e to ta l en erg y RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE d en sity U o f th e th erm a l ra d ia tio n d ep en d s o n a b so lu te tem p era tu re T a cco rd in g to th e rela tio n : U = bT 4 ; w h ere b is a co n sta n t. F ro m th is, B o ltzm a n n ea sily a rriv ed a t th e S tefa n 's law o f ra d ia tio n w ith ¾ = (bc= 4 );c b ein g th e v elo city o f lig h t. T h a t is h ow in la ter litera tu re, S tefa n 's law ca m e to b e k n ow n a s th e S tefa n { B o ltzm a n n L aw . Wien was the first one to account for some of the features of the black body spectrum. He, like Boltzmann, applied thermodynamics to radiation. W ie n 's L a w T h e fea tu res o f th e b la ck -b o d y sp ectru m rem a in ed a m y stery till W ien a p p ea red o n th e scen e. H e w a s th e ¯ rst o n e to a cco u n t fo r so m e o f th e fea tu res o f th e b la ck b o d y sp ectru m . In 1 8 9 3 , h e, lik e B o ltzm a n n , a p p lied th erm o d y n a m ics to ra d ia tio n . H e co n sid ered th e p ro b lem o f ra d ia tio n co n ¯ n ed in sid e a ch a m b er o f v o lu m e V , w h o se w a lls a re u n d er a d ia b a tic ex p a n sio n . B eca u se th e w a lls o f th e cav ity a re m ov in g , rela tiv ely, th e w av elen g th s o f th e w av es rea ch in g th e su rfa ce g et D o p p ler sh ifted in w av elen g th . C a lcu la tio n s led W ien to th e su rp risin g resu lt th a t in th is p ro cess (V = ¸ 3 ) rem a in s a co n sta n t. F ro m th is, h e ea sily ca lcu la ted th e en erg y u (¸ ;T ) em itted p er u n it v o lu m e p er sec in u n it w av elen g th in terva l. H e fo u n d th a t: u (¸ ;T ) = f (¸ T ) ; ¸5 w h ere th e n a tu re o f th e fu n ctio n `f ' rem a in ed u n d eterm in ed [1 ]. In cid en ta lly in teg ra tio n o f u ov er ¸ g iv es U , th e to ta l en erg y d en sity o f a b la ck b o d y. In th e litera tu re th is rela tio n is o ften referred to a s W ien 's law . W ien sh ow ed fro m th is rela tio n th a t th e p ea k va lu e u p o f u a n d th e w av elen g th ¸ p a t w h ich th is p ea k o ccu rs, a re rela ted to th e tem p era tu re T o f th e b la ck b o d y th ro u g h th e rela tio n s: T ¸p = A ; RESONANCE ⎜ February 2008 121 GENERAL ⎜ ARTICLE It is not generally appreciated that water vapour is a greenhouse gas. Water molecules absorb electromagnetic radiations of wavelength more than 10 microns. u p = B T 5; w h ere A a n d B a re co n sta n ts. T h ese ex tra o rd in a ry rela tio n s b rin g o u t tw o im p o rta n t a sp ects o f th e b la ck -b o d y sp ectru m , o n e p erta in in g to th e p o sitio n o f its p ea k a n d a n o th er to th e h eig h t o f its p ea k . T h o u g h W ien d id th is ¯ n e p iece o f w o rk in 1 8 9 3 , h e p u b lish ed it o n ly in 1 8 9 6 . In 1 9 0 0 L u m m er a n d P rin g sh eim fro m th eir ex p erim en ts o n cav ity ra d ia tio n sh ow ed th a t b o th th ese rela tio n s o f W ien a g reed w ell w ith th eir resu lts. T h ey fo u n d th e co n sta n t A to b e 2 :8 9 8 £ 1 0 ¡3 m K . T h e ¯ rst rela tio n is k n ow n in th e litera tu re a s W ien 's D isp la cem en t L aw . It m ay b e m en tio n ed h ere th a t W ien g o t th e 1 9 1 1 N o b el P rize in P h y sics fo r th e d iscov ery o f th is law . T w o im p lica tio n s o f W ien 's d isp la cem en t law a re w o rth m en tio n in g h ere. O u r ¯ rst ex a m p le refers to a tu n g sten ¯ la m en t la m p . It em its ra d ia tio n a t a b o u t 2 0 0 0 K . T h u s it em its m o stly a t a w av elen g th o f 1 .5 m icro n s i.e. h ea t a n d n o t lig h t. It is a v ery in e± cien t la m p . O u r seco n d ex a m p le h a s to d o w ith th e tem p era tu re o f th e E a rth . A s a lrea d y m en tio n ed a b ov e, th e tem p era tu re o f th e E a rth d u e to so la r h ea tin g a lo n e is a b o u t 2 5 5 K o r ¡ 1 8 ±C . S u ch a b la ck b o d y em its p ea k ra d ia tio n a t a w av elen g th o f a b o u t 1 2 m icro n s. W e k n ow th a t th e E a rth is su rro u n d ed b y a b la n k et o f w a ter va p o u r. It is n o t g en era lly a p p recia ted th a t w a ter va p o u r is a g reen h o u se g a s. W a ter m o lecu les a b so rb electro m a g n etic ra d ia tio n s o f w av elen g th m o re th a n 1 0 m icro n s. W a ter m o lecu les in th e a tm o sp h ere, a fter a b so rb in g th ese lo n g w av elen g th ra d ia tio n s, ra d ia te th em b a ck to th e E a rth th u s ra isin g its tem p era tu re. A n ew ra d ia tio n eq u ilib riu m is rea ch ed a n d th e E a rth 's tem p era tu re rises to a b o u t 3 0 0 K i.e 2 7 ±C . M ic ro sc o p ic D e sc r ip tio n o f R a d ia tio n W ie n 's F o r m u la W ien w a s a lso th e ¯ rst to su g g est a m icro sco p ic v iew o f 122 RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE th e b la ck -b o d y ra d ia tio n . In sp ired b y th e k in etic th eo ry o f g a ses, h e co o k ed u p th ro u g h `lo o se' a rg u m en ts a n ex p o n en tia l fo rm fo r th e fu n ctio n `f ' a n d p ro p o sed in th e sa m e p a p er o f 1 8 9 6 : f (¸ T ) = C ex p μ ¡ D ¸T ¶ ; Lord Rayleigh and James Jeans looked at the black-body radiation from the point of view of statistical mechanics. th u s g ettin g fo r u th e fo llo w in g fo rm : u (¸ ;T ) = C ex p h³ ¡D ¸T ¸5 ´i ; w h ere C a n d D a re co n sta n ts. T h is is o ften referred to a s `W ien 's fo rm u la '. L u m m er a n d P rin g sh eim sh ow ed th a t it a g rees v ery w ell w ith ex p erim en ta l resu lts n ea r th e low w av elen g th en d o f th e b la ck -b o d y sp ectru m . B u t th ey fo u n d th a t it d ev ia tes, g iv in g lesser va lu es, a t th e h ig h er w av elen g th s w ith la rg e d ev ia tio n s n ea r th e lo n g w av elen g th ta il o f th e sp ectru m . R a y le ig h { J ea n s L a w L o rd R ay leig h a n d J a m es J ea n s lo o k ed a t th e b la ck b o d y ra d ia tio n fro m th e p o in t o f v iew o f sta tistica l m ech a n ics. T h ey w ere p ro b a b ly th e ¯ rst to d ev elo p a selfco n sisten t cla ssica l m icro sco p ic p ictu re o f b la ck -b o d y ra d ia tio n . T h ey co n sid ered th e b la ck -b o d y ra d ia tio n co n ¯ n ed in a cav ity. S in ce ra d ia tio n s a re n o th in g b u t electro m a g n etic w av es, th ese w av es w ill h av e to `¯ t' in to th e cav ity sp a ce. H en ce, a n y su ch w av e w ill h av e, lik e a v ib ra tin g strin g , a n in teg ra l n u m b er o f h a lf w av elen g th s ov er th e len g th it cov ers in sid e th e cav ity. E a ch su ch p erm itted w av e is ca lled a `m o d e'. R ay leig h a n d J ea n s w o rk ed o u t th e n u m b er Z o f th e p o ssib le electro m a g n etic m o d es p er u n it v o lu m e th a t ca n ex ist in sid e th e cav ity, a t a w av elen g th ¸ fo r u n it w av elen g th in terva l. T h ey g o t a fter ta k in g in to co n sid era tio n th e p o la riza tio n o f th e electro m a g n etic w av es: Z (¸ ) = RESONANCE ⎜ February 2008 8¼ : ¸4 123 GENERAL ⎜ ARTICLE The famous Rayleigh–Jeans Law completely fails near the low wavelength end. N ex t th ey in v o k ed th e eq u ip a rtitio n th eo rem o f M a x w ell's cla ssica l sta tistics. A cco rd in g to th is, th e th erm a l en erg y o f a sy stem is eq u a lly d istrib u ted a m o n g st th e d i® eren t d eg rees o f freed o m o f th e sy stem . E a ch d eg ree o f freed o m a cco m m o d a tes a n en erg y o f (k T = 2 ), k b ein g th e B o ltzm a n n co n sta n t eq u a l to 1 :3 8 £ 1 0 ¡ 1 6 erg d eg ¡1 (£ 1 0 ¡ 2 3 J / K ). R ay leig h a n d J ea n s a p p lied th is th eo rem to ra d ia tio n in sid e th e cav ity. T h ey reco g n ized th a t th e en erg y o f ra d ia tio n is d istrib u ted a m o n g st its d i® eren t m o d es in sid e th e cav ity. N ow ea ch m o d e is lik e a h a rm o n ic o scilla to r a n d h en ce h a s tw o d eg rees o f freed o m . A s a co n seq u en ce ea ch m o d e in sid e th e cav ity h a s a n en erg y o f " = k T . A n d th ere a re Z m o d es p er u n it v o lu m e in sid e th e cav ity. T h erefo re th e to ta l ra d ia tio n en erg y p er u n it v o lu m e a t ¸ in u n it w av elen g th in terva l is: u (¸ ;T ) = " Z = (8 ¼ k )T : ¸4 T h is is th e fa m o u s R ay leig h { J ea n s L aw . R ay leig h g o t th is resu lt in 1 9 0 0 w ith a n u n d eterm in ed co n sta n t in p la ce o f th e n u m erica l co e± cien t (8 ¼ ). L a ter in 1 9 0 5 J ea n s w o rk ed o u t th is co n sta n t. F o r a ll its b ea u ty, th is fo rm u la d o es n o t a g ree w ell w ith th e ex p erim en ta l b la ck b o d y sp ectru m ex cep tin g a t h ig h w av elen g th s n ea r th e ta il o f th e sp ectru m . F u rth er it co m p letely fa ils n ea r th e low w a v elen g th en d w h ere it d iv erg es to a n in ¯ n ite va lu e fo r u (¸ ;T ). T h is is o ften referred to a s th e U ltra v io let C a ta stro p h e. It is in terestin g to n o te th a t w e ca n g et R ay leig h { J ea n s law fro m W ien 's law if w e ta k e th e fu n ctio n f (¸ T ) = 8 ¼ k T ¸ . P la n c k 's F o r m u la S o , w e h a v e tw o fo rm s fo r u (¸ ;T ): th e o n e d u e to W ien th a t w o rk s w ell a t th e low w av elen g th en d a n d th e o th er o n e d u e to R ay leig h a n d J ea n s th a t w o rk s w ell a t th e h ig h w av elen g th ta il o f th e b la ck -b o d y sp ectru m . B o th th e fo rm u la e fa il in th e in term ed ia te reg io n o f th e sp ectru m . H av in g g o t fo rm u la e a t th e tw o w av elen g th lim its, 124 RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE it seem s a rea so n a b le step to g et a fu ll fo rm u la b y in terp o la tin g b etw een th ese tw o . T h is im p o rta n t step w a s ta k en b y M a x P la n ck a ro u n d 19 0 0 . P la n ck su g g ested a n in terp o la tio n fo rm u la b y ta k in g fo r W ien 's fu n ctio n `f ' th e fo rm (8¼ k ¯ ) o; f (¸ T ) = n ³ ¯ ´ ex p ¸ T ¡ 1 w ith k a s th e B o ltzm a n n co n sta n t a n d ¯ a s a n a d ju sta b le p a ra m eter. H en ce fo r th e b la ck -b o d y sp ectru m h e g o t Planck presented the discovery of Planck’s formula at the German Physical Society meeting that took place on October 9, 1900. (8¼ k ¯ ) ³ ´ o i: u (¸ ;T ) = hn ex p ¸¯T ¡ 1 ¸ 5 T h is is th e fa m o u s P la n ck fo rm u la . W e ca n q u ick ly v erify th a t th is g o es ov er to th e R ay leig h { J ea n s law a t h ig h w av elen g th s a n d to th e W ien 's fo rm u la a t low w av elen g th s w ith th e co n sta n ts C = 8 ¼ k¯ a n d D = ¯ . In v iew o f w h a t h a s b een sa id o f th e W ien a n d R ay leig h { J ea n s fo rm u la e, w e co n clu d e th a t th e P la n ck fo rm u la a g rees w ith ex p erim en ta l resu lts a t b o th th e sh o rt a n d lo n g w av elen g th lim its. H ow is it in th e rest o f th e sp ectru m ? It is o f h isto rica l in terest in th is co n tex t to k n ow th a t o n S u n d ay ev en in g o f O cto b er 7 , 1 9 0 0 , P la n ck sen t h is fo rm u la o n a p o stca rd , to h is frien d H ein rich R u b en s w h ich h e receiv ed th e fo llow in g m o rn in g . A co u p le o f d ay s la ter, R u b en s in fo rm ed P la n ck th a t th e fo rm u la w o rk ed p erfectly. A ty p ica l d ata sh ow n in th e F igu re 2 illu stra tes th is fa ct. Figure 2. Experimental black body spectrum and Planck’s formula. P la n ck p resen ted th e d iscov ery o f th is fo rm u la a t th e G erm a n P h y sica l S o ciety m eetin g th a t to o k p la ce o n O cto b er 9 , 1 9 0 0 . L a ter h e com m u n ica ted th e sa m e to th e B erlin A ca d em y o f S cien ces. P la n c k 's T h e o r y T h e ex tra o rd in a ry su ccess o f h is fo rm u la w o u ld b y itself h av e g iv en P la n ck a p erm a n en t p la ce in th e a n n a ls o f p h y sics. T h e g rea tn ess o f P la n ck lies in try in g to m a k e RESONANCE ⎜ February 2008 125 GENERAL ⎜ ARTICLE Planck quantized the permitted energies of an oscillator. sen se o u t o f h is fo rm u la . Its v ery su ccess m u st h av e set h im th in k in g d eep ly a b o u t th e u n d erly in g p h y sics. T ill th en o n ly th e R ay leig h { J ea n s fo rm u la h a d b een d eriv ed o n `so u n d ' p h y sics. S in ce th e cla ssica l d escrip tio n d id n o t lea d to th e rig h t `fo rm u la ' P la n ck h a d to th in k o f a n o n -cla ssica l a p p ro a ch . H e k n ew th a t th e ra d ia tio n th a t w a s in sid e th e cav ity w a s b ein g co n tin u o u sly em itted a n d a b so rb ed b y th e `m a teria l' o f th e cav ity. A t th a t tim e, th e p h y sicists th o u g h t th a t th e a to m s o f a m a teria l w h ich a b so rb ed o r em itted ra d ia tio n a s h a rm o n ic o scilla to rs. H en ce, o scilla to rs w ere in eq u ilib riu m w ith ra d ia tio n ex ch a n g in g en erg y w ith it. H e k n ew th a t ra d ia tio n s a re electro m a g n etic w av es. H en ce th e cav ity w a s ¯ lled w ith th ese w av es. T h ese w av es w ere a b so rb ed a n d em itted b y th e o scilla to rs th a t b eh av ed lik e cla ssica l `p en d u lu m s'. E n o rm o u s ex p erim en ta l ev id en ce h a d b a ck ed th e w av e n a tu re o f electro m a g n etic w av es. P la n ck co u ld n o t ig n o re th ese a n d th u s reta in ed th e w av e n a tu re o f ra d ia tio n a s su ch . B u t th e o scilla to r m ech a n ism o f a b so rp tio n a n d em issio n o f electro m a g n etic w av es w a s m o re a th eo retica l m o d el. H e th erefo re, v en tu red to a m en d th e law s g ov ern in g its b eh av io u r. H e m u st h av e tried m a n y a ltern a tiv es a n d fa iled , to a rriv e a t h is ow n fo rm u la fo r th e b la ck -b o d y sp ectru m . T h en ¯ n a lly, in d esp era tio n a s h e h a s co n fessed , h e su g g ested th a t a h a rm o n ic o scilla to r ca n n o t h av e a n y en erg y b u t o n ly in in teg ra l m u ltip les o f a q u a n tu m o f en erg y " 0 = h º , w h ere º is th e n a tu ra l freq u en cy o f th e o scilla to r a n d h a co n sta n t to b e d eterm in ed . In o th er w o rd s, P la n ck q u a n tized th e p erm itted en erg ies o f a n o scilla to r. T h u s, th ey w ere strictly n o n cla ssica l in n a tu re w ith en erg ies " = n h º , n b ein g a n in teg er. T h ese o scilla to rs a re in th erm a l eq u ilib riu m a t a n y tem p era tu re. T h erefo re, P la n ck in v o k ed th e B o ltzm a n n d istrib u tio n to d escrib e th em . A cco rd in g ly, th e n u m b er N o f o scilla to rs o f en erg y " is g iv en b y : 126 RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE μ à ¶ ! ¡" ¡ nhº N = N 0 ex p = N 0 ex p kT kT w ith N 0 a s th e to ta l n u m b er o f o scilla to rs o f zero en erg y. T h en th e av era g e o scilla to r en erg y " o f th e sy stem o f o scilla to rs b eco m es T o ta l en erg y " = T o ta l n u m b er o f o scilla to rs = = ( P P N ²) N P n ex p P n ³ ¡n h º kT ex p ³ ´o ¡n h º kT fn h º g ´o (su m m a tio n is ov er n ) = n (h º ) ex p ³ hº kT ´ ¡ 1 o: N ow ea ch p erm itted m o d e th a t is in sid e th e cav ity is a b so rb ed o r em itted b y a n o scilla to r th a t is in th e m a teria l o f th e cav ity. T h erefo re P la n ck id en ti¯ ed ea ch o scilla to r o f n a tu ra l freq u en cy º w ith a cav ity m o d e o f th e sa m e freq u en cy. H en ce in term s o f th e w av elen g th ¸ (= c= º ) o f th e m o d e, w e g et th e av era g e en erg y o f a m o d e to b e g iv en b y ³ ´ hc "= n ex p ³¸ hc ¸ kT ´ ¡ 1 o: P la n ck rep ea ted th e p ro ced u re o f R ay leig h a n d J ea n s. T h ere a re Z m o d es p er u n it v o lu m e p er u n it w av elen g th in terva l. F u rth er, ea ch m o d e h a s a n av era g e en erg y ". H en ce, th e to ta l en erg y o f ra d ia tio n p er u n it v o lu m e a t ¸ p er u n it w av elen g th in terva l is u ( ¸ ;T ) = "Z (¸ ); (8 ¼ h c) ³ ´ o i: u (¸ ;T ) = hn ex p k h¸ cT ¡ 1 ¸ 5 RESONANCE ⎜ February 2008 127 GENERAL ⎜ ARTICLE T h is is n o th in g b u t th e P la n ck fo rm u la w ith ¯ = (hc/k ). T h u s, h is q u a n tized o scilla to r m o d el led P la n ck to th e fo rm u la th a t h e h a d ea rlier d iscov ered . u (¸ ,T ) h a s a p ea k a t a w av elen g th ¸ p g iv en b y : T ¸p = hc ; 4 :9 6 5 1 k a n d th e to ta l en erg y d en sity U is o b ta in ed b y in teg ra tin g u (¸ ;T ) ov er ¸ fro m 0 to 1 , U = H en ce, b= à 8¼ 5k 4 1 5 c3 h 3 à ! 8¼ 5 k 4 1 5 c3 h 3 T 4: ! : P la n ck u sed th e va lu e o f T ¸ p = 0 :2 9 4 cm d eg a s o b ta in ed b y L u m m er a n d P rin g sh eim in 1 9 0 0 . F u rth er h e u sed th e d a ta o n th e to ta l ra d ia tio n em itted b y a b la ck b o d y a s m ea su red b y K u rlb a u m in 1 8 9 8 . T h is g av e h im b = 7 :0 6 1 £ 1 0 ¡ 1 5 erg cm ¡3 d eg ¡4 . F ro m th ese va lu es P la n ck g o t k = 1 :3 4 6 £ 1 0 ¡1 6 erg d eg (= 1 :3 4 6 £ 1 0 ¡ 2 3 J = K ); h = 6 :5 5 £ 1 0 ¡2 7 erg sec (= 6 :5 5 £ 1 0 ¡ 3 4 J sec): Planck had to wait for more than a decade for the scientific community to accept his revolutionary ideas on quantization. 128 T h e clo se a g reem en t b etw een th e co m p u ted a n d k n ow n va lu es o f th e B o ltzm a n n co n sta n t k is a testim o n y to th e su ccess o f h is fo rm u la . T h is p ro b a b ly em b o ld en ed h im to rep o rt h is ¯ n d in g s in th e G erm a n P h y sica l S o ciety m eetin g th a t to o k p la ce o n D ecem b er 1 4 , 1 9 0 0 . H ere th e q u a n tiza tio n o f o scilla to r en erg y w a s p resen ted fo r th e ¯ rst tim e. T h a t is w h y m a n y lo o k u p o n th is a s th e d a te o f b irth o f Q u a n tu m T h eo ry. P la n ck co m m u n ica ted h is ¯ n d in g s to th e B erlin A ca d em y o f S cien ces in 1 9 0 0 a n d la ter p u b lish ed h is w o rk in A n n alen der P hysik in 1 9 0 1 . P la n ck h a d to w a it fo r m o re th a n a d eca d e fo r th e scien ti¯ c co m m u n ity to a ccep t h is rev o lu tio n a ry RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE id ea s o n q u a n tiza tio n a n d h en ce h is th eo ry o f ra d ia tio n . In fa ct E in stein w a s a critic o f P la n ck 's w o rk . H e u sed W ien 's fo rm u la in h is stu d y o f b la ck -b o d y ra d ia tio n th a t led h im to p ro p o u n d th e q u a n tu m n a tu re o f lig h t in h is fa m o u s 1 9 0 5 p a p er. G ra d u a lly p h y sicists sta rted a p p recia tin g P la n ck 's th eo ry. T h ese a d m irers w ere in d eed h a p p y w h en P la n ck g o t th e 1 9 1 8 N o b el P rize in P h y sics fo r th is g rea t w o rk . Admirers were indeed happy when Planck got the 1918 Nobel Prize in Physics for this great work. P la n c k a n d th e Z e r o P o in t E n e r g y It h a s a lrea d y b een sta ted th a t P la n ck 's fo rm u la g o es ov er to th e R ay leig h { J ea n s fo rm u la in th e lo n g w av elen g th o r eq u iva len tly h ig h tem p era tu re lim it. T h erefo re, it w a s n a tu ra l fo r P la n ck to ex p ect th e av era g e o scilla to r en erg y o f h is q u a n tized o scilla to r to g o ov er, a t h ig h tem p era tu res, to th e cla ssica l va lu e o f (k T ). It h a s b een sh ow n a b ov e th a t th e av era g e en erg y o f a P la n ck ia n o scilla to r is ³ ´ hc ¸ ³ ´ . "= n ex p ¸ hk cT ¡ 1 g It is v ery ea sy to sh ow b y ex p a n d in g th e ex p o n en tia l term a n d reta in in g o n ly th e ¯ rst p o w er (h c= ¸ k T ), th a t th is ex p ressio n fo r " red u ces to k T in th e h ig h tem p era tu re lim it. T h is is w h a t P la n ck d id in h is 1 9 0 1 p a p er o n th e q u a n tu m th eo ry o f b la ck -b o d y ra d ia tio n . L a ter in 1 9 1 2 , fo r rea so n s th a t a re n o t clea r, h e rea ssessed h is ea rlier w o rk . H e fo u n d th a t w h en h e w en t to th e n ex t h ig h er p o w er in (h c= ¸ k T ) a n d ca lcu la ted ", h e w a s in fo r a su rp rise. H e g o t " = kT ¡ ³ ´ hc ¸ 2 = kT ¡ (h º ) : 2 It d id n o t g o ov er to th e cla ssica l va lu e o f k T . T o fo rce th e cla ssica l lim it o n h is m o d el, h e p ro p o sed in h is 1 9 1 2 p a p er th a t h is q u a n tized o scilla to r h a s its en erg y lev els RESONANCE ⎜ February 2008 129 GENERAL ⎜ ARTICLE The first experimental evidence for the existence of the Zero Point Energy came in 1924 from a work of the famous American chemist Robert Mulliken. sh ifted u p w a rd b y ( 12 h º ). T h a t is, th e o scilla to r en erg ies a re μ ¶ 1 h º; "= n + 2 in stea d o f " = n h º . In o th er w o rd s, ev en in th e g ro u n d sta te (n = 0 ), it h a s a ¯ n ite en erg y o f 12 h º . T h u s, P la n ck 's o scilla to r w a s n o n -cla ssica l in tw o d i® eren t w ay s. It h a d n o t o n ly d iscrete en erg ies b u t w o u ld n o t b e a t rest ev en in th e low est en erg y sta te. In o th er w o rd s, it w o u ld h av e a ¯ n ite en erg y ev en a t a b so lu te zero o f tem p era tu re. In la ter litera tu re th is w a s referred to a s th e Z ero P o in t E n erg y o f a q u a n tu m o scilla to r. A s a co n seq u en ce o f th is, th e b la ck -b o d y ra d ia tio n sp ectru m is d escrib ed by u (¸ ;T ) = h n (8 ¼ h c) 1 = ex p ³ hc k¸T ¸5 ´ o ¡ 1 + 1 2 i : P la n ck h im self ca lled th is th e S eco n d L aw o f R a d ia tio n . It is n o t o u t o f co n tex t to p o in t o u t h ere th a t p ro b a b ly th e ¯ rst ex p erim en ta l ev id en ce fo r th e ex isten ce o f th e Z ero P o in t E n erg y ca m e in 1 9 2 4 fro m a w o rk o f th e fa m o u s A m erica n ch em ist R o b ert M u llik en . H e w a s stu d y in g th e sp ectra o f B o ro n M o n ox id es (B O ), w ith tw o d i® eren t B o ro n iso to p es, in o n e ca se w ith m a ss 1 0 , in a n o th er m a ss 1 1 . (A s a co n seq u en ce, th ese m o lecu les w ill h av e slig h tly d i® eren t red u ced m a sses). B y co m p a rin g th e v ib ra tio n a l a n d th e ro ta tio n a l sp ectra o f th ese m o lecu les, h e d iscov ered th a t th e o b serv ed sp ectra h a d a b etter ¯ t w ith th e th eo ry, if th e en erg y lev els w ere a ssu m ed to sta rt a t (h º )= 2 ra th er th a n 0 . Q u a n tiz e d O sc illa to r Q u a n tiza tio n o f th e en erg y o f a n o scilla to r is cen tra l to P la n ck 's th eo ry o f b la ck -b o d y ra d ia tio n . T h ere is a n im p ressio n th a t th e ju sti¯ ca tio n fo r th is co m es o n ly fro m fo rm a l q u a n tu m m ech a n ics w h ere th e S ch rÄo d in g er W av e E q u a tio n is so lv ed fo r a n o scilla to r. T h e m eth o d em - 130 RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE p loy ed to so lv e th e S ch rÄo d in g er eq u a tio n is m a th em a tica lly q u ite co m p lex . It is n o t g en era lly a p p recia ted th a t th e essen tia l resu lt i.e., " = n h º ca n b e a rriv ed a t in a m u ch sim p ler w ay b y ex p lo itin g th e M a tter W av e C o n cep t a s en u n cia ted b y d e B ro g lie. In th is d escrip tio n a p a rticle o f m a ss m m ov in g w ith a v elo city v b eh av es lik e a w a v e o f w av elen g th ¤ = h (m v ) : A s th e p a rticle tra v els a d ista n ce `d s' in its p a th , th e n u m b er o f w av elen g th s it cov ers is (d s/ ¤ ). In a p erio d ic m o tio n a s in a m o tio n o n a circle o r in a h a rm o n ic o scilla to r, th e p a rticle co m es b a ck to th e sa m e sta te o n ce in a cy cle. In th e w av e d escrip tio n th is m ea n s th a t in th a t cy cle it m u st h av e trav ersed a n in teg ra l n u m b er o f w av elen g th s. In o th er w o rd s, ov er a cy cle Zà ds ¤ ! = Zμ m v h ¶ d s = n (a n in teg er): W h en th e p a rticle is m ov in g o n a circle w ith a u n ifo rm v elo city v , th e in teg ra tio n is ea sy a n d lea d s to th e resu lt m v r = n h = 2 ¼ ; th e w ell-k n ow n B o h r q u a n tu m co n d itio n w h ich is a t th e h ea rt o f h is th eo ry o f a to m s. W e d escrib e a h a rm o n ic o scilla to r in term s o f its d isp la cem en t X g iv en b y X = X 0 sin (2 ¼ º t): T h e a m p litu d e o f its o scilla tio n s is X 0 a n d its n a tu ra l freq u en cy is º = (® = m )1 = 2 w ith ® a s th e sp rin g co n sta n t. N ow th e en erg y o f a h a rm o n ic o scilla to r is m v2 ®X 2 + : 2 2 "= A s a lrea d y sa id ov er o n e p erio d w e m u st h av e a n in teg ra l n u m b er o f w av elen g th s. i.e. Zμ m v h RESONANCE ⎜ February 2008 ¶ dX = n : 131 GENERAL ⎜ ARTICLE Suggested Reading [1] [2] [3] [4] [5] [6] J K Roberts and A R Miller, Heat and Thermodynamics, Blackie and Sons Ltd., 1966. J Stefan, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematische Naturwissenschaftliche Classe Abteilung, Vol.279, p.391, 1879. L Boltzmann, Annalen der Physik und Chemi., Vol.22, p.31, 291, 1884. W Wien, Ann. Physik., Vol.58, p.622, 1896. J W S Rayleigh, Phil. Mag., Vol.49, p.539, 1900. J H Jeans, Phil. Mag., Vol.10, p.91, 1905. [7] M Planck, Berlin Academy of Sciences, Vol.X, p.19, 1900. [8] M Planck, Berlin Academy of Sciences, Vol.XII, p.14, 1900. M Planck, Annalen der Physik., Vol.l4, p.553, 1901. [9] [10] M Planck, Annalen der Physik., Vol.37, p.642, 1912. In teg ra tin g ov er a cy cle, w e g et th e req u ired resu lt, " = n h º: E p ilo g u e P la n ck 's u n o rth o d ox so lu tio n to th e p ro b lem o f th e b la ck b o d y sp ectru m h era ld ed th e era o f M o d ern P h y sics. T h e stu d y o f b la ck -b o d y ra d ia tio n b y la ter in v estig a to rs b eca m e ex trem ely fru itfu l a n d im p o rta n t. W e list so m e o f th em h ere: 1 . E in stein a n a ly sed th e low w av elen g th en d o f th e b la ck -b o d y sp ectru m in th e W ien a p p rox im a tio n a n d su g g ested th a t `L ig h t' b eh av ed lik e p a rticles w ith ea ch p a rticle, la ter ch risten ed a s P h o to n s, h av in g a n en erg y o f h º . T h is led to h is N o b el P rize w in n in g w o rk o n th e p h o to electric e® ect. 2 . E in stein stu d ied ca refu lly th e th erm a l eq u ilib riu m b etw een ra d ia tio n a n d a to m s in a cav ity a n d co n clu d ed th a t ra d ia tio n n o t o n ly b eh av ed lik e p a rticles o f en erg y h º b u t ea ch p a rticle a lso h a d a m o m en tu m o f h º = c. F u rth er, h e sh ow ed th a t th e a to m s a b so rb ed o r em itted ra d ia tio n o f en erg y h º = j(E 2 ¡ E 1 )j in a tra n sitio n o f a n a to m fro m sta te o f en erg y E 1 to a n o th er o f en erg y E 2 th u s ju stify in g B o h r's a ssu m p tio n co n cern in g em issio n a n d a b so rp tio n o f ra d ia tio n . H is la ter stu d y o f th e sa m e sy stem sh ow ed th a t th ere ca n b e b o th sp o n ta n eo u s a s w ell a s ra d ia tio n -in d u ced tra n sitio n o f a n a to m fro m a h ig h er en erg y sta te to a low er en erg y sta te. T h is is a t th e h ea rt o f L a ser a ctio n . 3 . In d ia n p h y sicist B o se sh ow ed th a t E in stein 's p h o to n p ictu re o f ra d ia tio n w o u ld lea d to P la n ck 's ra d ia tio n fo rm u la if th e p h o to n s a re a ssu m ed to b e n o t o n ly in d istin g u ish a b le b u t a lso to o b ey a sta tistica l d istrib u tio n to ta lly d i® eren t fro m th e w ell-k n ow n M a x w ell{ B o ltzm a n n d istrib u tio n . T h is led to th e d ev elo p m en t o f Q u a n tu m S ta tistics. 132 RESONANCE ⎜ February 2008 GENERAL ⎜ ARTICLE 4 . T h e co sm ic m icro w av e b a ck g ro u n d ra d ia tio n d iscov ered b y W ilso n a n d P en zia s h a s a b la ck -b o d y sp ectru m w ith a p ea k ra d ia tio n a ro u n d a w av elen g th o f a b o u t 1 m m a n d co rresp o n d s to a tem p era tu re o f a b o u t 3 K . T h is stro n g ly su p p o rted th e B ig B a n g T h eo ry a cco rd in g to w h ich th is ra d ia tio n is a rem n a n t o f th e B ig B a n g . T h ey g o t th e 1 9 7 8 N o b el P rize in P h y sics, fo r th is w o rk . Address for Correspondence G S Ranganath 422, 10th Cross, 8th Main Padmanabhanagar Bangalaore 560 070, India. Email: [email protected] Max Planck in Memoriam A man to whom it has been given to bless the world with a great creative idea has no need for the praise of posterity. His very achievement has already conferred a higher boon upon him. Yet it is good – indeed, it is indispensable – that representatives of all who strive for truth and knowledge should be gathered here today from the four corners of the globe. They are here to bear witness that even in these times of ours, when political passion and brute force hang like swords over the anguished and fearful heads of men, the standard of our ideal search for truth is being held aloft undimmed. This ideal, a bond forever uniting scientists of all times and in all places, was embodied with rare completeness in Max Planck. Even the Greeks had already conceived the atomistic nature of matter and the concept was raised to a high degree of probability by the scientists of the nineteenth century. But it was Planck’s law of radiation that yielded the first exact determination – independent of other assumptions – of the absolute magnitudes of atoms. More than that, he showed convincingly that in addition to the atomistic structure of matter there is a kind of atomistic structure to energy, governed by the universal constant h, which was introduced by Planck. This discovery became the basis of all twentieth-century research in physics and has almost entirely conditioned its development ever since. Without this discovery it would not have been possible to establish a workable theory of molecules and atoms and the energy processes that govern their transformations. Moreover, it has shattered the whole framework of classical mechanics and electrodynamics and set science a fresh task: that of finding a new conceptual basis for all physics. Despite remarkable partial gains, the problem is still far from a satisfactory solution. In paying homage to this man the American National Academy of Sciences expresses its hope that free research, for the sake of pure knowledge, may remain unhampered and unimpaired. – Albert Einstein Statement read at the Memorial Services for Max Planck, April, 1948. RESONANCE ⎜ February 2008 133
© Copyright 2025 Paperzz